327 research outputs found

    A Two-step Statistical Approach for Inferring Network Traffic Demands (Revises Technical Report BUCS-2003-003)

    Full text link
    Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.National Science Foundation (ANI-0095988, EIA-0202067, ITR ANI-0205294

    Measuring And Improving Internet Video Quality Of Experience

    Get PDF
    Streaming multimedia content over the IP-network is poised to be the dominant Internet traffic for the coming decade, predicted to account for more than 91% of all consumer traffic in the coming years. Streaming multimedia content ranges from Internet television (IPTV), video on demand (VoD), peer-to-peer streaming, and 3D television over IP to name a few. Widespread acceptance, growth, and subscriber retention are contingent upon network providers assuring superior Quality of Experience (QoE) on top of todays Internet. This work presents the first empirical understanding of Internet’s video-QoE capabilities, and tools and protocols to efficiently infer and improve them. To infer video-QoE at arbitrary nodes in the Internet, we design and implement MintMOS: a lightweight, real-time, noreference framework for capturing perceptual quality. We demonstrate that MintMOS’s projections closely match with subjective surveys in accessing perceptual quality. We use MintMOS to characterize Internet video-QoE both at the link level and end-to-end path level. As an input to our study, we use extensive measurements from a large number of Internet paths obtained from various measurement overlays deployed using PlanetLab. Link level degradations of intra– and inter–ISP Internet links are studied to create an empirical understanding of their shortcomings and ways to overcome them. Our studies show that intra–ISP links are often poorly engineered compared to peering links, and that iii degradations are induced due to transient network load imbalance within an ISP. Initial results also indicate that overlay networks could be a promising way to avoid such ISPs in times of degradations. A large number of end-to-end Internet paths are probed and we measure delay, jitter, and loss rates. The measurement data is analyzed offline to identify ways to enable a source to select alternate paths in an overlay network to improve video-QoE, without the need for background monitoring or apriori knowledge of path characteristics. We establish that for any unstructured overlay of N nodes, it is sufficient to reroute key frames using a random subset of k nodes in the overlay, where k is bounded by O(lnN). We analyze various properties of such random subsets to derive simple, scalable, and an efficient path selection strategy that results in a k-fold increase in path options for any source-destination pair; options that consistently outperform Internet path selection. Finally, we design a prototype called source initiated frame restoration (SIFR) that employs random subsets to derive alternate paths and demonstrate its effectiveness in improving Internet video-QoE

    Inferring Network Usage from Passive Measurements in ISP Networks: Bringing Visibility of the Network to Internet Operators

    Get PDF
    The Internet is evolving with us along the time, nowadays people are more dependent of it, being used for most of the simple activities of their lives. It is not uncommon use the Internet for voice and video communications, social networking, banking and shopping. Current trends in Internet applications such as Web 2.0, cloud computing, and the internet of things are bound to bring higher traffic volume and more heterogeneous traffic. In addition, privacy concerns and network security traits have widely promoted the usage of encryption on the network communications. All these factors make network management an evolving environment that becomes every day more difficult. This thesis focuses on helping to keep track on some of these changes, observing the Internet from an ISP viewpoint and exploring several aspects of the visibility of a network, giving insights on what contents or services are retrieved by customers and how these contents are provided to them. Generally, inferring these information, it is done by means of characterization and analysis of data collected using passive traffic monitoring tools on operative networks. As said, analysis and characterization of traffic collected passively is challenging. Internet end-users are not controlled on the network traffic they generate. Moreover, this traffic in the network might be encrypted or coded in a way that is unfeasible to decode, creating the need for reverse engineering for providing a good picture to the Internet operator. In spite of the challenges, it is presented a characterization of P2P-TV usage of a commercial, proprietary and closed application, that encrypts or encodes its traffic, making quite difficult discerning what is going on by just observing the data carried by the protocol. Then it is presented DN-Hunter, which is an application for rendering visible a great part of the network traffic even when encryption or encoding is available. Finally, it is presented a case study of DNHunter for understanding Amazon Web Services, the most prominent cloud provider that offers computing, storage, and content delivery platforms. In this paper is unveiled the infrastructure, the pervasiveness of content and their traffic allocation policies. Findings reveal that most of the content residing on cloud computing and Internet storage infrastructures is served by one single Amazon datacenter located in Virginia despite it appears to be the worst performing one for Italian users. This causes traffic to take long and expensive paths in the network. Since no automatic migration and load-balancing policies are offered by AWS among different locations, content is exposed to outages, as it is observed in the datasets presented

    Steering hyper-giants' traffic at scale

    Get PDF
    Large content providers, known as hyper-giants, are responsible for sending the majority of the content traffic to consumers. These hyper-giants operate highly distributed infrastructures to cope with the ever-increasing demand for online content. To achieve 40 commercial-grade performance of Web applications, enhanced end-user experience, improved reliability, and scaled network capacity, hyper-giants are increasingly interconnecting with eyeball networks at multiple locations. This poses new challenges for both (1) the eyeball networks having to perform complex inbound traffic engineering, and (2) hyper-giants having to map end-user requests to appropriate servers. We report on our multi-year experience in designing, building, rolling-out, and operating the first-ever large scale system, the Flow Director, which enables automated cooperation between one of the largest eyeball networks and a leading hyper-giant. We use empirical data collected at the eyeball network to evaluate its impact over two years of operation. We find very high compliance of the hyper-giant to the Flow Director’s recommendations, resulting in (1) close to optimal user-server mapping, and (2) 15% reduction of the hyper-giant’s traffic overhead on the ISP’s long-haul links, i.e., benefits for both parties and end-users alike.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    Topology Discovery of Sparse Random Graphs With Few Participants

    Get PDF
    We consider the task of topology discovery of sparse random graphs using end-to-end random measurements (e.g., delay) between a subset of nodes, referred to as the participants. The rest of the nodes are hidden, and do not provide any information for topology discovery. We consider topology discovery under two routing models: (a) the participants exchange messages along the shortest paths and obtain end-to-end measurements, and (b) additionally, the participants exchange messages along the second shortest path. For scenario (a), our proposed algorithm results in a sub-linear edit-distance guarantee using a sub-linear number of uniformly selected participants. For scenario (b), we obtain a much stronger result, and show that we can achieve consistent reconstruction when a sub-linear number of uniformly selected nodes participate. This implies that accurate discovery of sparse random graphs is tractable using an extremely small number of participants. We finally obtain a lower bound on the number of participants required by any algorithm to reconstruct the original random graph up to a given edit distance. We also demonstrate that while consistent discovery is tractable for sparse random graphs using a small number of participants, in general, there are graphs which cannot be discovered by any algorithm even with a significant number of participants, and with the availability of end-to-end information along all the paths between the participants.Comment: A shorter version appears in ACM SIGMETRICS 2011. This version is scheduled to appear in J. on Random Structures and Algorithm

    Effective Wide-Area Network Performance Monitoring and Diagnosis from End Systems.

    Full text link
    The quality of all network application services running on today’s Internet heavily depends on the performance assurance offered by the Internet Service Providers (ISPs). Large network providers inside the core of the Internet are instrumental in determining the network properties of their transit services due to their wide-area coverage, especially in the presence of the increasingly deployed real-time sensitive network applications. The end-to-end performance of distributed applications and network services are susceptible to network disruptions in ISP networks. Given the scale and complexity of the Internet, failures and performance problems can occur in different ISP networks. It is important to efficiently identify and proactively respond to potential problems to prevent large damage. Existing work to monitor and diagnose network disruptions are ISP-centric, which relying on each ISP to set up monitors and diagnose within its network. This approach is limited as ISPs are unwilling to revealing such data to the public. My dissertation research developed a light-weight active monitoring system to monitor, diagnose and react to network disruptions by purely using end hosts, which can help customers assess the compliance of their service-level agreements (SLAs). This thesis studies research problems from three indispensable aspects: efficient monitoring, accurate diagnosis, and effective mitigation. This is an essential step towards accountability and fairness on the Internet. To fully understand the limitation of relying on ISP data, this thesis first studies and demonstrates the monitor selection’s great impact on the monitoring quality and the interpretation of the results. Motivated by the limitation of ISP-centric approach, this thesis demonstrates two techniques to diagnose two types of finegrained causes accurately and scalably by exploring information across routing and data planes, as well as sharing information among multiple locations collaboratively. Finally, we demonstrate usefulness of the monitoring and diagnosis results with two mitigation applications. The first application is short-term prevention of avoiding choosing the problematic route by exploring the predictability from history. The second application is to scalably compare multiple ISPs across four important performance metrics, namely reachability, loss rate, latency, and path diversity completely from end systems without any ISP cooperation.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64770/1/wingying_1.pd

    A Network Coding Approach to Loss Tomography

    Get PDF
    Network tomography aims at inferring internal network characteristics based on measurements at the edge of the network. In loss tomography, in particular, the characteristic of interest is the loss rate of individual links and multicast and/or unicast end-to-end probes are typically used. Independently, recent advances in network coding have shown that there are advantages from allowing intermediate nodes to process and combine, in addition to just forward, packets. In this paper, we study the problem of loss tomography in networks with network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities, and we show that it improves several aspects of tomography including the identifiability of links, the trade-off between estimation accuracy and bandwidth efficiency, and the complexity of probe path selection. We discuss the cases of inferring link loss rates in a tree topology and in a general topology. In the latter case, the benefits of our approach are even more pronounced compared to standard techniques, but we also face novel challenges, such as dealing with cycles and multiple paths between sources and receivers. Overall, this work makes the connection between active network tomography and network coding

    HLOC: Hints-Based Geolocation Leveraging Multiple Measurement Frameworks

    Full text link
    Geographically locating an IP address is of interest for many purposes. There are two major ways to obtain the location of an IP address: querying commercial databases or conducting latency measurements. For structural Internet nodes, such as routers, commercial databases are limited by low accuracy, while current measurement-based approaches overwhelm users with setup overhead and scalability issues. In this work we present our system HLOC, aiming to combine the ease of database use with the accuracy of latency measurements. We evaluate HLOC on a comprehensive router data set of 1.4M IPv4 and 183k IPv6 routers. HLOC first extracts location hints from rDNS names, and then conducts multi-tier latency measurements. Configuration complexity is minimized by using publicly available large-scale measurement frameworks such as RIPE Atlas. Using this measurement, we can confirm or disprove the location hints found in domain names. We publicly release HLOC's ready-to-use source code, enabling researchers to easily increase geolocation accuracy with minimum overhead.Comment: As published in TMA'17 conference: http://tma.ifip.org/main-conference
    • …
    corecore