221 research outputs found

    The Structure of Models of Second-order Set Theories

    Full text link
    This dissertation is a contribution to the project of second-order set theory, which has seen a revival in recent years. The approach is to understand second-order set theory by studying the structure of models of second-order set theories. The main results are the following, organized by chapter. First, I investigate the poset of T-realizations of a fixed countable model of ZFC, where T is a reasonable second-order set theory such as GBC or KM, showing that it has a rich structure. In particular, every countable partial order embeds into this structure. Moreover, we can arrange so that these embedding preserve the existence/nonexistence of upper bounds, at least for finite partial orders. Second I generalize some constructions of Marek and Mostowski from KM to weaker theories. They showed that every model of KM plus the Class Collection schema ā€œunrollsā€ to a model of ZFCāˆ’ with a largest cardinal. I calculate the theories of the unrolling for a variety of second-order set theories, going as weak as GBC + ETR. I also show that being T-realizable goes down to submodels for a broad selection of second-order set theories T. Third, I show that there is a hierarchy of transfinite recursion principles ranging in strength from GBC to KM. This hierarchy is ordered first by the complexity of the properties allowed in the recursions and second by the allowed heights of the recursions. Fourth, I investigate the question of which second-order set theories have least models. I show that strong theoriesā€”such as KM or Ī 11-CAā€”do not have least transitive models while weaker theoriesā€”from GBC to GBC + ETROrd ā€”do have least transitive models

    The Structure of Models of Second-order Set Theories

    Full text link
    This dissertation is a contribution to the project of second-order set theory, which has seen a revival in recent years. The approach is to understand second-order set theory by studying the structure of models of second-order set theories. The main results are the following, organized by chapter. First, I investigate the poset of TT-realizations of a fixed countable model of ZFC\mathsf{ZFC}, where TT is a reasonable second-order set theory such as GBC\mathsf{GBC} or KM\mathsf{KM}, showing that it has a rich structure. In particular, every countable partial order embeds into this structure. Moreover, we can arrange so that these embedding preserve the existence/nonexistence of upper bounds, at least for finite partial orders. Second I generalize some constructions of Marek and Mostowski from KM\mathsf{KM} to weaker theories. They showed that every model of KM\mathsf{KM} plus the Class Collection schema "unrolls" to a model of ZFCāˆ’\mathsf{ZFC}^- with a largest cardinal. I calculate the theories of the unrolling for a variety of second-order set theories, going as weak as GBC+ETR\mathsf{GBC} + \mathsf{ETR}. I also show that being TT-realizable goes down to submodels for a broad selection of second-order set theories TT. Third, I show that there is a hierarchy of transfinite recursion principles ranging in strength from GBC\mathsf{GBC} to KM\mathsf{KM}. This hierarchy is ordered first by the complexity of the properties allowed in the recursions and second by the allowed heights of the recursions. Fourth, I investigate the question of which second-order set theories have least models. I show that strong theories---such as KM\mathsf{KM} or Ī 11-CA\Pi^1_1\text{-}\mathsf{CA}---do not have least transitive models while weaker theories---from GBC\mathsf{GBC} to GBC+ETROrd\mathsf{GBC} + \mathsf{ETR}_\mathrm{Ord}---do have least transitive models.Comment: This is my PhD dissertatio

    Modal mu-calculi

    Get PDF

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53

    Multiclass Learnability Beyond the PAC Framework: Universal Rates and Partial Concept Classes

    Full text link
    In this paper we study the problem of multiclass classification with a bounded number of different labels kk, in the realizable setting. We extend the traditional PAC model to a) distribution-dependent learning rates, and b) learning rates under data-dependent assumptions. First, we consider the universal learning setting (Bousquet, Hanneke, Moran, van Handel and Yehudayoff, STOC '21), for which we provide a complete characterization of the achievable learning rates that holds for every fixed distribution. In particular, we show the following trichotomy: for any concept class, the optimal learning rate is either exponential, linear or arbitrarily slow. Additionally, we provide complexity measures of the underlying hypothesis class that characterize when these rates occur. Second, we consider the problem of multiclass classification with structured data (such as data lying on a low dimensional manifold or satisfying margin conditions), a setting which is captured by partial concept classes (Alon, Hanneke, Holzman and Moran, FOCS '21). Partial concepts are functions that can be undefined in certain parts of the input space. We extend the traditional PAC learnability of total concept classes to partial concept classes in the multiclass setting and investigate differences between partial and total concepts
    • ā€¦
    corecore