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This study proposes a framework to impute travel mode for trips identified from cellphone traces 
by developing a deep neural network model. In our framework, we use the trips from a home 
interview survey and transit smartcard data, for which the travel mode is known, to create a set of 
artificial pseudo-cellphone traces. The generated artificial pseudo-cellphone traces with known 
mode are then used to train a deep neural network classifier. We further apply the trained model 
to infer travel modes for the cellphone traces from cellular network data. The empirical case study 
region is Montevideo, Uruguay, where high-quality data are available for all three types of data 
used in the analysis: a large dataset of cellphone traces, a large dataset of public transit smartcard 
transactions, and a small household travel survey. The results can be used to create an enhanced 
representation of origin-destination trip-making in the region by time of day and travel mode.  
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1. Introduction 

In recent years there has been a growing interest in incorporating different forms of emerging 
passive data sources into analysis of transportation systems and travel behaviour. Cellphone traces 
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collected from cellular network base transceiver stations (BTSs) provide a very large sample of data 
with widespread coverage and low cost for a long period, especially for urban regions due to the 
increasing market penetration of cellphones. Given the ubiquity of cellphones in recent years, 
imputing people’s movement using BTS cellular network data would generate a representative 
travel pattern for the population in a region, with relatively good temporal coverage at a low cost. 
A cellular network typically records several cellphone-to-infrastructure connection events namely 
handovers (HO), location updates (LU) and call detail records (CDR). HO and CDR provide data 
of communication events such as calls or messages and LU notify the cellular network when a 
cellphone moves from one BTS to another.  

One benefit of using cellular network data for transportation analysis is the ability to use existing 
infrastructure. It is not required to install new antennas or devices, in contrast to other technologies 
such as Bluetooth. Unlike the methods using GPS services, for using cellular network data, there is 
no need to ask people to install an app on their smartphones. All cellphone users’ movements can 
be potentially recorded using the information collected from BTS antennas. This also results in a 
major privacy concern; it is not possible for users to opt-out or to refuse to participate in the data 
collection as long as they use their cellphones. Another issue with this type of data is that individual 
characteristics such as socio-demographic attributes are unknown. Therefore, if the population of 
cell phone users are not representative of the entire population, it is not possible to correct for the 
sample bias. Additionally, if a person carries two or more cellphones, there is no way to identify 
that person and just count the movements once. 

Each BTS serves a certain area, usually referred to as a BTS cell. The spatial precision of the cellular 
network data depends on the size of this cell. While in dense urban areas the cell sizes are usually 
small, the cell sizes in rural areas can reach several kilometers. Also, in rural areas, the service 
coverage is not usually complete, which can potentially generate gaps in people’s travel patterns 
collected from the cellular network data. This lack of spatial precision increases the level of 
uncertainty and makes the cellular network data more suitable for aggregate traffic measures such 
as generating OD matrices (Caceres et al. 2013; Gundlegård et al. 2016; Xu et al. 2017), estimating 
road congestion (Caceres et al. 2012; Gundlegård et al. 2016; Toole et al. 2015) or investigating long-
distance travel (Bekhor et al. 2013; Janzen et al. 2018).  

While cellphone traces can be used to identify mobility patterns, the lack of trip information such 
as mode and purpose is a key limitation for such data to replace traditional travel surveys, as well 
as in comparison to many app-based methods. Mode and purpose information are two essential 
components of any transportation study. Imputation of mode and purpose is further complicated 
by technical limits to the spatial and temporal precision of the cellphone traces that can generally 
be achieved. While several studies have tried to identify trip purposes (Alexander et al. 2015; Xu et 
al. 2017; Yin et al. 2017), to date, the question of mode imputation has often been ignored, with 
researchers mostly focussing on auto-based travel (Alexander et al. 2015; Gundlegård et al. 2016; 
Toole et al. 2015; Yin et al. 2017). Additional processing and imputation are necessary to detect 
travel mode for trips identified from cellphone traces. 

This study aims to bridge this gap in the literature by developing a deep neural network model 
that identifies mode of travel for trips identified from cellphone traces. The empirical case study 
region is Montevideo, Uruguay, where high-quality data are available for all three types of data 
used in the analysis: a large dataset of cellphone traces, a large dataset of public transit smartcard 
transactions, and a small household travel survey. In the household travel survey and public transit 
smartcard transaction datasets, the travel modes, origin and destination locations and start- and 
end-times are known and reported for every trip. Thus, it is possible to create a set of artificial 
pseudo-cellphone traces for those trips with the mode of travel known. The generated artificial 
pseudo-cellphone traces then can be used to train a deep neural network classifier. In this study, 
the modes considered are car, public transit and active transportation (walk and bicycle combined). 
With the exception of the Bachir et al. (2019) study (discussed further below), the use of travel 
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survey and transit smartcard data to impute cellphone trace travel modes does not seem to have 
been explored in the literature. Also, to the best of the authors’ knowledge, the proposed “pseudo-
trace” method for training the mode imputation procedure has not been previously tested. Thus, a 
primary purpose of this paper is to explore the viability of this approach. 

The rest of the paper is organized as follows. Section 2 provides a review of literature on use of 
cellular network data in transportation analysis. Section 3 presents the data used in our analysis. 
Our proposed method for imputing travel mode of cellphone traces is explained in Section 4 and 
the results for the Montevideo region are presented in Section 5. We conclude the paper in Section 
6.  

2. Literature Review 

With the advance of technology in recent years, investigating people movements using a carry-on 
device has become popular due to the potentials to obtain accurate data for a large sample with 
relatively low cost (Lee et al. 2016). Earlier studies have examined the use of cellular network data 
for transportation planning purposes from various dimensions. Several studies have reviewed 
current methods and practices, potentials and limitations of using cellular network data for 
transportation planning analyses (Caceres et al. 2008; Chen et al. 2016; Çolak et al. 2015; Huang et 
al. 2019; Jiang et al. 2013; Wang et al. 2018). Studies investigating cellular network data to better 
understand human mobility patterns typically focus on identifying activities, trips, and spatial-
temporal variations in travel patterns (Becker et al. 2011; Bekhor and Shem-Tov 2015; Pucci et al. 
2015; Xu et al. 2017; Zahedi and Shafahi 2017). Specifically, detecting home locations is considered 
important to yield useful insights into people’s travel patterns. Although passive cell phone 
location data can be sparse in both space and time, inferred home locations are found to be 
relatively accurate as they are locations which are repetitively visited. The identified home 
locations further are used as anchors to examine other activities and trips (Ahas et al. 2010; Xu et 
al. 2015).  

Another typical use of cellular network data in the literature is estimating origin-destination (OD) 
matrices. However, since the BTS cells are not generally aligned with traffic analysis zones or 
census tracts and must be re-aggregated or redistributed, the level of accuracy decreases for 
transportation analysis. Nevertheless, it is possible to obtain BTS cell-to-cell OD matrices from 
cellular network data. In the transportation literature, several studies have focused on extracting 
OD matrices from cellular network data for different regions around the world (Caceres et al. 2013; 
Caceres et al. 2007; Calabrese et al. 2011; Demissie et al. 2016; Iqbal et al. 2014; Larijani et al. 2015; 
Mellegard et al. 2011; Nanni et al. 2014; Pucci et al. 2015; Zhang et al. 2010). The extracted OD 
matrices are then used for different purposes, such as optimizing public transport network service 
(Berlingerio et al. 2013) or estimating traffic flows (Gundlegård et al. 2016). Several recent studies 
have employed cellular network data to develop activity-based travel demand models (Alexander 
et al. 2015; Pozdnoukhov et al. 2016; Yin et al. 2017). Given the level of spatial precision, several 
recent studies suggested that cellular network data is well suited for evaluating long-distance 
travel patterns and obtaining large samples of data for such trips (Bekhor et al. 2013; Janzen et al. 
2018; Janzen and Axhausen 2015). 

In the field of traffic engineering, cellular network data are also used to estimate traffic flows and 
to derive routes traveled. In urban areas where the BTS cell sizes are relatively small, it is possible 
to assign movements to the road network. Earlier studies have worked on estimating volume and 
speed, improving traffic assignments and inferring real-time traffic information using cellular 
network data (Bar-Gera 2007; Caceres et al. 2012; Janecek et al. 2015; Järv et al. 2012; Tettamanti and 
Varga 2014; Toole et al. 2015; Wu et al. 2015). Due to uncertainty caused by the larger BTS cell size 
and the possibility of having several roads within a cell for the movements’ direction, most of these 
studies looked at aggregated measures of traffic. Further, cellular network data can provide middle 
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points along the way between origins and destinations and thus has also been used for route choice 
analysis.  

Traditionally, many studies have focused on identifying mode of travel from GPS data traces 
(Bohte and Maat 2009; Broach et al. 2019; Semanjski et al. 2017). Since cellular network data 
typically have less spatial and temporal accuracy than GPS data, mode imputation is more 
challenging and requires more complex processing methods (Huang et al. 2019). In recent years, 
there has been several studies exploring methods to impute travel mode for trips generated from 
cellular network data. Several of these studies focused on intercity trips and therefore travel modes 
are generally categorized as flight and ground modes, train or highway (Doyle et al. 2011; Hui et 
al. 2017; Schlaich et al. 2010; Smoreda et al. 2013). 

Few studies have tried to impute travel mode for urban trips using cellular network data. 
Phithakkitnukoon et al., 2017 used one year of CDR data in Portugal and estimate the probability 
of commutes made by car or transit by considering the proximity of cell towers and suggested 
route alternatives from Google Map between the origin and destination of the trip 
(Phithakkitnukoon et al. 2017). Their study focused on trips made between home and work 
locations and estimated the mode share of these trips for each user, with promising results in terms 
of aggregated mode shares when compared with travel survey data. Similarly, Qu et al., 2015 
employed transportation network data and three weeks of CDR data for about 2 million cellphone 
users in Boston to estimate transportation mode shares in each traffic zone instead of transportation 
mode of each trip (Qu et al. 2015).  

Wang et al, 2010 proposed a framework to infer travel mode (drive and public transport) from CDR 
data based on an unsupervised machine learning clustering method on trip duration and Google 
Map travel times (Wang et al. 2010). Xu et al, 2011, used a Hidden Markov Model to 
probabilistically identify travel mode for cellphone users in a small city in China. For about 500 
individuals, the travel modes were known and labelled as the information were collected using a 
questionnaire survey. The method was based on the observed average speed and the modes’ speed 
distribution. The modes considered were drive, bike and walk (Xu et al. 2011). Sohn et al., collected 
one month of cellular network data for three users who at the same time recorded their travel 
dairies (Sohn et al. 2006). Using that database, they were able to train a two-stage classification 
scheme: first stage classifying between stationary and non-stationary events and the second stage 
determining non-stationary events as walking or driving. Their analysis resulted in a prediction 
accuracy of 85%, indicating that the trained classifiers would reasonably work if the travel mode is 
known for trips generated by cellular network data.  

Two recent studies have proposed methods to infer transportation modes using large-scale cellular 
network data (Bachir et al. 2019; Graells-Garrido et al. 2018). Graells-Garrido et al., 2018, developed 
an algorithmic pipeline to assign mode probabilities to BTS towers and use them to infer mode 
distribution of commuting in the city of Santiago, Chile. In their analysis, a set of modal clusters 
for BTS towers were generated based on urban/transportation infrastructure (GTFS and 
OpenStreetMap data). Depending on the BTS clusters within the commute of each user, the 
probability of mode of travel is then assigned. Similarly, Bachir et al. (2019) constructed OD 
matrices for the Greater Paris area processing two months of cellular network data. They assumed 
a zone for each BTS service area and, based on the transport network and usage in that zone, they 
clustered cellular network zones. Then, they derived transport mode probabilities per cluster using 
a Bayesian inference method considering the prior transport mode probability from the travel 
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survey for that zone. They then evaluated the inferred modal OD matrices with travel survey and 
transit smartcard datasets5.  

In this study, we further contribute to the growing literature on travel mode inference of cellular 
network data by developing a deep neural network6 model for trips identified from a large dataset 
of cellphone traces in Montevideo, Uruguay. Compared to earlier studies, except (Bachir et al. 2019; 
Graells-Garrido et al. 2018), the cellphone traces dataset in our analysis include all cellphone to BTS 
connection events and are not limited to only CDR events. Given the region’s mode distribution, 
we consider car, bus and active transportation as possible modes of travel. Rather than looking at 
the probability of the modes at a BTS zone level, we examine cellphone traces at a daily level and 
infer the mode probabilities for each trip. In our study for the training dataset we create artificial 
pseudo-cellphone traces from a household travel survey which has travel mode, origin and 
destination locations, and start-time and end-time reported for every trip. In addition, for transit 
trips, we augmented the dataset with pseudo-cellphone traces generated from public transit 
smartcard transactions. We train a deep neural network model on this labelled dataset and apply 
the trained model to infer modes of travel for the cellphone traces from cellular network data.  

3. Data 

Several data sources are used in this study including cellular network data, household travel 
survey data, smartcard transit transaction data as well as census data and road and transit 
networks. These datasets are briefly described in this section.  

The primary dataset in this study comes from Antel, the largest telecom company in Uruguay7. It 
includes minute-by-minute cellphone traces for the month of May, 2018 of a random sample of 
40% of Antel cellphone users within Montevideo and the surrounding metropolitan area. Overall, 
the dataset includes more than 117,862,000 cellphone traces for about 948,600 unique cellphones. 
These cellphone traces were preprocessed from raw data by Antel to eliminate as much noise in 
the data as possible and to preserve user anonymity. The geolocation data from Antel include CDR 
events, handovers and location updates. Trace data are temporally reported in minutes, thereby 
providing excellent temporal precision. The data is spatially aggregated to a 135 traffic zone system 
for the region. The average area of the zones in the study area is about 37.1 km2, with the smallest 
zone having an area of 0.38 km2 and the largest zone about 1,020 km2. 

The Montevideo Household Mobility Survey (MHMS) is a very high-quality one-day household 
travel survey, but with a very small sample (0.34%), conducted in August, 2016. It is a classic home 
interview survey in which trained interviewers survey randomly selected households in their 
homes. Despite the small size, the survey is deemed to be a representative sample of trip-making 
in Montevideo (Miller et al. 2017). The dataset consists of 2,230 households and 5,946 individuals’ 
interviews, reporting 12,546 trips for a single weekday. For every trip reported, details of every 
stage of the trip are also reported. This stage-level information allows us to create a dataset 
comparable with cellphone traces and public transport smartcard transaction datasets. The average 
age of individuals in the survey is 38.8 years; 53.1% of them are female. The MHMS data is spatially 
aggregated to census segments. Census segments are groups of blocks (usually between 6 to 12 

                                                        
5 In recent years, transit smart card data have been extensively used in various transport studies and 
travel behaviour analysis (for examples, see (Axhausen 2017; Chapleau et al. 2018; Ordóñez Medina 
2018; Pelletier et al. 2011; Zhang et al. 2018)).   
6 Neural network models and other machine learning methods have recently been widely used in 
transportation literature (see (Hillel et al. 2019) for a review of machine learning methods for modelling 
travel mode choice, and see (Koushik et al. 2020) for a review of machine learning methods for activity-
travel behaviour analysis).  
7 Antel has about 60% of the cellular market share in Uruguay, at the time of this study. 
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blocks) that are the spatial units used by the 2011 Uruguayan census. There are about 1,720 census 
segments in the Montevideo region with an average area of 2.91 km2. The mode share of the 
reported trips in the MHMS dataset is presented in Table 1. Walking has the largest mode share, 
given that over a third of the trips recorded are short. Combining drives and passengers, cars 
account for 29.2% of trips, while the bus system carries about 25.2% of the trips.  

Table 1 MHMS mode share 

Travel Mode Mode Share in % Number of Trips 

Walk 34.0 4265 
Bike 3.5 439 

Auto Passenger 10.0 1251 

Auto Driver 19.2 2410 

Motorcycle 6.1 769 

Bus 25.2 3166 

Other 2.0 246 

 
MHMS origin-destination (O-D) trips by mode and time of day are compared with the O-D 
matrices generated by the processed cellphone data in (Faghih-Imani et al. 2018). In general, the 
spatial-temporal distributions of the two datasets appear to be comparable. 

All public transit smartcard transactions (representing 82.5% of all transit trips within the 
Montevideo region) were provided by the Intendencia de Montevideo for the same May, 2018 time 
period and traffic zone system. These consisted of 29,868,716 recorded transactions from 734,569 
unique smartcards. The transit system is tap-on only, thus requires additional processing to 
identify alighting stops. The Intendencia in-house algorithm successfully identified 62% of these 
alighting locations, which were augmented to the transaction records. Unique (but anonymized) 
identifiers were attached to smartcard records so that the trip-making behaviour of the smartcard 
owner could be tracked day-to-day within the observation period. 

A computerized Montevideo road network was obtained from the OpenStreetMap database. 
Further, the data regarding the public bus system including routes, stops and frequencies are 
gathered from the open data portal of Montevideo government. These two networks were 
imported into Emme software and used in our traffic assignment model to estimate link travel 
times, volumes and congestion in the network, along with O-D travel times. The road and bus 
networks are presented in Figure 1. Finally, in our analysis, the latest census data (2011) are used 
to compute the population, household and job density variables.  
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Figure 1. Road and Bus Network in Montevideo 
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4. Method 

For our analysis, an assumption is made that any time a cellphone user stays more than 30 minutes 
in a zone indicates participation in an activity at that location (similar assumptions for a minimum 
stationary duration to identify activities has been made in earlier literature, for examples see 
(Bonnel et al. 2015; Chen et al. 2014; Schlaich et al. 2010; Zahedi and Shafahi 2017)). With this 
assumption, 32,417,002 activities are identified for the four weeks of data. Further, trips are defined 
when a user moves between two activities, with first activity location identified as the trip origin 
and the second activity location as the trip destination. More than 14 million trips are identified in 
within the dataset. The average estimated daily trip rate per person is 1.99, with a minimum of 1 
and maximum of 13.54. This daily trip rate is slightly lower than that observed in the 2016 MHMS 
of 2.11, which may be due to the fact that intrazonal trips cannot be identified from cellular network 
data8. The next step is to assign travel mode for these identified trips. 

A deep neural network approach was adopted in this study as a logical approach to imputing 
cellphone trace travel modes for the large datasets being used. The key concern in developing any 
neural network is the availability of a “labelled” dataset containing observed outcomes (in this 
case, travel mode) which can be used to train and validate the neural network before it as applied 
to an application dataset. Given that cellphone traces by definition do not provide travel mode 
information, the key methodological question is how to construct a labelled training set in this 
application. 

Figure 2 displays the overall approach developed in this study to imputing trip mode for the 
cellphone traces. The first, key (and novel) step in this procedure is to convert MHMS and transit 
smartcard OD trips into pseudo cellphone traces; i.e., for each trip, convert it into a “trace” at the 
same level of spatial and temporal aggregation as the actual Antel traces. These pseudo-traces were 
then used as labelled input data to train the neural network model. 

In order to construct these traces, the MHMS OD trips must first be assigned to paths (routes) 
through the road networks (depending on each trip’s chosen mode). Similarly, transit OD trips 
from the smartcard transaction dataset (only those with estimated alighting locations are 
considered) have been assigned to the transit, given that the transfer stops are known for trips with 
transfers. To do this, road and transit networks for Montevideo were constructed within the Emme 
network modelling software system. Maximum utility paths through the road and transit networks 
were found for auto (drive, passenger, taxi, motorcycle) and public transit trips, respectively. 
Active mode traces were constructed by taking the shortest distance paths through the road 
network at an assumed speed of 4 kph9.  
In this model, the day is divided into five-minute segments. A trip is defined by: 

1. Whether it is occurring during a given five-minute segment (=1) or not (=0); i.e., whether 
the person is moving during this time segment. 

2. The distance travelled during the five-minute segment. 

                                                        
8 The average MHMS daily trip rate of 2.11 may also be low relative to that observed in some other 
urban regions. Depending on details of the survey method, household travel surveys can be subject to 
some under-reporting of short trips, which respondents may tend to fail to report. The authors have no 
independent data to assess this under-reporting hypothesis in this case. In any event, the analysis in this 
paper is not focussed on estimating trip rates, but rather the trip modes of the identified trips, and so 
this concern is of second-order importance at best. To re-iterate, it is likely that the cellphone trace data 
is under-estimating trip rates somewhat due to the intrazonal limitation discussed, but this should not 
affect the travel mode imputation results which are the focus of this paper.  
9 Since it was not possible to calibrate Montevideo-specific assignment model parameters within this study, 
parameters from Toronto’s GTAModel V4.0 were used. 
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Figure 2. Analysis Approach 
 

In addition to these two features, total trip distance and land use attributes at each trip’s origin and 
destination are considered. The job of the neural net model is to determine that probability of each 
trip being made by the auto, transit or active modes, given the time of day, trip length (in time and 
distance) and distances travelled per time segment (approximate speed) for the trip, and origin and 
destination land use attributes: population, home and job density variables. 

The neural net classifier model developed in this study consists of three hidden layers, with 500 
neurons per layer using the linear rectifier activation function. Weights were randomly initialized 
from a normal distribution. Backpropagation combined with Adaptive Moment Estimation 
(Adam) was used to update the weights in each step of the training session (Kingma and Ba 2014). 
Weights were chosen to maximize the cross-entropy (effectively a log-likelihood) function. A 
softmax activation function was used for the output layer, in order to generate probabilities to 
assign to the three modes. Note that the softmax activation function is effectively a logit model 
which assigns for each trace a probability for each travel mode. 

Three modes were imputed for cellphone trips in this analysis: 

• Auto: Any trip made in a passenger car or equivalent (e.g., a light truck). This includes 
auto-drivers and auto passengers in private cars and taxi/Uber passengers10.  

• Public transit: Any trip using the STM (Sistema de Transporte Metropolitano) bus system. 

• Active travel: Any trip all-way from origin to destination by walking or bicycle modes. 
Given the spatial precision of the cellphone data it is not possible to distinguish between 
walk and bicycle trips with any confidence. 

                                                        
10 Note that some double-counting may occur in the dataset, given that some taxi/Uber drivers may also be included 
in the dataset. Their trips while carrying passengers should not be included in the trip count. It may be possible to 
identify these drivers in the dataset and delete them from the mode imputation analysis, but this has not been 
attempted in this study. 
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Since, we do not observe intrazonal trips in cellphone traces, only interzonal trips from the MHMS 
and smartcard transaction datasets are considered. 

The pseudo-traces were split into two datasets, 80% of trips for estimation and the rest for testing. 
Since the smartcard transit trips are more accurate in terms of time and transfer stops, we 
substituted the transit trips of the MHMS data with appropriate observed trips from the smartcard 
transaction data. 5000 additional smartcard transit trips were added to the estimation set to 
enhance the richness of the transit trips used for training; 1000 smartcard trips were similarly 
added to the test set. The choice of 5000 as the number to add was based on the need to keep the 
estimation dataset within computer memory limits. To balance the dataset, non-transit mode 
records from MHMS were duplicated. Adding the Smartcard data significantly improved the 
estimation as the observed stop location information is more accurate than the transit path 
assignment generated from EMME for the MHMS transit trips. Using the transit smartcard records 
improved transit mode recall from 67.1% to 87.5% and transit mode precision from 74.8% to 93.0% 
in the validation tests. 

The cellphone trace data also need to be processed into features for the neural network. For every 
cellphone user, each person’s day is extracted and trips made in a day are filtered. For trips, if no 
middle zone is observed in the trip, the distance between the two zones was recorded at the time 
bin between the start and end time. If a middle zone is recorded in a trip, the distance from the 
previous zone (origin if the first) is recorded at the time when the middle zone was detected. This 
way, for all trips identified in cellphone trace dataset, similar features of the trained model are 
generated. The trained neural network model is then applied to the cellphone traces to infer the 
probability of travel modes.  

5. Results 

Several neural network specifications have been tested. A model with three hidden layers and 500 
neurons per layer was found to provide the best performance. Overall, 19,499 trips with pseudo-
traces were used to train the neural net model and 2,106 trips with pseudo-traces were used to test 
the trained model. The predictions are broken down into two statistics, recall and precision for 
each mode.  The recall of a mode is the probability that the mode is predicted given the mode was 
observed.  Precision on the other hand is the probability that when a mode is selected that it was 
the observed mode. An excellent fit of 87% correct predictions by the trained model on its training 
set was achieved. When the trained model was applied to the test set a similarly excellent fit of 
84.7% was achieved, as shown in Table 2.  

Table 2 Neural Net Model Training and Validation Result 

 Training Set (number of trips) Training Set (% of trips) Training Set 
Performance 

 Auto Transit Active Total Auto Transit Active Total Recall Precision 
Auto 5910 347 539 6796 30.3 1.8 2.8 34.9 87.0% 91.8% 

Transit 208 6006 453 6667 1.1 30.8 2.3 34.2 90.1% 85.2% 
Active 323 693 5020 6036 1.7 3.6 25.7 31.0 83.2% 83.5% 
Total 6441 7046 6012 19499 33.0 36.1 30.8 100 86.9% 86.9% 

 Test Set (number of trips) Test Set (% of trips) Test Set  
Performance 

 Auto Transit Active Total Auto Transit Active Total Recall Precision 
Auto 308 35 59 402 14.6 1.7 2.8 19.1 76.7% 77.8% 

Transit 58 1206 115 1379 2.8 57.3 5.4 65.5 87.5% 93.0% 
Active 30 56 239 325 1.4 2.7 11.3 15.4 73.5% 57.9% 
Total 396 1297 412 2106 18.8 61.6 19.6 100 83.3% 83.3 % 
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The mode probabilities of cellphone traces were then imputed using the trained neural network 
model. While for all the trips from cellular traces were assigned mode probabilities, in this section, 
we focus only on trips made during weekdays (to be comparable with MHMS survey data). The 
overall aggregated results indicate mode shares of 27%, 43%, and 31% for auto, transit and active 
modes for weekdays. Since there is no ground truth to assess the accuracy of the imputed modes, 
we use several measures to evaluate the results, by examining the results at different dimensions, 
temporally and spatially. 

 
Figure 3. Predicted and Observed Mode Shares by Trip Distance 
 

Figure 3 shows predicted cellular network and observed MHMS trips by mode and distance. The 
overall trend of the predicted mode shares by the trip distance is similar to the observed one from 
MHMS interzonal trips. One can note in the figure that short-distance (0-6km) trips are over-
predicted for transit and under-predicted for auto travel relative to MHMS data. This confusion is 
not a particularly surprising result, given the size of the traffic zones used in the analysis and the 
very simple set of explanatory factors being used in the current model. The results for active mode 
are, on the other hand, quite good. 

 
Figure 4. Predicted and Observed Mode Shares by Time of Day 
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We further examine the predicted modes by time of the day. Figure 4 compares cellphone and 
MHMS mode shares by time of day (trip start time). Periods considered are Early morning (00:00-
05:59), AM peak (06:00-08:59), Mid-day (09:00-14:59), PM peak (15:00-18:59), Evening (19:00-24:00). 
The patterns are generally similar, although the MHMS data, due to its smaller sample, has a more 
“fluctuating” trend, especially for early morning and evening hours. Nevertheless, the neural 
network model produces reasonably similar results. 

Figure 5 maps the spatial distribution within the Montevideo region of mode shares for auto, 
transit and active travel modes, as predicted by the neural network model for the cellphone traces. 
In all cases, the spatial distributions are plausible, with fewer auto trips and more transit and active 
trips occurring in more central locations. For transit, there are high mode shares for a few rural 
areas, which is most likely due to a confusion between transit and auto due to underreporting of 
trips in those areas. Except for those zones, the overall patterns are reasonable and expected. 

 

 
Figure 5. Imputed Mode Share, weekday trips by origin zone 
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6. Conclusions 

This study has developed and presented a novel procedure for fusing cellphone trace data with 
traditional home interview survey records and public transit smartcard transaction data to infer 
mode of travel for trips identified from cellphone traces. The results can be used to create an 
enhanced representation of origin-destination trip-making by time of day and travel mode (Faghih-
Imani et al. 2018). To our knowledge this is the first attempt to impute travel modes at the trip level 
on a large and complete geolocation dataset from a cellular network.  

The procedure developed is demonstrated using May, 2018 cellphone and transit smartcard data, 
along with 2016 MHMS data for Montevideo, Uruguay. It can be used to generate similar datasets 
for additional periods of time providing that similar cellphone and transit data are available for 
these time periods. Thus, a time-series of detailed cross-sectional “snapshots” of travel behaviour 
can be constructed over time (e.g., perhaps on an annual basis). Note that this depends on the 
assumption that the trip purpose and mode relationships established based on the 2016 MHMS 
data hold into future time periods. As one moves further into the future, this assumption, of course, 
will become somewhat more difficult to maintain. Thus, a need for at least an occasional small 
sample update of survey data over time that provides information concerning trip purposes and 
modes may well continue.  

The study is not without limitations. First, the MHMS data sample size was very small which may 
cause some bias in our results. Future efforts using a larger dataset to be used as a training set 
would be recommended to ensure a more accurate representation of mode choices in the region. 
Second, we assumed a 30-min stationary duration to identify activities. More advanced algorithms 
(for example, those developed in (Widhalm et al. 2015; Zahedi and Shafahi 2017)) can be used to 
more confidently detect activities and thus reduce errors in generated trips. Nevertheless, such 
errors have minimum impact on the proposed algorithmic pipeline for mode imputation. Third, 
walk and bicycle modes were combined into one “active” mode. Future analysis can further 
examine these two modes separately. Fourth, alternative machine learning methods to deep neural 
nets should be explored for possible improvement in performance and/or interpretability. Fifth, 
an expanded set of explanatory variables (“features”) should be tested to determine if they can 
improve model performance, especially with respect to active mode imputation. Finally, a major 
limitation of using cellular network data for any transportation analysis is the lack of spatial 
accuracy, with smaller zones in dense urban areas and larger zones in rural areas. This spatial 
inaccuracy might generate biases in our analysis, notably possible underestimation of overall trip 
rates due inability to identify intrazonal trips. In future work, using sensitivity analysis we will 
explore the effect of zone size on our proposed method. Overall, the presented algorithmic pipeline 
works reasonably well, and we expect to obtain better results a larger household travel survey 
becomes available. The procedure presented in this paper also, obviously, is readily extendable to 
any other urban region possessing similar datasets. 
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