399 research outputs found

    Towards an infinitary logic of domains : Abramsky logic for transition systems

    Get PDF
    We give a new characterization of sober spaces in terms of their completely distributive lattice of saturated sets. This characterization is used to extend Abramsky's results about a domain logic for transition systems. The Lindenbaum algebra generated by the Abramsky finitary logic is a distributive lattice dual to an SFP-domain obtained as a solution of a recursive domain equation. We prove that the Lindenbaum algebra generated by the infinitary logic is a completely distributive lattice dual to the same SFP-domain. As a consequence soundness and completeness of the infinitary logic is obtained for a class of transition systems that is computational interesting

    Infinitary λ\lambda-Calculi from a Linear Perspective (Long Version)

    Get PDF
    We introduce a linear infinitary λ\lambda-calculus, called ℓΛ∞\ell\Lambda_{\infty}, in which two exponential modalities are available, the first one being the usual, finitary one, the other being the only construct interpreted coinductively. The obtained calculus embeds the infinitary applicative λ\lambda-calculus and is universal for computations over infinite strings. What is particularly interesting about ℓΛ∞\ell\Lambda_{\infty}, is that the refinement induced by linear logic allows to restrict both modalities so as to get calculi which are terminating inductively and productive coinductively. We exemplify this idea by analysing a fragment of ℓΛ\ell\Lambda built around the principles of SLL\mathsf{SLL} and 4LL\mathsf{4LL}. Interestingly, it enjoys confluence, contrarily to what happens in ordinary infinitary λ\lambda-calculi

    A Finite Semantics of Simply-Typed Lambda Terms for Infinite Runs of<br> Automata

    Full text link
    Model checking properties are often described by means of finite automata. Any particular such automaton divides the set of infinite trees into finitely many classes, according to which state has an infinite run. Building the full type hierarchy upon this interpretation of the base type gives a finite semantics for simply-typed lambda-trees. A calculus based on this semantics is proven sound and complete. In particular, for regular infinite lambda-trees it is decidable whether a given automaton has a run or not. As regular lambda-trees are precisely recursion schemes, this decidability result holds for arbitrary recursion schemes of arbitrary level, without any syntactical restriction.Comment: 23 page

    Coalgebras and Their Logics

    Get PDF
    Transition systems pervade much of computer science. This article outlines the beginnings of a general theory of specification languages for transition systems. More specifically, transition systems are generalised to coalgebras. Specification languages together with their proof systems, in the following called (logical or modal) calculi, are presented by the associated classes of algebras (e.g., classical propositional logic by Boolean algebras). Stone duality will be used to relate the logics and their coalgebraic semantics

    Hilbert's "Verunglueckter Beweis," the first epsilon theorem, and consistency proofs

    Full text link
    In the 1920s, Ackermann and von Neumann, in pursuit of Hilbert's Programme, were working on consistency proofs for arithmetical systems. One proposed method of giving such proofs is Hilbert's epsilon-substitution method. There was, however, a second approach which was not reflected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert's first epsilon theorem and a certain 'general consistency result' due to Bernays. An analysis of the form of this so-called 'failed proof' sheds further light on an interpretation of Hilbert's Programme as an instrumentalist enterprise with the aim of showing that whenever a `real' proposition can be proved by 'ideal' means, it can also be proved by 'real', finitary means.Comment: 18 pages, final versio

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed
    • …
    corecore