4,330 research outputs found

    Detecting changes of transportation-mode by using classification data

    Get PDF

    Inferring transportation modes from GPS trajectories using a convolutional neural network

    Full text link
    Identifying the distribution of users' transportation modes is an essential part of travel demand analysis and transportation planning. With the advent of ubiquitous GPS-enabled devices (e.g., a smartphone), a cost-effective approach for inferring commuters' mobility mode(s) is to leverage their GPS trajectories. A majority of studies have proposed mode inference models based on hand-crafted features and traditional machine learning algorithms. However, manual features engender some major drawbacks including vulnerability to traffic and environmental conditions as well as possessing human's bias in creating efficient features. One way to overcome these issues is by utilizing Convolutional Neural Network (CNN) schemes that are capable of automatically driving high-level features from the raw input. Accordingly, in this paper, we take advantage of CNN architectures so as to predict travel modes based on only raw GPS trajectories, where the modes are labeled as walk, bike, bus, driving, and train. Our key contribution is designing the layout of the CNN's input layer in such a way that not only is adaptable with the CNN schemes but represents fundamental motion characteristics of a moving object including speed, acceleration, jerk, and bearing rate. Furthermore, we ameliorate the quality of GPS logs through several data preprocessing steps. Using the clean input layer, a variety of CNN configurations are evaluated to achieve the best CNN architecture. The highest accuracy of 84.8% has been achieved through the ensemble of the best CNN configuration. In this research, we contrast our methodology with traditional machine learning algorithms as well as the seminal and most related studies to demonstrate the superiority of our framework.Comment: 12 pages, 3 figures, 7 tables, Transportation Research Part C: Emerging Technologie

    Map++: A Crowd-sensing System for Automatic Map Semantics Identification

    Full text link
    Digital maps have become a part of our daily life with a number of commercial and free map services. These services have still a huge potential for enhancement with rich semantic information to support a large class of mapping applications. In this paper, we present Map++, a system that leverages standard cell-phone sensors in a crowdsensing approach to automatically enrich digital maps with different road semantics like tunnels, bumps, bridges, footbridges, crosswalks, road capacity, among others. Our analysis shows that cell-phones sensors with humans in vehicles or walking get affected by the different road features, which can be mined to extend the features of both free and commercial mapping services. We present the design and implementation of Map++ and evaluate it in a large city. Our evaluation shows that we can detect the different semantics accurately with at most 3% false positive rate and 6% false negative rate for both vehicle and pedestrian-based features. Moreover, we show that Map++ has a small energy footprint on the cell-phones, highlighting its promise as a ubiquitous digital maps enriching service.Comment: Published in the Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (IEEE SECON 2014

    Exploring universal patterns in human home-work commuting from mobile phone data

    Get PDF
    Home-work commuting has always attracted significant research attention because of its impact on human mobility. One of the key assumptions in this domain of study is the universal uniformity of commute times. However, a true comparison of commute patterns has often been hindered by the intrinsic differences in data collection methods, which make observation from different countries potentially biased and unreliable. In the present work, we approach this problem through the use of mobile phone call detail records (CDRs), which offers a consistent method for investigating mobility patterns in wholly different parts of the world. We apply our analysis to a broad range of datasets, at both the country and city scale. Additionally, we compare these results with those obtained from vehicle GPS traces in Milan. While different regions have some unique commute time characteristics, we show that the home-work time distributions and average values within a single region are indeed largely independent of commute distance or country (Portugal, Ivory Coast, and Boston)--despite substantial spatial and infrastructural differences. Furthermore, a comparative analysis demonstrates that such distance-independence holds true only if we consider multimodal commute behaviors--as consistent with previous studies. In car-only (Milan GPS traces) and car-heavy (Saudi Arabia) commute datasets, we see that commute time is indeed influenced by commute distance

    Inferring transportation mode from smartphone sensors:Evaluating the potential of Wi-Fi and Bluetooth

    Get PDF
    Understanding which transportation modes people use is critical for smart cities and planners to better serve their citizens. We show that using information from pervasive Wi-Fi access points and Bluetooth devices can enhance GPS and geographic information to improve transportation detection on smartphones. Wi-Fi information also improves the identification of transportation mode and helps conserve battery since it is already collected by most mobile phones. Our approach uses a machine learning approach to determine the mode from pre-prepocessed data. This approach yields an overall accuracy of 89% and average F1 score of 83% for inferring the three grouped modes of self-powered, car-based, and public transportation. When broken out by individual modes, Wi-Fi features improve detection accuracy of bus trips, train travel, and driving compared to GPS features alone and can substitute for GIS features without decreasing performance. Our results suggest that Wi-Fi and Bluetooth can be useful in urban transportation research, for example by improving mobile travel surveys and urban sensing applications

    Modelling cellphone trace travel mode with neural networks using transit smartcard and home interview survey data

    Get PDF
    This study proposes a framework to impute travel mode for trips identified from cellphone traces by developing a deep neural network model. In our framework, we use the trips from a home interview survey and transit smartcard data, for which the travel mode is known, to create a set of artificial pseudo-cellphone traces. The generated artificial pseudo-cellphone traces with known mode are then used to train a deep neural network classifier. We further apply the trained model to infer travel modes for the cellphone traces from cellular network data. The empirical case study region is Montevideo, Uruguay, where high-quality data are available for all three types of data used in the analysis: a large dataset of cellphone traces, a large dataset of public transit smartcard transactions, and a small household travel survey. The results can be used to create an enhanced representation of origin-destination trip-making in the region by time of day and travel mode

    CT-Mapper: Mapping Sparse Multimodal Cellular Trajectories using a Multilayer Transportation Network

    Get PDF
    Mobile phone data have recently become an attractive source of information about mobility behavior. Since cell phone data can be captured in a passive way for a large user population, they can be harnessed to collect well-sampled mobility information. In this paper, we propose CT-Mapper, an unsupervised algorithm that enables the mapping of mobile phone traces over a multimodal transport network. One of the main strengths of CT-Mapper is its capability to map noisy sparse cellular multimodal trajectories over a multilayer transportation network where the layers have different physical properties and not only to map trajectories associated with a single layer. Such a network is modeled by a large multilayer graph in which the nodes correspond to metro/train stations or road intersections and edges correspond to connections between them. The mapping problem is modeled by an unsupervised HMM where the observations correspond to sparse user mobile trajectories and the hidden states to the multilayer graph nodes. The HMM is unsupervised as the transition and emission probabilities are inferred using respectively the physical transportation properties and the information on the spatial coverage of antenna base stations. To evaluate CT-Mapper we collected cellular traces with their corresponding GPS trajectories for a group of volunteer users in Paris and vicinity (France). We show that CT-Mapper is able to accurately retrieve the real cell phone user paths despite the sparsity of the observed trace trajectories. Furthermore our transition probability model is up to 20% more accurate than other naive models.Comment: Under revision in Computer Communication Journa
    • …
    corecore