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ABSTRACT

We show a new game characterizing various types of σ-porosity for Souslin

sets in terms of winning strategies. We use the game to prove and reprove

some new and older inscribing theorems for σ-ideals of σ-porous type in

locally compact metric spaces.
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1. Introduction

The theory of porous and σ-porous sets forms an important part of real analysis

and Banach space theory for more than forty years. It originated in 1967 when

E. P. Dolženko used for the first time the nomenclature ‘porous set’ and proved

that some sets of his interest are σ-porous ([3]). Since then the porosity as well

as many variants of this notion (see Section 4) have been used many times. The

interested reader can consult the survey papers of L. Zaj́ıček ([9, 11]) on porous

and σ-porous sets.

Here we are interested in structural properties of σ-ideals of σ-porous type.

More precisely, the main question we will consider in this work is the following

one.

Question: Let A be a Souslin subset of a metric space X and I be a σ-ideal of

subsets of X . Suppose that A /∈ I. Does there exist a closed set F ⊂ A which

is not in I?

This question was posed by L. Zaj́ıček in [9] (for a Borel set A) for clas-

sical Dolženko σ-porosity. An affirmative answer was given independently by

J. Pelant (for any topologically complete metric space X) and M. Zelený (for

any compact metric space X). Their results are demonstrated in a joint paper

[12] which combines the original idea of J. Pelant (giving an explicit construction

of the set F ) and techniques developed by M. Zelený. The case of some other

types of porosity (including the ordinary one in a locally compact metric space

X but also 〈g〉-porosity in a locally compact metric space X and symmetrical

porosity in R) was solved (also affirmatively) by M. Zelený and L. Zaj́ıček in

[13]. They offer a less complicated method of construction of F using so called

‘porosity-like’ relations and their proof uses tools from Descriptive Set Theory.

However, the authors admitted that their method cannot be applied to strong

porosity and so the Question for strong porosity still remained open (even in a

compact metric space X).

Later on, I. Farah and J. Zapletal introduced a new powerful tool to describe

σ-porous sets. This was an infinite game which can be used to characterize

σ-porous sets in 2ω considered with respect to a certain metric compatible with

the product topology. This game is used to reprove the positive answer to

the Question in this particular case ([6, Example 4.20]). The only attempt to

answer the Question for strong porosity (and ordinary porosity once again) was
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made by D. Rojas-Rebolledo, who generalized in [8] the ideas from [6]. He

managed to give an affirmative answer to the Question in any zero-dimensional

compact metric space X . Further, M. Doležal ([2]) showed a characterization

of σ-P-porous sets for any porosity-like relation P via an infinite game.

Our aim is to generalize results of [6, 8, 13] in two directions. We give an

affirmative answer to the Question in (locally) compact spaces which generalizes

[6, 8] (although [12] deals even with topologically complete spaces) and also for

σ-ideals of σ-porous type which are not included in [13].

Let us look at the content of this work a little closer. The basic notation

is presented in Section 2. In Section 3, we prove the main result of the paper

(Theorem 3.4). The complete formulation is a little bit technical so let us

formulate the result in an informal way.

Let X be a compact metric space and P be a porosity-like relation on X sat-

isfying some additional conditions. Then every Souslin non-σ-P-porous subset

A of X contains a compact non-σ-P-porous subset.

To prove this we proceed as follows. We introduce a modification of the

infinite games from [6, 2] for two players played with a set A. We prove that

the first player has a winning strategy whenever A ⊂ X is a Souslin non-σ-P-

porous set, while the second player has a winning strategy whenever A ⊂ X is

any σ-P-porous set. Now consider non-σ-P-porous Souslin subset A of X , so

that the first player has a winning strategy. Using this winning strategy, we find

a compact subset K of A such that the first player still has a winning strategy

in the game played with K. This means that the second player does not have

a winning strategy and so K is not σ-P-porous.

In Section 4, we apply the last result to specific porosities and obtain an (af-

firmative) answer to several different variants of the Question. Namely, we deal

with ordinary porosity, strong porosity, strong right porosity, and 1-symmetrical

porosity. As it is described earlier, the first result has been already known but

the method used in our work (based on an infinite game) aspires to be more

elegant and easier than the known proofs. The other results are new. Finally,

we show that there exists a closed set in R which is σ-(1 − ε)-symmetrically

porous for every ε ∈ (0, 1) but which is not σ-1-symmetrically porous. This

answers a question posed by M. J. Evans and P. D. Humke in [5].
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2. Preliminaries

Let (X, d) be a metric space. An open ball with center x ∈ X and radius r > 0

is denoted by B(x, r). Since an open ball (considered as a set) does not uniquely

determine its center and radius, we will identify every open ball with the pair

(center, radius) throughout this work. Therefore two different open balls (i.e.,

two different pairs (center, radius)) can still determine the same subset of X .

Let A ⊂ X and x ∈ X . Then d(x,A) denotes the distance of x from the set A.

If A is empty then we set d(x,A) = ∞.

The symbol ω<ω stands for the set of all finite sequences of elements of

ω including the empty sequence. We denote the concatenation of sequences

s ∈ ω<ω and (i), where i ∈ ω, by s∧i. If t ∈ ω<ω ∪ ωω, then the symbol |t|

denotes the length of t. Given s ∈ ω<ω and ν ∈ ω<ω ∪ ωω, we write s � ν if ν

is an extension of s. If s, t ∈ ω<ω, then we say that s, t are compatible if either

s � t or t � s. If ν ∈ ω<ω ∪ωω, n ∈ ω, and |ν| ≥ n, then the symbol ν|n means

the finite sequence (ν(0), . . . , ν(n− 1)). We will use the notation N = ω \ {0}.

We will prove our results for porosity-like relations satisfying some additional

assumptions and then apply it to specific cases. To do this, we need the following

definition.

Definition 2.1: Let (X, d) be a metric space and let P ⊂ X × 2X be a relation

between points of X and subsets of X . Then P is called a point-set relation

on X . The symbol P(x,A) where x ∈ X and A ⊂ X means that (x,A) ∈ P.

A point-set relation P on X is called a porosity-like relation if the following

conditions hold for every A ⊂ X and x ∈ X :

(P1) if B ⊂ A and P(x,A) then P(x,B),

(P2) we have P(x,A) if and only if there exists r > 0 such that

P
(

x,A ∩B(x, r)
)

,

(P3) we have P(x,A) if and only if P(x,A).

If P is a porosity-like relation on X , A ⊂ X , and x ∈ X , we say that

• A is P-porous at x if P(x,A),

• A is P-porous if it is P-porous at each x ∈ A,

• A is σ-P-porous if it is a countable union of P-porous sets.

If P is a porosity-like relation on X and A ⊂ X , we denote

por
P
(A) = {x ∈ A : P(x,A)} and NP(A) = {x ∈ A : ¬P(x,A)}.
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We also need to recall the definition of a Foran–Zaj́ıček scheme and one

related proposition from [1].

Definition 2.2 (cf. [1, Definition 3.4]): Let X be a complete metric space and

P be a porosity-like relation on X . Let F = {F (t) : t ∈ ω<ω} be a system of

nonempty subsets of X such that for each t ∈ ω<ω and each k ∈ ω we have

(i)
⋃

j∈ω F (t
∧j) is a dense subset of F (t),

(ii) F (t) is P-porous at no point of F (t∧k),

(iii) for any ν ∈ ωω and any sequence {Gn}n∈ω of open sets satisfying:

(a) limn→∞ diam(Gn) = 0,

(b) Gn+1 ⊂ Gn for every n ∈ ω,

(c) F (ν|n) ∩Gn 6= ∅ for every n ∈ ω,

we have
⋂

n∈ω

(

F (ν|n) ∩Gn
)

6= ∅.

Then we say that F is a P-Foran–Zaj́ıček scheme in X .

Proposition 2.3 ([1, Proposition 3.11]): Let X be a complete metric space

and P be a porosity-like relation on X . Suppose that NP(A) is a Souslin set

whenever A ⊂ X is Souslin. If S ⊂ X is a Souslin non-σ-P-porous set, then

there exists a P-Foran–Zaj́ıček scheme F in X such that each element of F is

a subset of S.

Remark 2.4: The above definition and proposition are formulated in [1] in a

slightly more general form.

3. Main result

3.1. The class PX. For a metric space X and a porosity-like relation P on

X , we consider the following two conditions:

(α) there is a nondecreasing function ψ : [0,∞) → [0,∞) with ψ(0) = 0 and

0 < ψ(r) ≤ r for every r > 0, such that whenever x ∈ por
P
(C) for some

x ∈ X and C ⊂ X , then also

x ∈ por
P

({

y ∈ X : d(y, C) ≤ ψ
(

d(y, x)
)})

,

(β) NP(A) is a Souslin set whenever A ⊂ X is a Souslin set.

We denote by PX the class of all porosity-like relations P on X which satisfy

both conditions (α) and (β).
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3.2. The infinite game. For the rest of this section, let us fix a complete

metric space (X, d), a porosity-like relation P on X , and sequences (Rn)
∞
n=1

and (rn)
∞
n=1 of positive real numbers such that

(1)
Rn
n

> rn > Rn+1, n ∈ N.

For every A ⊂ X , we define a game H(A) for two players named I and II. The

game is played as follows:

I x1 x2 x3

· · ·

II (S1
1 ) (S1

2 , S
2
2) (S1

3 , S
2
3 , S

3
3)

On the first move, I plays x1 ∈ X and II plays an open set S1
1 ⊂ B(x1, R1).

On the second move, I plays x2 ∈ B(x1, R1 − r1) and II plays two open sets S1
2

and S2
2 such that S1

2 ∪ S2
2 ⊂ B(x2, R2). On the (n+ 1)th move, n ∈ N, I plays

xn+1 ∈ B(xn, Rn−rn) and II replies by playing open sets S1
n+1, S

2
n+1, . . . , S

n+1
n+1

such that
⋃n+1
j=1 S

j
n+1 ⊂ B(xn+1, Rn+1).

Claim 3.1: We have limn→∞Rn = 0 and for every n ∈ N we haveB(xn+1, rn+1)

⊂ B(xn, rn). Consequently, the limit limn→∞ xn exists in X and is equal to a

unique element of
⋂∞

n=1B(xn, Rn).

Proof. The equality limn→∞Rn = 0 follows from (1). Let n ∈ N and y ∈

B(xn+1, Rn+1). Then we have

d(y, xn) ≤ d(y, xn+1)+d(xn+1, xn) < Rn+1+(Rn−rn)
(1)
< rn+(Rn−rn) = Rn,

and so B(xn+1, Rn+1) ⊂ B(xn, Rn).

We call the limit point x = limn→∞ xn the outcome of the game. Player II

wins the game H(A) if

• either x /∈ A,

• or there is m ∈ N (called a witness of II’s victory then) such that

x ∈ por
P

(

X \
∞
⋃

n=m

(

Smn ∩B(x, rn)
)

)

.

Now suppose that S = (Sn)∞n=1 is a sequence of collections of open subsets of

X . Then we define a game HS(A) between player I and player II in the same
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way as the game H(A), but now player II has to choose the sets Smn , m ≤ n,

from the collection Sn in his nth move, whenever it is possible. Note that in

applications below player II will always be able to choose the sets Smn , m ≤ n,

from Sn in his nth move.

3.3. The main theorem. Let A ⊂ X be σ-P-porous. We have A =
⋃∞

n=1An,

where An is P-porous for every n ∈ N. Then player II can win the game H(A)

by playing Smn = B(xn, Rn) \ Am, m ≤ n, n ∈ N. Indeed, for every m ∈ N we

then have

X \
∞
⋃

n=m

(

Smn ∩B(x, rn)
)

= Am ∪

(

X \
∞
⋃

n=m

(

B(xn, Rn) ∩B(x, rn)
)

)

,

and so if the outcome x of a run of the game is in Am for somem ∈ N, then m is

a witness of II’s victory (by (P2) and (P3)). In the next lemma, we prove that

for certain porosity-like relations P on X and certain sequences S of collections

of open subsets of X , player II can win even the game HS(A).

Lemma 3.2: LetX be a complete metric space and P be a porosity-like relation

on X satisfying condition (α) witnessed by a function ψ. Let (tn)
∞
n=1 be a

nonincreasing sequence of real numbers such that for every n ∈ N we have

(2) 0 < tn ≤
rn −Rn+1

2
.

Let S = (Sn)∞n=1 be a sequence of collections of open subsets of X such that for

every n ∈ N and for every set D ⊂ X , there is S ∈ Sn such that

D ⊂ S ⊂ {y ∈ X : d(y,D) < ψ(tn+1)}.

Suppose that A ⊂ X is σ-P-porous. Then II has a winning strategy in the

game HS(A).

Proof. Let A =
⋃∞

m=1Am whereAm is aP-porous set for everym ∈ N. Suppose

that in his nth move, player I played xn. Let m ∈ {1, . . . , n}. Let us denote

(3) Dn = {y ∈ B(xn, Rn − tn+1) : d(y,Am) > ψ(tn+1)}.

By the assumption on the collection Sn, there is Smn ∈ Sn such that

(4) Dn ⊂ Smn ⊂ {y ∈ X : d(y,Dn) < ψ(tn+1)}.

We show that

(5) Smn ⊂ B(xn, Rn) \Am.
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Suppose that y ∈ Smn . By (4) there is z ∈ Dn such that d(y, z) < ψ(tn+1).

Then we have

d(y, xn) ≤ d(y, z) + d(z, xn)
(3)
< ψ(tn+1) + (Rn − tn+1) ≤ Rn

and

d(y,Am) ≥ d(z, Am)− d(y, z)
(3)
> ψ(tn+1)− d(y, z) > 0.

Thus we have verified (5).

We define the strategy for II by choosing this Smn , m ∈ {1, . . . , n}, in his nth

move.

Let x be the outcome of the game where II followed this strategy. We may

suppose that x ∈ Am for some m ∈ N (otherwise x /∈ A and II wins) and

we will show that m is a witness for II’s victory then. By (5) we have Am ⊂

X \
⋃∞

n=m S
m
n , and so

x ∈ Am ⊂ X \
∞
⋃

n=m

Smn ⊂ X \
∞
⋃

n=m

(

Smn ∩B(x, rn)
)

.

So it remains to prove that P
(

x,X \
⋃∞

n=m(Smn ∩ B(x, rn))
)

. Since Am is P-

porous and x ∈ Am, we have by condition (α) that

P
(

x,
{

y ∈ X : d(y,Am) ≤ ψ(d(y, x))
})

.

So by the definition of a porosity-like relation (namely by (P1) and (P2)) it

suffices to show that
(

X \
∞
⋃

n=m

(

Smn ∩B(x, rn)
)

)

∩B(x, tm) ⊂
{

y ∈ X : d(y,Am) ≤ ψ(d(y, x))
}

.

So let y ∈ B(x, tm) be arbitrary and suppose that d(y,Am) > ψ(d(y, x)). By

(1) and (2), it easily follows that limn→∞ tn = 0, and so there is n0 ≥ m such

that tn0+1 ≤ d(y, x) < tn0
. By the monotonicity of ψ, we then have

(6) d(y,Am) > ψ(tn0+1).

We also have

d(y, xn0
) ≤ d(y, x) + d(x, xn0+1) + d(xn0+1, xn0

) < tn0
+Rn0+1 + (Rn0

− rn0
)

(2)

≤
rn0

−Rn0+1

2
+Rn0+1 +Rn0

− rn0

=
Rn0+1 − rn0

2
+Rn0

(2)

≤ Rn0
− tn0

≤ Rn0
− tn0+1.
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By this estimate, (3) and (6), it follows that y ∈ Dn0
, and so (by (4)) y ∈ Smn0

.

But we also have y ∈ B(x, tn0
) and so (by (2)) y ∈ B(x, rn0

). By the last two

facts, we conclude that y ∈
⋃∞

n=m

(

Smn ∩B(x, rn)
)

and the proof is finished.

Proposition 3.3: Let X be a complete metric space, A ⊂ X , P be a porosity-

like relation on X . Suppose that there exists a P-Foran–Zaj́ıček scheme F =

{F (s) : s ∈ ω<ω} such that each element of F is contained in A. Then player I

has a winning strategy in the game H(A).

Proof. In the nth move of the game H(A), let player I choose, in addition to

xn, also an auxiliary object sn ∈ ω<ω such that

(i) |sn| ≤ n,

(ii) sn and sn+1 are compatible,

(iii) xn ∈ F (sn).

In the sequel, we always denote pn = |sn|, n ∈ N. The strategy for player I is

the following. He starts by s1 = ∅ and by choosing arbitrary x1 ∈ F (∅). Now

suppose that I is in his (n+1)th move, and so xj , sj , and S
m
j for m ≤ j ≤ n are

already known. For m ≤ n denote Gmn =
⋃n

i=m S
m
i . Player I distinguishes the

following cases. (Observe that by (i) and (1) we have Rn − prn > 0 for every

p ≤ n.)

(A) If there is 1 ≤ p < pn such that B(xn, Rn) 6⊂ Gpn and

Gpn ∩B(xn, Rn − prn) ∩ F (sn|p) 6= ∅,

pick the least such p, let xn+1 be an arbitrary element of

Gpn ∩B(xn, Rn − prn) ∩ F (sn|p),

and set sn+1 = sn|p.

(B) If there is no p as in (A) and if xn ∈ Gpnn and B(xn, Rn) 6⊂ Gpnn , set

xn+1 = xn and sn+1 = sn.

(C) Suppose that neither (A) nor (B) occur. The set
⋃

i∈ω F (sn
∧i) is dense

in F (sn) and F (sn)∩B(xn , Rn−pnrn) 6= ∅ by the induction hypothesis

(namely by (iii)). Thus there exists i ∈ ω such that

F (sn
∧i) ∩B(xn, Rn − pnrn) 6= ∅.

Set sn+1 = sn
∧i and choose any xn+1 ∈ F (sn+1) ∩B(xn, Rn − pnrn).

It follows from the definition of the strategy that conditions (i)–(iii) are satisfied.
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An intuitive description of I’s strategy is the following. If, during his first n

moves, II does not ‘try very hard to win’ by a witness smaller than pn, i.e., if

for every 1 ≤ p < pn, the set Gpn is too small to intersect F (sn|p) ‘close’ to xn,

then player I plays xn+1 ‘close’ to xn. However, if G
p
n intersects F (sn|p) ‘close’

to xn for some 1 ≤ p < pn and if it is still possible for II to win by such p (i.e.,

if B(xn, Rn) 6⊂ Gpn), then during a finite number of turns, player I tries to ruin

any possible II’s chances of having p as a witness (by ensuring B(xj , Rj) ⊂ Gpj
for some j > n) for the least such p. But during these finitely many turns of

the game, II may try to win by an even smaller witness p′. Then I immediately

changes his plan and focuses on this smaller p′.

We show that this strategy is winning for player I. Suppose that we have a

run of the game where player I followed the above strategy. Let sn, xn, S
m
n be

the corresponding objects constructed during the run.

Let us fix p ∈ N for a while. Whenever I applies (A) to choose sn+1 of the

length p (which means that II threatens to win by some witness smaller than

pn and p is the least such witness), he decides to continue by a finite (possibly

empty) chain of applications of (B) until, for some j > n, B(xj , Rj) ⊂ Gpj . It

is possible that he will have to apply (A) for some 1 ≤ p′ < p before he fulfills

this intention. But then again, he changes his plan and decides to continue by a

finite chain of applications of (B) until, for some j > n, B(xj , Rj) ⊂ Gp
′

j , and so

on. It follows that whenever I applies (A) for some p, he always achieves, after

a finite number of turns (during which he only applies (A) or (B)), the validity

of the inclusion B(xj , Rj) ⊂ Gp
′

j for some j > n and for some 1 ≤ p′ ≤ p, for

which the condition (A) was also used during the game (at least once). Such a

p′ cannot be used for applying (A) anymore. It follows that for every p ∈ N,

the condition (A) can be applied only finitely many times during the game (at

most p times, to be precise). By analogous considerations, for every p ∈ N, it

can happen also only finitely many times that II applies condition (B) to choose

sn+1 of the length p. And since applying (C) gives pn+1 = pn + 1, we easily

conclude that

(iv) limn→∞ pn = ∞.

Using (ii) and (iv), there exists a unique ν ∈ ωω such that

(7) ∀n ∈ ω ∃k0 ∈ N ∀k ≥ k0 : sk|n = ν|n.
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Let x be the outcome of the run. By (1) we have limn→∞ diamB(xn, Rn) = 0.

By Claim 3.1 we have B(xn+1, Rn+1) ⊂ B(xn, Rn) for every n ∈ N. Further

by (iii) and (7), for each n ∈ N there is k ≥ n large enough such that xk ∈

F (sk) ⊂ F (sk|n) = F (ν|n), and so F (ν|n) ∩ B(xn, Rn) 6= ∅. By the definition

of a P-Foran–Zaj́ıček scheme, we conclude that
⋂

n∈N
(F (ν|n)∩B(xn, Rn)) 6= ∅.

But the only element of
⋂∞

n∈N
B(xn, Rn) is x, and so x ∈

⋂

n∈N
F (ν|n). Using

the fact that each element of F is contained in A we get x ∈ A.

Let m ∈ N be arbitrary. We show that m is not a witness of II’s victory. If

x ∈
⋃∞

n=m S
m
n , then

x /∈ por
P

(

X \
∞
⋃

n=m

(

Smn ∩B(x, rn)
)

)

.

Suppose that x /∈
⋃∞

n=m S
m
n . There is q ≥ m such that for every n ≥ q,

we have pn ≥ m + 2 and sn|m = ν|m. So for every n ≥ q, condition (A)

was not applied with p = m which means that either B(xn, Rn) ⊂ Gmn or

Gmn ∩B(xn, Rn−mrn)∩F (sn|m) = ∅. But the former case does not hold since

B(xn, Rn) contains x and x /∈
⋃∞

n=m S
m
n =

⋃∞

n=mG
m
n . So for every n ≥ q we

have

(8) Gmn ∩B(xn, Rn −mrn) ∩ F (sn|m) = ∅.

Since pn ≥ m + 2 for n ≥ q, it also immediately follows from the described

strategy for I that

(9) xn+1 ∈ B(xn, Rn − (m+ 2)rn), n ≥ q.

We then have

d(x, xq) ≤ d(x, xq+1) + d(xq+1, xq)
(9)
< Rq+1 + (Rq − (m+ 2)rq)

(1)
< rq + (Rq − (m+ 2)rq) = Rq − (m+ 1)rq < Rq −mrq,

and so there is r > 0 such that

(10) B(x, r) ⊂ B(xq, Rq −mrq).

Now we show that

(11) F (sq|m) ∩B(x, r) ∩
∞
⋃

n=m

(B(x, rn) ∩ S
m
n ) = ∅.

To this end, let n ≥ m be arbitrary and we will show that

F (sq|m) ∩B(x, r) ∩B(x, rn) ∩ S
m
n = ∅.
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Suppose first that n ≤ q. Then we have

F (sq|m) ∩B(x, r) ∩B(x, rn) ∩ S
m
n ⊂ F (sq|m) ∩B(x, r) ∩ Smn

(10)
⊂ F (sq|m) ∩B(xq , Rq −mrq) ∩G

m
q

(8)
= ∅.

Now suppose that n > q. Then for any y ∈ B(x, rn), we have

d(y, xn) ≤ d(y, x) + d(x, xn+1) + d(xn+1, xn)
(9)
< rn +Rn+1 + (Rn − (m+ 2)rn)

(1)
< rn + rn + (Rn − (m+ 2)rn) = Rn −mrn,

and so B(x, rn) ⊂ B(xn, Rn −mrn). So we have

F (sq|m) ∩B(x, r) ∩B(x, rn) ∩ S
m
n ⊂ F (sq|m) ∩B(x, rn) ∩ S

m
n

⊂ F (sq|m) ∩B(xn, Rn −mrn) ∩G
m
n

= F (sn|m) ∩B(xn, Rn −mrn) ∩G
m
n

(8)
= ∅.

Thus we have verified (11).

It follows that

(12) F (sq|m) ∩B(x, r) ⊂
(

X \
∞
⋃

n=m

(

Smn ∩B(x, rn)
)

)

∩B(x, r).

By the definition of a P-Foran–Zaj́ıček scheme, the set F (sq|m) = F (ν|m) is

P-porous at no point of F (ν|(m+ 1)), so in particular it is not P-porous at x.

By this fact, (P1), (P2), and (12), we easily conclude that

x /∈ por
P

(

X \
∞
⋃

n=m

(

Smn ∩B(x, rn)
)

)

.

This finishes the proof.

Theorem 3.4: Let X be a compact metric space, P be a porosity-like relation

from the class PX , and A ⊂ X be a non-σ-P-porous Souslin set. Then there

exists a compact set K ⊂ A which is not σ-P-porous.

Proof. Let ψ be a function witnessing that P satisfies condition (α) and let

(tn)
∞
n=1 be a nonincreasing sequence of real numbers such that 0 < tn ≤ 1

2 (rn−

Rn+1), n ∈ N. For every n ∈ N, let Dn be a finite subset of X such that

X =
⋃

y∈Dn

B
(

y, 12ψ(tn+1)
)

and let Sn be the collection of all subsets of X of

the form
⋃

y∈E B
(

y, 12ψ(tn+1)
)

where E ⊂ Dn. It is easy to verify that Sn,
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n ∈ N, are finite collections of open subsets of X such that for every D ⊂ X

and n ∈ N, there is S ∈ Sn such that

D ⊂ S ⊂ {y ∈ X : d(y,D) < ψ(tn+1)}.

Let us denote S = (Sn)∞n=1. By Proposition 2.3, there exists a P-Foran–Zaj́ıček

scheme F = {F (s) : s ∈ ω<ω} in X such that each element of F is a subset

of A. By Proposition 3.3, player I has a winning strategy ρ in the game H(A).

Thus I has a winning strategy also in the game HS(A). Let K ⊂ X be the set

of all possible outcomes of the game HS(A) where player I follows the strategy

ρ. Since the strategy ρ is winning we have K ⊂ A.

Let T be the tree of all legal positions of the game HS(A) where I follows the

strategy ρ. Let us equip the body [T ] of the tree T by the product topology.

Then [T ] is a compact topological space since T is a finitely branching tree

(because the collections Sn, n ∈ N, are finite). Moreover, the mapping u : [T ] →

X which assigns to every run of the game HS(A) its outcome is obviously

continuous. It follows that K = u
(

[T ]
)

is a compact set.

The strategy ρ is a winning strategy for player I also in the game HS(K) by

the definition of the game. Thus there is no winning strategy for player II in the

game HS(K). By Lemma 3.2, the compact set K ⊂ A is not σ-P-porous.

4. Applications to specific porosities.

Using Theorem 3.4 we prove inscribing theorems for σ-porosity, σ-strong poros-

ity, σ-strong right porosity, and σ-1-symmetrical porosity. It will be clear that

Theorem 3.4 can be applied to many other types of porosity. First of all we

recall definitions of the mentioned porosities.

Let (X, d) be a metric space. Let M ⊂ X, x ∈ X , and R > 0. Then we

define

θ(x,R,M) = sup{r > 0: there exists an open ball B(z, r)

such that d(x, z) < R and B(z, r) ∩M = ∅},

p(x,M) = lim sup
R→0+

θ(x,R,M)

R
.

We say that M ⊂ X is

• porous at x ∈ X if p(x,M) > 0,

• strongly porous at x ∈ X if p(x,M) ≥ 1.
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Let M ⊂ R, x ∈ R, and R > 0. Then we define

θ+(x,R,M) = sup{r > 0: there exists an open ball B(z, r), z > x,

such that |x− z| < R, and B(z, r) ∩M = ∅},

p+(x,M) = lim sup
R→0+

θ+(x,R,M)

R
,

θs(x,R,M) = sup{r > 0: there exists an open ball B(z, r),

such that |x− z| < R, and
(

B(z, r) ∪B(2x− z, r)
)

∩M = ∅},

ps(x,M) = lim sup
R→0+

θs(x,R,M)

R
.

Let c > 0. We say that M ⊂ R is

• right porous at x ∈ R if p+(x,M) > 0,

• strongly right porous at x ∈ R if p+(x,M) ≥ 1,

• c-symmetrically porous at x ∈ R if ps(x,M) ≥ c.

Lemma 4.1: Let (X, d) be a metric space and C ⊂ X . Let ψ : [0,∞) → [0,∞)

be a nondecreasing function such that ψ(0) = 0 and 0 < ψ(R) ≤ R for every

R > 0, and such that limR→0+
ψ(R)
R

= 0. Let us denote C̃ = {y ∈ X : d(y, C) ≤

ψ(d(y, x))}. Then for every x ∈ C, we have p(x, C̃) = p(x,C).

If, moreover, (X, d) is the real line equipped with euclidean metric, then for

every x ∈ C, we also have p+(x, C̃) = p+(x,C) and ps(x, C̃) = ps(x,C).

Proof. Let x ∈ C be arbitrary. Since C ⊂ C̃, we clearly have p(x, C̃) ≤ p(x,C).

So suppose that p(x,C) > 0 and let ε ∈ (0, p(x,C)) and R0 > 0 be arbitrary.

There exists R1 > 0 such that

(13)
ψ(2R)

R
<
ε

2
, R ∈ (0, R1).

There also exists R ∈
(

0,min(R0, R1)
)

such that θ(x,R,C)
R

> p(x,C) − ε
2 . By

the last inequality, there is an open ball B(z, r) such that

(14) d(x, z) < R, B(z, r) ∩C = ∅, and
r

R
> p(x,C) −

ε

2
.

Note that (14) together with the fact that x ∈ C imply that r < R. Note also

that (14) together with the inequality ε < p(x,C) imply that r− 1
2Rε > 0. Let

y ∈ B(z, r − 1
2Rε) be arbitrary. Then

(15) d(y, x) ≤ d(y, z) + d(z, x) < r +R < 2R
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and so we have

d(y, C) ≥ d
(

y,X \B(z, r)
)

> 1
2Rε

(13)
> ψ(2R)

(15)

≥ ψ(d(y, x)).

It follows that B
(

z, r − 1
2Rε

)

∩ C̃ = ∅, and so

θ(x,R, C̃) ≥
r − 1

2Rε

R
=

r

R
−
ε

2

(14)
> p(x,C)− ε.

Since R0 > 0 was chosen arbitrarily, we have p(x, C̃) ≥ p(x,C) − ε. And since

ε ∈ (0, p(x,C)) was also chosen arbitrarily, we conclude that p(x, C̃) ≥ p(x,C).

In the case of X = R, the equalities p+(x, C̃) = p+(x,C) and ps(x, C̃) =

ps(x,C) can be shown analogously.

Theorem 4.2 (cf. [12, Theorem 3.1]): Let (X, d) be a locally compact metric

space. Let A ⊂ X be a non-σ-porous Souslin set. Then there exists a non-σ-

porous compact set K ⊂ A.

Proof. Suppose first that the space (X, d) is compact. Let P be the porosity-like

relation on X given by

P(x,B) ⇔ B is porous at x

where x ∈ X and B ⊂ X .

Let ψ : [0,∞) → [0,∞) be a nondecreasing function such that ψ(0) = 0 and

0 < ψ(R) ≤ R for every R > 0, and such that limR→0+
ψ(R)
R

= 0. By Lemma

4.1, such ψ witnesses that P satisfies the condition (α).

Let A ⊂ X be a Souslin set. Then NP(A) consists of all x ∈ A such that for

every (rational) ε > 0 there is (rational) R0 > 0 such that for every (rational)

R ∈ (0, R0), we have θ(x,R,A)
R

≤ ε. The last inequality can be further reformu-

lated such that for every z ∈ X (or every z from some fixed countable dense

subset of X) with d(x, z) < R and every (rational) r > Rε, there exists y ∈ A

such that d(y, z) < r. Now it is easy to see that these conditions describe a

Souslin set and so P satisfies the condition (β).

We verified that P is from the class PX and so the statement follows from

Theorem 3.4 for any compact metric space (X, d).

Now suppose that (X, d) is an arbitrary locally compact metric space. By [10,

Lemma 3], there exists x ∈ X such that A∩B(x, r) is a non-σ-porous subset of

X for every r > 0. Let us take r0 > 0 such that B(x, r0) is compact and denote

A′ = A ∩B(x, r0). Since porosity is a local property, every M ⊂ B(x, r0) is σ-

porous in X if and only if M is σ-porous in the compact metric space B(x, r0).
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Therefore, A′ is non-σ-porous in B(x, r0). Due to the previous part of the proof,

there exists a non-σ-porous (in B(x, r0) and therefore also in X) compact set

K ⊂ A′ ⊂ A.

Theorem 4.3: Let (X, d) be a locally compact metric space. Let A ⊂ X be a

non-σ-strongly porous Souslin set. Then there exists a non-σ-strongly porous

compact set K ⊂ A.

Proof. Similarly as in the proof of the previous theorem, we may assume that

X is compact. The porosity-like relation on X given by

P(x,B) ⇔ B is strongly porous at x

is from the class PX by similar arguments as in the proof of the previous theorem

as well. So the statement again follows from Theorem 3.4.

Theorem 4.4: Let A ⊂ R be a non-σ-strongly right porous (non-σ-1-sym-

metrically porous respectively) Souslin set. Then there exists a non-σ-strongly

right porous (non-σ-1-symmetrically porous respectively) compact set K ⊂ A.

Proof. We show the proof for the strong right porosity, 1-symmetrical porosity

being analogous.

Similarly as above, we may assume that A ⊆ (0, 1). Let us consider the

porosity-like relation on [0, 1] given by

P(x,B) ⇔ B (considered as a subset of R) is strongly right porous at x,

so that for B ⊆ [0, 1], we have

B is P-porous in [0, 1] ⇔ B is strongly right porous in R.

Using similar arguments as above it is not difficult to show that P is from the

class P[0,1]. So the statement follows from Theorem 3.4.

Remark 4.5: Theorem 4.4 has been already used in [7].

Finally, we apply Theorem 4.4 to answer a question posed by Evans and

Humke in [5]. This is the following question.

Question: Does there exist an Fσ set in [0, 1] which is σ-(1−ε)-symmetrically

porous for every 0 < ε < 1 but which is not σ-1-symmetrically porous?

We answer this question affirmatively by proving the next theorem.



Vol. 00, XXXX INFINITE GAMES AND σ-POROSITY 17

Theorem 4.6: There exists a closed set K ⊂ [0, 1] which is σ-(1 − ε)-sym-

metrically porous for every 0 < ε < 1 but which is not σ-1-symmetrically

porous.

Proof. There exists a Borel set A ⊂ (0, 1) which is σ-(1 − ε)-symmetrically

porous for every 0 < ε < 1 but which is not σ-1-symmetrically porous ([4]). By

Theorem 4.4, there exists a compact non-σ-1-symmetrically porous set K ⊂ A.

Since K is a subset of A, it is still σ-(1 − ε)-symmetrically porous for every

0 < ε < 1.
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