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ABSTRACT

Streaming multimedia content over the IP-network is poised to be the dominant Internet

traffic for the coming decade, predicted to account for more than 91% of all consumer

traffic in the coming years. Streaming multimedia content ranges from Internet television

(IPTV), video on demand (VoD), peer-to-peer streaming, and 3D television over IP to name

a few. Widespread acceptance, growth, and subscriber retention are contingent upon network

providers assuring superior Quality of Experience (QoE) on top of todays Internet.

This work presents the first empirical understanding of Internet’s video-QoE capabilities,

and tools and protocols to efficiently infer and improve them. To infer video-QoE at arbitrary

nodes in the Internet, we design and implement MintMOS: a lightweight, real-time, no-

reference framework for capturing perceptual quality. We demonstrate that MintMOS’s

projections closely match with subjective surveys in accessing perceptual quality. We use

MintMOS to characterize Internet video-QoE both at the link level and end-to-end path

level. As an input to our study, we use extensive measurements from a large number of

Internet paths obtained from various measurement overlays deployed using PlanetLab.

Link level degradations of intra– and inter–ISP Internet links are studied to create an

empirical understanding of their shortcomings and ways to overcome them. Our studies

show that intra–ISP links are often poorly engineered compared to peering links, and that
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degradations are induced due to transient network load imbalance within an ISP. Initial

results also indicate that overlay networks could be a promising way to avoid such ISPs in

times of degradations.

A large number of end-to-end Internet paths are probed and we measure delay, jitter,

and loss rates. The measurement data is analyzed offline to identify ways to enable a

source to select alternate paths in an overlay network to improve video-QoE, without the

need for background monitoring or apriori knowledge of path characteristics. We establish

that for any unstructured overlay of N nodes, it is sufficient to reroute key frames using

a random subset of k nodes in the overlay, where k is bounded by O(lnN). We analyze

various properties of such random subsets to derive simple, scalable, and an efficient path

selection strategy that results in a k-fold increase in path options for any source-destination

pair; options that consistently outperform Internet path selection.

Finally, we design a prototype called source initiated frame restoration (SIFR) that em-

ploys random subsets to derive alternate paths and demonstrate its effectiveness in improving

Internet video-QoE.
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“Begin at the beginning,” the King said “and then go on till you come to the very

end, then stop”

— Lewis Carroll (Alice in Wonderland)

CHAPTER 1

INTRODUCTION

Today, consumer generated video content alone accounts for one third of all consumer Inter-

net traffic. The sum total of all Internet video traffic, including Internet Television (IPTV),

Video on Demand (VoD) and peer-to-peer (P2P) sharing, will amount to 91% of all con-

sumer traffic by 2014 [11]. Multimedia content is poised to dominate all Internet traffic in

the coming decade. More people today opt for video-conferencing, live Internet television,

and video-on-demand services than they did a decade ago. The Internet has evolved from

being a platform for hosting web pages to be a playground for multimedia content.

As customers spend more and more time watching videos online, they are increasingly

becoming unsatisfied by low bitrate videos and are embracing high-definition (HD) stream-

ing services. Providing high quality video streaming services over a best-effort and shared

infrastructure such as the Internet, however, is non-trivial. It is increasingly observed that
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existing Internet Quality of Service (QoS) is insufficient at ensuring consistent consumer

experience. As Internet based multimedia competes with traditional cable-based streaming,

an ever increasing load is placed on network elements on the Internet to deliver streaming

content with high perceptual quality; including content delivery networks (CDNs), overlay

networks, VoD and IPTV infrastructures. To succeed, network service providers need to

infer, predict and improve perceptual video quality on the Internet.

Service providers are hence trying to characterize a video stream in terms of Quality of

Experience (QoE) [26] rather than QoS. Internet QoS has long attempted to assure statistical

service guarantees for parameters like bandwidth, delay, loss, and jitter [52]. However, QoS

lacks an important element in characterizing video streams: that of human perception. For a

given loss rate, the perceptual degradation caused by a network outage can vary dramatically

depending on the type of frame impacted, the motion complexity inherent in the clip, and

the encoding bitrate of the clip, to name a few. For example, a 1% loss on an MPEG-2

transport stream can either result in a minor glitch that is barely noticeable, or can severely

degrade playout for an entire second depending on the aforesaid factors [19, 20]. Inferring

perceptual quality of a video stream continues to be an open problem.

Existing perceptual quality evaluation frameworks are often complex, computationally

intensive, or require specialized information. Perceptual quality is often expressed in terms

of a mean opinion score (MOS). A common way of inferring MOS is by comparing video

frames before and after network transmission to check for degradations. MOS calculations

are often hard (if not impossible) to perform inside the network core. This is because: (i) it
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is cumbersome to deploy computationally intensive software at arbitrary nodes/routers, and

(ii) QoE evaluation is often infeasible at arbitrary routers/nodes because the original frames

are unavailable for reference.

Inferring QoE apart, understanding present day Internet QoE and improving it are even

harder. Internet architectures and protocols are highly optimized for elastic content like

http, ftp and e-mail. For these applications, time-to-deliver is less important than message

integrity. Given the diversity and size of the Internet, degradations at the link level and

end-to-end path level that effect video QoE are not well understood. Further, there are few

architectures and protocols that can efficiently infer and improve video QoE on the Internet.

1.1 Quality of Experience: A Primer

Quality of Experience (QoE) describes how well a service performs in meeting user expecta-

tions. It is a rating of performance from the users’ perspective. For Internet based streaming

to compete with existing cable based infrastructure, QoE delivered by streaming services has

to match or outperform QoE from cable based streaming. This section looks at what QoE

is, why it is important, and the areas of QoE that we address in this thesis.
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1.1.1 Why QoE?

Traditionally, Internet quality of service (QoS) was aimed at enabling streaming services. The

Internet Engineering Task Force (IETF) standardized IntServ and DiffServ router mecha-

nisms to improve quality of streaming content, which required changes to every router in the

Internet. Given the scale of the Internet, as well as the diversity of various autonomous sys-

tems (AS) that comprise it, these changes could not be completely co-ordinated. As a result,

even after years of slow adoption there has been no significant performance enhancements in

terms of video quality delivery, as the Internet continues to operate on a ‘best-effort’ delivery

model. QoS mechanisms operate with a notion of providing service guarantees to enhance

application performance. However, service guarantees alone are not sufficient to raise per-

ceptual quality. QoS based quality assessments have often found to be grossly inaccurate at

predicting user experience, and as such are not applicable in evaluating video quality [43, 61].

To understand why QoS guarantees do not promise perceptual quality and why objective

quality evaluations often misrepresent quality, we consider two example scenarios. Consider

a snapshot of a playout shown in Fig. 1.1(a) and Fig. 1.1(b). Both clips1 were subject

to the same loss rate (QoS), however, the perceptual quality of both these clips are very

different. This is because the perceptual degradation depends not only on the loss rate, but

the type of frame impacted as well. As a result, statistical service guarantees (like QoS) are

1We use the terms clips, samples, and video-sequence interchangeably
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(a) (b)

Figure 1.1: QoE v/s QoS: While both clips experienced the same loss rate (QoS), the per-

ceived quality can be very different.

insufficient in assuring perceptual quality. To consider why objective functions misrepresent

quality, consider Fig. 1.2(a) and Fig. 1.2(c). They show two instances of a video sequence

at source before network transmission. In other words, these depict the expected playout at

destination with perfect network transmissions. However, the actual playout at destination

of these two instances was observed as in Fig. 1.2(b) and Fig. 1.2(d). If we ask any group of

human observers to rate the quality of playout in Fig. 1.2(b) and Fig. 1.2(d), subjects would

unanimously rate the latter playout to be far better than the former playout. Surprisingly,

PSNR, the most common objective quality function, rates both these sequences at par at

about 21db.
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(a) (b)

(c) (d)

Figure 1.2: An example of a network transmission with induced degradations. (a) Playout

at source of frame-9, (b) playout of frame-9 at destination, (c) Playout at source of frame-86,

and (d) Playout of frame-86 at destination.
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Clearly, there is a strong need to diverge from objective QoS based quality evaluation

approaches towards QoE based quality evaluations. Monitoring and improving QoE seems

to be the only way by which service providers can prevent churn and raise revenue. Ser-

vice providers apart, QoE as a concept has been the driving factor for evaluating customer

satisfaction in a wide variety of domains: from retails, airlines, food-services to customer

support. Over the past few decades, QoE has been the most significant measure of human

satisfaction in these domains. Understanding and improving QoE has had a great impact

on the long term success of vendors in all of these domains.

1.2 Contributions of this Work

This thesis makes contributions to the following pertinent problems: (i) design a lightweight,

no-reference tool called MintMOS which can infer the QoE of thousands of video streams in

transit at arbitrary Internet nodes [57, 61, 62], (ii) provide the first empirical characterization

of Internet link-level degradations and their impact on video-QoE [59, 60], (iii) provide the

first large-scale characterization of end-to-end Internet paths in assuring video-QoE [58, 63],

(iv) investigate one-hop Internet redirections in large, unstructured overlays that can scale to

support millions of users [63], and (iv) propose a simple, scalable, and efficient path selection

strategy called SIFR that applications can use to improve Internet video-QoE.
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1.2.1 Inferring QoE in real-time at arbitrary Internet nodes

Inferring the perceptual quality of a video stream in transit at arbitrary nodes/routers in

the Internet, where the original frame is not available for reference, continues to be an open

problem. We present MintMOS: a loadable kernel module that is an accurate, lightweight,

no-reference framework for capturing and offering suggestions to improve QoE inside the

network core [57, 61, 62]. MintMOS can accommodate an arbitrary number of parameters

to base quality inference decisions, and encompasses both network dependent and indepen-

dent parameters. MintMOS internally consists of an inference engine (IE) to infer QoE, a

suggestions engine (SE) to offer hints to improve QoE, a network sniffer to snoop traffic,

and a QoE space. A QoE space is a known characterization of perceptual quality for vari-

ous parameters that affect it. For any k-parameters that affect video quality, we begin by

creating a k-dimensional QoE space, where each axis represents a parameter on which QoE

is dependent. Hence, each point in the space is characterized by a k-tuple vector. For a

given set of k parameters, we could get N “reference points” for MOS in the QoE space.

To do this, we construct N versions of a given video by transporting the original video over

a controlled environment i.e., for known values of the k parameters. The N video samples

thus created are shown to a diverse population of human subjects2 who assign a MOS to

each of the samples. Given the N reference points in the k-dimensional QoE space, we can

infer the MOS for a new set of parameters by calculating the least distortion between the

2UCF Institutional Review Board, IRB# 00001138
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new values and the reference points in QoE space. MintMOS’s modular organization allows

every component to evolve independently.

We instrument an actual QoE space with 54 partitions using four parameters: loss,

encoding bitrate, motion complexity, and type of frame impacted. We generated 54 video

samples using one low motion and one high motion clip, and requested 77 human subjects in

a lab environment and 143 users online to assign a perceptual quality score to the samples.

Their feedback was used to create our QoE space. We deployed MintMOS with this QoE

space on a 22-node wide-area measurement overlay on PlanetLab. We streamed IP-traces

of various clips from every node to every other node for one week and used MintMOS to

predict quality and detect outages.

We validate the accuracy of MintMOS’s predictions using this QoE space by choosing

14 video samples reconstructed using the trace and asking 49 human subjects to assign a

perceptual rating to them. MintMOS’s projections are compared to human perception, and

we demonstrate a high degree of correlation between our predictions and human perception.

MintMOS’s projections also outperform PSNR and VQM [43] predictions.

We demonstrate MintMOS’s ability to perform MOS calculations in real time by imple-

menting and testing it both as a user level program and a kernel level module on standard,

off-the-shelf, Linux terminals. Our experience shows that we can perform 20 MOS calcu-

lations per second for small sample spaces (< 100 reference points and < 11 parameters),

and upto 4 MOS calculations per second for large spaces (1 million reference points and 11
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parameters). In other words, for a reasonably accurate prediction, we can calculate MOS

for 1000 flows per minute through a terminal.

In the end, we show that MintMOS can prove to be a valuable tool for measuring Internet

path quality between any pair of nodes using it. MintMOS and can suitably used as a plugin

for: (i) reporting QoE at destination in real time, (ii) various overlay/P2P networks for

monitoring path quality, (iii) VoD and IPTV service providers to monitor QoE at critical

nodes along the data path, and (iv) for CDNs to choose indirections based on path quality.

1.2.2 A link-level study of Internet’s QoE shortcomings

The capability of present day Internet links in delivering high perceptual quality streaming

services is not completely understood. Link level degradations caused by intra-domain rout-

ing policies and inter-ISP peering policies are hard to obtain, as ISPs often consider such

information proprietary. Understanding link level degradations will enable us in designing

future protocols, policies, and architectures to meet the rising multimedia demands.

We presents a trace driven study to understand QoE capabilities of present day Internet

links using 51 diverse ISPs with a major presence in US, Europe and Asia-Pacific [59, 60].

We study their links from 38 vantage points in the Internet using both passive tracing and

active probing for six days. We provide the first measurements of link level degradations

and case studies of intra-ISP and inter-ISP peering links from a multimedia standpoint. Our
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study offers surprising insights into intra domain traffic engineering, peering link loading,

BGP and the inefficiencies of using AS-path lengths as a routing metric. Though our results

indicate that Internet routing policies are not optimized for delivering high perceptual quality

streaming services, we argue that alternative strategies such as overlay networks can help

meet QoE demands over the Internet. Streaming services apart, our Internet measurement

results can be used as an input to a variety of research problems.

1.2.3 Video-QoE along an Internet path

Having characterized link-level degradations, we next turn our attention to analyzing a large

number of end-to-end Internet paths to better understand video-QoE capabilities of present

day Internet. We seek answers to the following questions: (i) What degrades video QoE in

the Internet and where in the path do these outages occur?, (ii) How does an Internet outage

effect video-QoE?, and (iii) What fraction of these outages are addressable by using one-hop

Internet redirections?

To answer the first question, we begin by probing 1000+ popular Internet video destina-

tions from 62 geographically diverse PlanetLab vantage points for seven consecutive days.

Our probing mimics “fetching” streaming content from each destination for a variety of low

and high motion clips. Our destination set includes the 200 most popular IPTV/VoD servers,

and a set of 1,200 IP addresses from crawls of popular P2PTV providers. We discovered a

significant number of path outages that led to complete loss in path connectivity. We find
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that such outages occur in various points in a path and vary significantly between paths

to servers and P2P hosts. Of the outages on a round trip path to servers, we found that

only 11% of these occur on the last hop, and therefore cannot be corrected by alternate

routing. The remaining 89% are potentially recoverable by Internet routing. For P2P hosts,

we found that over 40% of the outages are last hop, which indicates that alternate paths can

potentially recover upto 60% of these outages.

To measure the perceptual degradation resulting from these outages, we reconstructed

MPEG-2 video samples using the IP-traces collected from every destination set. We create a

comprehensive list of 54 video clips that mirror the most commonly occurring loss patterns.

We asked 77 subjects to review these clips to gain a deeper understanding of perceptual

degradations. Network anomalies typically manifest as a video artifact, which is a visible

distortion during playout that persists for a certain duration. These artifacts could range

from slicing to freezing to extreme pixellation [19, 20]. These artifacts and their on-screen

duration depend on the type of frame impacted, the motion complexity inherent in the

clip (low v/s high), and encoding bitrate. Using the survey, we outline application specific

policies that can improve perceptual quality.

1.2.4 Improving Internet video-QoE with one-hop redirections

Using insights from the previous round of study, we investigate ways of improving Internet

video-QoE using one-hop redirections. Perceptual quality can be raised by path selection
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strategies which preserve application specific policies. To make our results more generally

applicable, we seek path selection strategies that do not require background monitoring of

alternative routes or any apriori path quality information. We analyze a large number of

Internet path measurements from five different overlays built using PlanetLab. Our datasets

include weeklong measurements taken from overlays of: (i) 21 nodes in United States, (ii)

19 nodes in Europe, (iii) 22 nodes in Asia, and (iv) two different overlays (16 and 32 nodes

each) spread across the globe. Using these datasets, we compare the performance of the

“default” Internet path and other alternate paths derived by synthetically combining path

metrics of disjoints nodes. Similar in spirit to randomized load allocation [12], we show that

attempting to route key frames following a degradation using a random subset of 5 nodes is

sufficient to recover from upto 90% of failures. We argue that our results are robust across

datasets.

We further analyze the efficacy of a randomized path selection in large, unstructured

overlays that can scale to service millions of users. Using weeklong measurements from 500+

vantage points in the Internet, we show that it is sufficient to reroute using ‘k’ randomly

chosen intermediate nodes for an overlay with N nodes. We show that the value of k is

bounded by O(ln N); which implies that k ≈ 8 for an overlay with 1000 nodes, and k is just

14 for an overlay with one-million nodes. We also observed that for random-k to be effective,

the subset k should be uniformly representative of the N nodes in the participating overlay.

Finally, we design and implement a prototype forwarding module in PlanetLab called

source initiated frame restoration (SIFR). We evaluate the effectiveness of SIFR in improving
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video-QoE against the default IP-path. We show that we can minimize and recover quickly

from perceptual degradations, thereby raising perceptual quality on top of the best effort

Internet. SIFR requires no modification to the Internet core, and can be seamlessly integrated

into any source-destination pair that wishes to exchange multimedia content.

1.3 Structure of this Dissertation

The rest of the dissertation is organized as follows. We provide a background on QoE and

further motivate the contributions in Chapter 2. In Chapter 3, we develop a new tool called

MintMOS that can capture video QoE in real time at arbitrary Internet nodes, without

needing a reference frame to infer QoE. In Chapter 4, we study intra-ISP and inter-ISP links

that make up todays Internet and look at their relative suitability for assuring superior QoE.

Chapter 5 extends Internet measurements by analyzing end-to-end paths, and proposes a

new redirection service to improve video QoE. We analyze the suitability of randomized path

selection for large, unstructured overlays and build a prototype called SIFR that improves

Internet path selection to raise video-QoE in Chapter 6. We analyze related research in

Chapter 7, and conclude with pointers for future work in Chapter 8.
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“Quality in a product or service is not what the supplier puts in. It is what the

customer gets out and is willing to pay for. A product is not quality because it is

hard to make and costs a lot of money, as manufacturers typically believe. This is

incompetence. Customers pay only for what is of use to them and gives them value.

Nothing else constitutes quality”

— Peter F. Drucker

CHAPTER 2

QUALITY OF EXPERIENCE

2.1 Introduction to QoE

QoE is an attempt to characterize a vendors service from a customer standpoint. It is a

combination of products, services, support, pricing and so on that make up a customers

experience with a vendor. It tries to quantify, in the end, if the experience is consistent

with what the customer wants or paid for. Finally, it postulates a set of principles that

can ensure a consistent customer satisfaction for the price she pays. QoE as a concept has

been successfully applied to a wide range of business domains to serve the customer better.
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Understanding and improving QoE alone has had a profound impact on the long term success

of many different organizations.

QoE is related to quality of service (QoS) but significantly differs from it as a concept.

QoS is an objective measure of how a vendor performs, while QoE is a subjective measure of

the same thing. QoS is closely tied to some form of a “contractual” agreement between the

vendor and the client, and is likewise measured by the extent to which the vendor honors

that contract.

Though a vendor may completely live up to such contractual agreements, the user of that

service can be extremely unhappy with the experience. In such cases, though the vendor has

a high QoS, the QoE perceived by the clients would rate very low. For example, a QoS in an

airline industry might record the number of flights that depart and arrive at the scheduled

times. An airline company may have a high QoS rating for achieving this objective, but

its clients may be extremely dissatisfied with the airline for reasons such as bad food, lost

luggage, and rude airline staff.

2.2 Multimedia QoS

The Internet was originally designed as a file sharing utility – it enabled a user to access

information from another node in a remote location on the Internet with relative ease. For
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much of the last decade, applications such as file transfer (ftp), web-browsing (http) and

reliable message exchange (email) constituted a majority of all Internet traffic.

The Internet is further limited by a philosophy of end-system intelligence. This means

that the core routers and packet forwarding modules that form the backbone of the Internet

are necessarily “dumb”, while the end-nodes carry all the “intelligence”. This philosophy

accounts for the extreme scalability of the Internet, allowing end-nodes to grow in terms of

intelligence and processing capability while leaving the core untouched. This has made pos-

sible the interconnection of nodes that run on completely different hardware and software.

This scalability has also come at a cost – the core routers need to be necessarily dumb and

as such cannot guarantee any service quality. Core routers perform a basic functionality that

can at best be summarized as “store-and-forward” while leaving the burden of packet recov-

ery, out-of-order delivery and error resilience to the end nodes. This philosophy, however,

proves detrimental for multimedia services when deployed on the Internet.

QoS was postulated to accommodate streaming content on the Internet. The earliest

proposals towards this direction was the integrated services, or IntServ [6, 46, 47, 70]. IntServ

operated with a notion of guaranteeing resources before transmission took place. In other

words, every router along the path from source to destination would reserve resources before

multimedia is exchanged. Reservations could include minimum statistical guarantees for

latency, jitter, bandwidth and packet-drop rate. However, this violated the philosophy of

end system intelligence, and it was practically impossible to co-ordinate such reservations

across millions of routers on the Internet.
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Another proposal to enhance Internet QoS was the differentiated services, or DiffServ [4,

5, 21, 39]. DiffServ operated with a notion that not all traffic in the Internet is equal, and

likewise, routers should not behave consistently with every network traffic type. Internet

traffic was classified into many different types, with each type emphasizing on a different

metric. For example, applications like ftp often emphasize reliability over latency, while

applications such as VoIP emphasize timely delivery over reliability. To differentiate and

identify flows with different requirements, a type-of-service (ToS) field was introduced in the

IP-header. This allowed routers to distinguish and apply differential treatment to various

flows passing through it. DiffServ is hence a flow based mechanism, which is in contrast to

IntServ which is a coarse-grained class based mechanism.

In the end, both DiffServ and IntServ could never be successfully implemented or deployed

on a large scale in the Internet. This was largely because both these mechanisms were

contrary to the end-system-intelligence philosophy of the Internet, and it was practically

infeasible to co-ordinate its adoption across ISP’s. As a result, present day Internet provides

no service guarantees for multimedia applications, and continues to work with a “best-effort”

packet delivery model. In a best-effort packet delivery model, the router tries its “best” to

forward a packet. If the packet is lost or mis-route, the router takes no further responsibility

since it tried its best. This simple packet forwarding philosophy leaves a wide gap between

how multimedia performs on the Internet to what users expect multimedia to be like.
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Figure 2.1: An MPEG-2 GOP structure which shows the different types of frames (I, P and

B) and their basic relationship with each other.

2.3 An MPEG-2 Perspective

We next investigate how video streaming is achieved on the Internet, and provide an en-

coder/decoder perspective into QoE. We show how the same level of network QoS can man-

ifest as completely different QoE based on the MPEG-2 frame structure, which motivates

our need to investigate and improve Internet QoE.
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Figure 2.2: Nature of artifact when loss affects different frames in a GOP: (a) freezing due

to a corrupt B-frame, (b) slicing due to a corrupt P-frame and (c) ghosting/pixellation due

to a corrupt I-frame. (Image originally appears in [20] and the Society of Motion Picture

Television Engineers).

2.3.1 MPEG-2 GOP Structure

Streaming on the Internet is a process of encoding a video sequence, breaking it down into

multiple IP-packets, transmitting them over the network, and re-assembling/decoding the

packets into frames at the destination. A video streaming source (also called the “head end”)

acquires video content from a third party or streams a stored content to its destination. In

any case, the video content normally is an MPEG-2 stream, which is the most popular video

container format in use today.

An MPEG-2 video stream is divided into multiple groups of pictures, or GOP. A GOP

consists of three types of frames: (i) an intra-coded frame or I-frame carries a complete video

picture which other frames use as a reference, (ii) a predictive or P-frame uses an I-frame

for reference and accounts for motion, and (iii) a bi-directional or B-frame uses preceding I-
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and P-frames to predict a frame. Figure 2.1 provides a high-level diagram of the internals

of a GOP, showing the relationship between the various frames that constitute it.

2.3.2 QoS v/s QoE for MPEG-2

Each frame in a GOP is typically fragmented to multiple IP packets before transmission can

take place. The Internet treats every packet alike, and network outages resulting in packet

drops have an equal probability of affecting any frame. Since every frame in a GOP is not

equally important, a network loss manifests artifacts that can range from a minor glitch to

severe degradation. It is intuitive from the preceding discussion that an I-frame is the most

important frame, and losses that affect an I-frame can be more damaging than other frames

for the same given loss rate.

Packet losses that affect a B-frame result in frame “freezing”, which normally manifests

as a motion picture that is stuck at one frame. A corrupt P-frame often results in “slicing”,

which impairs a section of the playout while leaving others intact. A corrupt I-frame, on the

other hand, often manifests extreme artifacts like “ghosting” or “pixellation” which render

a playout barely perceptible. An example of slicing, freezing, and ghosting are presented

in Figure 2.2. In other words, a similar level of network QoS (e.g., loss-rate) can result in

completely different perceptual impairments depending on what frame was affected and how

much of it is corrupt. This study establishes our need to divulge from QoS alone as a metric
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for defining and assuring video quality on the Internet, and motivates us to investigate QoE

as a factor and account for various other factors that might affect it.

2.4 Factors affecting QoE

QoE is the combined and cumulative result of a wide variety of factors. We discuss below

some measurable parameters that are known to effect QoE, and motivate our contribution

presented in this thesis.

Media Quality: The most important and obvious metric is an evaluation of how good a

video sequence plays out to the user. Ideally, users would look for distortion free playouts.

This implies that frames at a destination are available in-order (due to a playout buffer) with

the same interspacing that they were sent. Users also look for high quality audio, and more

importantly, synchronization of audio and video. Common network ailments include delay,

packet loss, and delay jitter. Each of these degradations taken in isolation and combination

leads to blockiness, blurriness, or even blackouts (like in Fig. 1.2(b)). Arguably, these ar-

eas are of primary importance to the networking research community which works towards

minimizing and working around network related outages which result in these degradations.

Availability: Users would demand services round the clock, and especially when tuning into

an event of importance (conference call, tele-surgery, live-sports etc.). Users want services

that are stable and reliable. Most service providers target the “five nines” in reliability,
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aiming to deliver services that are available 99.999% of the time. This implies that service

providers need supporting middleware and services to continuously monitor degradations,

and proactively fix problem before they arise.

Pricing: The pricing set by service providers will greatly dictate customer retention and

service adoption. A competitive market will drive pricing, while customers look to maximize

gains for the price they pay. Hence, there is a strive to optimize performance at reduced

costs.

Network Loss: Loss contributes to missing information, and as such effects media playout.

Network loss can occur due to a variety of reasons, and loss manifests as missing packets.

The exact manifestation of loss, however, depends upon the type of frame impacted by loss.

For example, a loss rate of 0.01% can manifest as a minor glitch that can go un-noticed, or

can severely garble playout [20].

Network Jitter: Jitter is the variance in packet arrival times at the destination. Jitter

can cause packets to arrive out of order, and most receivers implement a “playout buffer” to

nullify the effects of jitter. Though the tolerance to network jitter is high, there is a cap to the

amount of jitter a playout can tolerate. Jitter beyond a certain threshold is similar to network

loss: if packets arrive out of sequence later than the buffering time, they are discarded at

the receiver. The size of this playout buffer, however, can impact the interactivity presented

by the system each time a user flips a channel. This is because channel change includes

re-buffering delays: larger the buffer, more the tolerance to jitter, and more the time spent

waiting for channel changes to take effect.
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Interactivity: This reflects on the ability of system quickly and correctly change channels

(zapping or flipping), forward, rewind, or service any user generated request. Acceptable

channel change delay is established to be around 1 sec end-to-end delay. Channel zapping

times of 100 − 200 ms are considered instantaneous. Much of the delay is incurred in

transporting requests from a set-top-box (STB) to a server and back, which entails command

processing, queuing delays, and video re-buffer delays. However, much of the functionality is

implemented in hardware, making performance evaluation predictable and repeatable. Also,

multicasting from edge-servers allows switching streams more amenable. Channel zapping

is fairly understood and optimized by present day service providers.

2.5 Summarizing

This chapter provided a basic overview of QoE, and discussed its importance in the context

of video streams encoded using MPEG-2. We looked at the structure of an MPEG-2 GOP,

and how loss manifests as different artifacts based on the frame impacted. We additionally

explored various factors that can affect QoE that go beyond encoding, such as media quality,

interactivity, availability, pricing, and network QoS.
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Until you can measure something and express it in numbers, you have only the

beginning of understanding

— Lord Kelvin

CHAPTER 3

MINTMOS: INFERRING VIDEO-QOE IN REAL TIME

3.1 Introduction

When a router or node in the Internet drops a video packet in transit, it has little knowledge

of how this impacts a video streams’ perceptual quality. Video-QoE is often computed by

comparing video frames before and after transmission to check for differences. Inferring the

perceptual quality of a video stream in transit at arbitrary nodes/routers in the Internet,

where the original frame is not available for reference, continues to be an open problem.

In this chapter, we present MintMOS: a loadable kernel module that is an accurate,

lightweight, no-reference framework for capturing and offering suggestions to improve QoE

inside the network core [57, 61, 62]. MintMOS can accommodate an arbitrary number of

parameters to base quality inference decisions, and encompasses both network dependent
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and independent parameters. MintMOS internally consists of an inference engine (IE) to

infer QoE, a suggestions engine (SE) to offer hints to improve QoE, a network sniffer to

snoop traffic, and a QoE space. We take a closer look at each of these components and

instrument an actual QoE space with 54 partitions using four parameters: loss, encoding

bitrate, motion complexity, and type of frame impacted. We analyze the complexity of the

framework in terms of memory and processing requirements. Finally, we deploy MintMOS

with this QoE space on a 22-node wide-area measurement overlay on PlanetLab [82]. We

stream IP-traces of various clips from every node to every other node for one week and

used MintMOS to predict quality and detect outages. We validate the accuracy of QoE

predictions using extensive subjective surveys, and comparing our result with the survey.

3.2 Framework Architecture

An architectural overview of MintMOS is shown in Figure 3.1. The framework consists of the

following components: the sniffer, the QoE inference engine (IE), the suggestions engine (SE)

and the QoE space. The sniffer sniffs packets from the networking interface, and generates

statistics about the parameters in question (e.g., loss, delay, jitter and so on). The sniffer

feeds these parameters as input to the QoE inference engine. The IE, alongwith the SE,

operates on the QoE space to both predict the current QoE as well as offer suggestions to

improve the perceptual quality of the video stream. Modularity allows these components to
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Figure 3.1: Architectural overview of MintMOS

evolve independently of each other. We begin with the QoE space and take a closer look at

each of these components.

3.2.1 QoE space

The first step in putting together the MintMOS framework is the creation of a QoE space. A

QoE space is a known characterization of expected QoE for various values of the k parameters

that affect it. In general, if we assume k parameters that affect the quality of video then

those k parameters can be used to express the QoE space in the form of a k-dimensional

vector, Γ, as follows:

Γ = [γ1, γ2, · · · , γi, · · · , γk]
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Figure 3.2: A sample 2-D QoE space constructed with two parameters (γ1, γ2). The solid

dots denote precomputed QoE for known input values of γ1 and γ2. The expected QoE for

a new sample (γ1, γ2) is obtained by calculating the Euclidean distance between the new

observation point and known indices.

where γi, 1 < i < k, represents the instantaneous value of the ith parameter. Thus, the vector

Γ, provides the instantaneous state of the video stream in transit. Due to the dynamism of

the network, parameter γi constantly changes, and so does the vector Γ. The ever-changing

vector Γ can be interpreted as the motion of a point in a k-dimensional QoE space. Borrowing

concepts from Vector Quantization [17], we argue that associated with every point in this

space is a QoE index which represents the expected quality of experience.

This is better depicted in Fig. 3.2, which represents an abstract 2-dimensional QoE

space for two parameters with positive values. This space is partitioned into numerous

non-overlapping regions (Pi). Each of these regions will have a reference point, usually the
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centroid (shown by solid dots), and any point in that region will map to that reference

point. For example in Fig. 3.2, let Γ(t) be the position of the vector (2-dimensional) at time

t belonging to partition P1 with reference point M1. We consider two possible scenarios

at time (t + ∆t): (i) Γ1(t + ∆t) undergoes a displacement of ~D1 and remains in the same

partition P1. Hence it continues to map to M1, yielding the same QoE index; (ii) Γ2(t + ∆t)

undergoes a displacement of ~D2 but moves to a different partition P2, and maps to a different

reference point M2.

3.2.2 Choice of Number of Partitions (N)

For any k-parameters with xi divisions (1 ≤ i ≤ k), one would need N =
∏k xi number of

partitions. The choice of xi depends on the sensitivity of the parameter values to perceived

quality. One can use both network dependent and network independent parameters that can

affect QoE.

An alternative way of choosing partitions is to have enough pre-computed indices such

that the projected MOS is within a tolerable distortion. Distortion is a measure of the level of

inaccuracy in predicting MOS. Thus, the tolerable distortion can be used to back-calculate

the number of QoE indices, N , to create the sample space. More explicitly, the average

(mean square) distortion D is given by:

D =
N∑

i=1

∫

Ri

(x−Mi)fX(x)dx, (3.1)
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where Mi is the QoE index in the region Ri and fX(x) is the probability mass function (pmf)

of the random variable X. The entire QoE space is a summation of all such regions Ri. The

total distortion hence is a sum of the individual distortions in every region, taken over the

number of QoE indices (N). We integrate within each region Ri because the QoE space

is continuous, thus capturing the temporal aspect of the instantaneous values of the QoE

parameters. Thus, if the tolerable distortion (Dthresh) is given, the number of QoE indices

(N) can be obtained as:

N = max
{

n :
n∑

i=1

∫

Ri

(x−Mi)fX(x)dx < Dthresh

}
(3.2)

3.2.3 QoE Inference Engine (IE)

The IE is a component that takes instantaneous values of the k parameters (the vector Γ)

as input, and produces the expected QoE as the output. The IE searches the QoE space to

find the closest match to the partition to which Γ belongs, and returns the QoE associated

with that partition.

When a new set of values are provided to IE, the expected QoE is derived by selecting

the least Euclidean distance between the given point and the centroids in the QoE space.

One way to find the target QoE is to apply the 1-Nearest Neighbor algorithm, a special case

of the k-Nearest Neighbor algorithm, which assumes that all instances are mapped to points

in the k-dimensional space. Consider N pre-computed QoE points and call them Mj, where
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1 ≤ j ≤ N . The co-ordinates of Mj in the k-dimensional space is [Mj1,Mj2, · · · ,Mjk]. The

distortion dj of an instance Γ = [γ1, γ2, · · · , γk] is simply the Euclidean distance from Γ to

the target point [17]:

dj =

√√√√
i=k∑
i=1

(γi −Mji)2. (3.3)

It is intuitive that more the number of pre-computed QoE indices (i.e., M) less would be

the distortion and more accurate the QoE prediction.

3.2.4 Improving QoE: Suggestions Engine (SE)

Apart from inferring QoE, network service providers would also look for hints from the net-

work to improve perceptual quality. For example, many existing QoS provisioning modules

adapt encoding bitrate or frame rate based on feedback received from the network. These

feedbacks are either round trip time (RTT) estimations or packet loss probabilities. However,

these feedbacks in themselves offer little help in improving perceptual quality [14, 53].

The SE provides application specific hints or suggestions as a feedback to help improve

perceptual quality. The SE views every partition in the QoE space as an operating point,

and the parameter values associated with that partition as the default state of the system.

By design, every operating point can be mapped to another operating point with a higher

QoE by changing exactly one parameter value, unless the operating point is already at the

highest possible QoE. For example, consider a QoE space of three parameters: loss, motion
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complexity, and bitrate. For a partition operating at ΓA = (Li, Ci, Bi), if there exists a ΓB

in the QoE space with a higher perceptual rating such that two parameters are in close

agreement (e.g., |Li−Lj| < δL and Ci = Cj) while the third parameter is different, Bj > Bi,

then there exists a possible transition to improve QoE by increasing bitrate. In this way,

ΓB can be further mapped to a ΓC with a higher QoE by changing one parameter in ΓB.

In general, for any operating point, we note that there exists a set of transitions that can

move a given operating point to the highest possible QoE. However, the transitions inherent

in the QoE space may not always be practically applicable. To better leverage transitional

relationships between operating points, application specific filters can be defined to infer

feasible transitions within the QoE space. For example, one such filter could be to only

suggest increasing bitrate when when current path loss rates are within a certain threshold.

In general, SE offers suggestions to increase bitrate, decrease bitrate, choose alternate

paths with lesser loss, or raise a flag asking a node to preserve certain packets carrying key

frames. We leave the exact choice of adaptation to the application programmer. SE provides

timely hints to make way for plethora of adaptation policies to be built on top of it.

3.2.5 Sniffer

The sniffer is a module that sniffs the network interface to capture packets from the live

wire. It extracts parameters from the packet to compute networking statistics about a given

flow (e.g., loss, delay, jitter). The Sniffer is written using the libpcap [76] library, which
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is a low level packet capturing facility used to build popular tools like the tcpdump. The

Sniffer cannot always capture network independent parameters (like encoding bitrate). To

do this, the source must pass this information either in well defined headers or as a field in

the payload. The Sniffer maintains a window of statistics in a FIFO manner, and computes

the average value of every parameter after every successfully captured packet. For example,

if one sets the window size to be 30, the Sniffer maintains statistics about the last 30 packets

for a given flow. The Sniffer then passes the average value of 30 records for each parameter

as an input to the IE.

3.3 Instrumenting MintMOS

In this section, we create a working MintMOS framework with an actual QoE space popu-

lated offline by subjective surveys. A QoE space is constructed by obtaining various video

sequences with various values of the k-parameters. These video sequences are then shown to

a large number of human subjects, who individually score the video samples. We create a

four dimensional QoE space that involves the following parameters: loss, encoding-bitrate,

type of frame impacted, and motion complexity inherent in the clip.

Loss refers to missing information in a 1000 msec window of observation. Missing in-

formation aggregates the result of both IP packet drops and jitter, which can cause packets

to arrive out of order resulting in missing sequence numbers in the observation window.

Typical loss fractions in the Internet are less than 0.1, and we choose five stops for loss:
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Table 3.1: The first 16 partitions of a QoE space with 54 partitions. QoE space of four di-

mensions (bitrate, motion complexity, best/worst case impact, and loss rate). The remaining

entries in the table can be found in [62]

Seq. Bitrate Motion Best(0)/ Loss Avg. Var

No. (kbps) Complex. Worst(1) (frac.) MOS

Case

1 800 Low 0 0.01 2.55 0.267

2 800 Low 0 0.05 2.45 0.253

3 800 Low 0 0.1 2.375 0.212

4 800 Low 0 0.5 1.675 0.318

5 800 High 0 0.01 1.875 0.077

6 800 High 0 0.05 1.875 0.290

7 800 High 0 0.1 1.8 0.290

8 800 High 0 0.5 1.775 0.026

9 800 Low 1 0.01 1.65 0.245

10 800 Low 1 0.05 1.575 0.245

11 800 Low 1 0.1 1.475 0.139

12 800 Low 1 0.5 1.45 0.257

13 800 High 1 0.01 1.6 0.202

14 800 High 1 0.05 1.6 0.249

15 800 High 1 0.1 1.5 0.535

16 800 High 1 0.5 1.475 0.134
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(0, 0.01, 0.05, 0.1, 0.5). For encoding bitrates, we choose three stops (kbps): 800, 3200, and

6400. We consider two cases for type of frame impacted: impact on an I-frame (“worst

cast”, denoted by 1) and impact on other (P,B) frames (“best case”, denoted by 0). We used

one high motion clip (Football) and one low motion clip (Foreman) to build our QoE space.

High motion clips have frequently changing scenes, while low motion clips are less dynamic.

These clips were encoded using MPEG-2 Main Profile. We used a 15:2 GOP structure at 30

frames per second (fps) to encode them. The transport stream was recorded at the IP layer

using an Ineoquest Singulus video analyzer. We manually edited the IP trace to define the

desired loss on various frame types.

3.3.1 Creating a QoE space: Survey with Human Subjects

We generated 48 clips for four parameter values for loss (excluding loss = 0), two values for

‘type of frame’, three encoding bitrates and two types of motion complexity (4× 2× 3× 2 =

48). For loss = 0, we additionally generated 6 clips for the three encoding bitrates and two

motion complexities. In summary, we create 48 + 6 = 54 partitions of the QoE space with

these clips1.

These clips were put to a survey with subjects, who were requested to rate these video

sequences on a scale of 1 to 5. We requested 80 subjects in an indoor lab environment,

and an additional 169 subjects online, to score these samples. Subjects were chosen with

1Visit [79] to examine all our video clips.
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sufficient diversity in age, gender, and expertise in subject matter. Outliers were identified

by interspersing a shown video sequence multiple times and recording their ratings each time.

We identified a total of 3 outliers in the lab environment, and 26 outliers from our online

surveys. In effect, we collected surveys from 77 subjects indoors, and 143 subjects online,

to characterize our QoE space. Table 3.1 shows the values of our four choice parameters,

along with the average MOS and variance obtained from the survey. A few observations are

noteworthy about perceptual quality using these parameters:

Low Motion Clips: Loss of P- or B-frames seem to make little difference in perceptual

quality. The difference in perceptual quality for the loss of an I-frame over a P-frame,

however, is drastic (for e.g., compare sample-17 with sample-25 or sample-33 with sample-

41). Low motion clips have larger I-frames, which increase their odds of getting impacted

during an outage. Low motion clips have longer GOP structures with more P-frames, which

enable more compression. Because of their long GOP structures, the duration of on-screen

degradation tends to be longer. Interestingly, for both I- and P-frame losses, an increase in

loss rate from 0.05 to 0.5 seems to make little difference.

High Motion Clips: An I-frame loss results in severe degradations, similar to low motion

clips. However, because of the inherent dynamism, P-frames tend to be larger and more

informative. Hence, loss of a P-frame draws a slightly more adverse reaction from the

subjects than with low motion clips (sample-17 v/s sample-21). Increased loss of P-frames

in a GOP gradually degrades quality. Because scenes change frequently, I-frames tend to
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be shorter and less probable candidates for loss during outages. For I-frames, an increase in

loss rates seems to hardly degrade quality any further.

3.3.2 Running SE

Once the QoE space is characterized, we run the SE upon it to discover all possible pairs of

sample points such that the perceptual quality is improved by changing one parameter from

a given operating point. The SE component mines through the QoE space and creates a one

time mapping of all possible combinations that can improve QoE. This process is one time

only: the relationships between entry points are static because the QoE space is static.

The SE returns a vector of the form [A|B], where A suggests policies for preserving key

frames, and B indicates the likely action that can improve QoE. The value A is set to 1 when

key frames are corrupt and 0 otherwise. Values of B are reflective of actions that are both

application specific and result in improving QoE.

We use the following rules to infer values of B. An ‘Increase Bitrate’ (B=1) is observed

when current loss rates are no more than 0.1. Paths are suggested to be switched (B=2) when

loss rates touch 0.5 or above. When frame preservation policies alone can improve QoE, we

set A=1 and B=0. When A=1, the value of B is reflective of the course of action after key

frames are preserved.
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Table 3.2: A subset of “From-To” mappings and suggestions discovered by SE in the QoE

space.

Suggestion (From, To) Mapping Sets Hint

in the QoE space

Increase bitrate (1,17), (2,18), (3,19), (5,21), (6,22), [0|1]

(7,23), (17,33), (18,34), (19,35)

Decrease loss/ (4,1), (8,5), (20,17), (24,21), [0|2]

Switch path (36,33), (40,37)

Preserve Policy (41,33), (42,34), (43,35), (44,36), [1|0]

(45,37), (46,38), (47, 30), (48, 40)

Preserve Policy + (9,1), (10,2), (11,3), (13,5), (14,6), [1|1]

Increase bitrate (15,7), (25,17), (26,18), (27,19)

(29,21), (30,22), (31,23)

Preserve Policy + (12,9), (16,13), (28,25), (32,29) [1|2]

Decrease Loss/

Switch Path
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Table 3.2 shows the output of SE when we ran it over our QoE space. For brevity, we

present a subset of all possible suggestions. SE returns an integer which is interpreted as a

possible course of action to improve QoE. A suggestion for an entry point is due to a “From-

To” relationship between that and another partition with a higher QoE. For example, SE

suggests an increase in bitrate for (1,17). This means that when the operating point is close

to entry-1 in the QoE space with current loss rates around 0.01 (see Table 3.1), SE suggests

an attempt to increase bitrate to move it closer to entry-17’s operating point. Likewise, SE

discovered a ‘switch path’ to decrease loss rate for (4,1). Decreasing loss rates of 0.5 or above

can move the operating point from sample-4 to that of sample-1 with a higher QoE. The

other pairs of relationships shown can analogously be investigated in our QoE space in Table

3.1. SE returns a value ‘0’ when it discovers no relationship to with any other partition.

Also, if multiple suggestions are possible for an operating point, SE by default returns that

suggestion which moves the present operating point to the one with highest possible QoE.

When an operating point is input to SE in real-time, it simply returns the possible

suggestions that it has discovered offline within the QoE space.

3.4 Validating the framework

With the QoE space thus characterized, we turn to validating the accuracy of MintMOS’s

predictions in inferring perceptual quality. To do this, we deployed MintMOS on 22 Planet-

Lab [82] nodes spread geographically across the globe. We specifically chose nodes in Europe,
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Asia and the United States where streaming services are very popular. Between Jan. 14 to

Jan. 21, 2010, we randomly selected one (out of a total of five clips) to be streamed to a

randomly selected node every minute. We used two high motion clips (Football(a), Tennis)

and three low motion clips Coastguard, Mobile, Foreman). These clips were recorded at

the IP-level using an Ineoquest Singulus digital media analyzer with a fragmentation limit of

1024 bytes. These traces were used to generate UDP packets of 1024 bytes, and we passed in-

formation such as motion complexity, frame type, and encoding bitrate in the packet header.

The ingress packets at the destination were input to MintMOS which analyzed loss rates in

windows of 1000 ms.

This experiment resulted in a rich trace of Internet outages detected by MintMOS, and

their corresponding quality rating. To begin with, we seek to understand the degree of

accuracy of MintMOS’s projection to user quality perception. To do this, we reconstructed

a set of 14 video clips using their packet traces at various loss rates observed on different

paths. MintMOS’s predictions at these times were compared with ratings from a survey using

49 subjects in an indoor lab environment. We use the average scores assigned by subjects

as the benchmark to evaluate the accuracy of various scoring schemes. We also compare

our results with more established metrics like PSNR and VQM. The interested reader is

invited to try out the test for herself by downloading all our clips from this anonymous site

[79]. Table 3.3 tabulates our findings. Shown in the table are the input parameters used to

create the sequence of 14 video samples, the type of clip used, the PSNR readings for the

samples, the VQM ratings (as obtained from the MSU toolkit [81]), the mean MOS assigned
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Table 3.3: Results from a survey conducted to measure the accuracy of MintMOS projections

Seq. Clip Bitrate Loss Frame PSNR VQM MOS from MintMOS Error Hint

No. Name (kbps) (rate) Type (0/1) (dB) Survey Projection (%)

1 ‘Coastguard’ 800 0.035 0 18.121 22.45 2.62 2.45 3.4 [0|1]

2 ‘Coastguard’ 3200 0.43 1 20.227 4.83 1.125 1.10 0.5 [1|2]

3 ‘Coastguard’ 6400 0.17 0 17.258 10.42 4.3 4.225 1.5 [0|0]

4 ‘Mobile’ 800 0.09 1 22.193 32.47 1.46 1.475 0.3 [1|1]

5 ‘Mobile’ 3200 0.63 1 6.731 31.23 1.25 1.10 3.0 [1|2]

6 ‘Mobile’ 6400 0.23 0 19.075 11.23 4.35 4.225 2.5 [0|0]

7 ‘Foreman’ 800 0.015 0 23.682 15.69 2.43 2.55 2.4 [0|1]

8 ‘Foreman’ 3200 0.07 1 7.936 27.33 1.31 1.125 3.7 [1|1]

9 ‘Football(a)’ 800 0.01 1 21.239 5.31 1.55 1.6 1.0 [1|1]

10 ‘Football(a)’ 800 0.1 1 8.623 28.32 1.32 1.5 3.6 [1|1]

11 ‘Football(a)’ 3200 0.42 0 16.94 15.21 2.25 2.3 1.0 [0|2]

12 ‘Tennis’ 3200 0.33 1 19.231 11.93 1.62 1.65 0.6 [1|2]

13 ‘Tennis’ 3200 0.2 0 24.513 4.23 3.53 3.625 1.9 [0|1]

14 ‘Tennis’ 6400 0.05 0 25.239 28.69 3.27 3.2 1.4 [0|0]
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by 49 subjects, the MOS assigned by our framework, as well as the error percentage of our

predictions.

PSNR, which directly compares a processed sequence with the original, often fails to cor-

rectly correlate perceptual quality to degradation. For example, PSNR rates samples 1 and

3 with a similar reading (≈ 18 db). Subjects, however, regard sample-3 of a relatively higher

quality than sample-1. Likewise is the case with sample pairs (6,7) and (11,12).

VQM2 projections provide a better indication of perceptual quality than PSNR. While

VQM does identify clips with lower perceptual quality to some degree, the results are not

too accurate. For example, VQM rates sample-14 relatively poorly while subjects rate this

clip between ‘acceptable’ to ‘good’. Again, subjects rate samples 2 and 5 almost at par,

while VQM predicts sample-2 to be far better than sample-5. In general, VQM’s ability

to loosely classify a clip as very poor or very good is accurate, it often fails to successfully

distinguish clips which share similar levels of degradation. Note that VQM is a full reference

scheme, which requires the original frame at all times to provide quality evaluation.

MintMOS’s prediction was able to obtain the highest correlation with subjective perception.

Noteworthy is the degree of correlation, with a maximum error rate of 3.7% for sample-8, and

a minimum of 0.3% for sample-4. MintMOS was successfully able to differentiate between

high, medium and poor perceptual quality. Our MOS projections are dependent on the

accuracy of the QoE space. Since the QoE space is in turn populated by human subjects,

the degree of correlation to a past event with a similar newer event is what makes our

2VQM projections work in an inverse way: higher the value indicated, lower shall be the perceived quality.
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projections accurate. The mean distortion in using MintMOS with 54 reference points was

determined to be 0.14. For smaller sample spaces (N = 30, by removing 24 QoE indices),

we measured average distortion to 1.02.

Improving QoE: MintMOS also outputs a hint to improve QoE for every sample. For

example, it suggests sample-1 to increase bitrate with a hint of [0|1], with the first value (0)

indicating that key frames were not lost. Sample-1’s parameters suggest it is operating close

to entry-2 in the QoE space. Increase bitrate is due to a (2,18) relationship (Table 2), where

entry-18 has a higher MOS. Other suggestions may likewise be investigated by determining

the entry point in QoE space to which a sample maps to, and their corresponding “From-To”

relationship to other partitions.

3.5 Complexity of the Framework

For MintMOS to be an effective tool, it must scale well in servicing a large number of

flows in real time at various points in the network. To measure the processing overhead of

our framework on hardware, we implemented MintMOS in C++ with a precomputed QoE

space. The module takes as input values of parameters in a specific range, and returns the

anticipated MOS upon completion. We report our experience with running MintMOS on

standard, off-the-shelf, Linux terminals (running a Pentium 4 with 2GB RAM). We measure

the time it takes to perform MOS calculations with increasing number of partitions of the

QoE space (N) as well as the number of parameters to estimate QoE (k). Our results create
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Figure 3.3: Overview of the Experiment Topology

a benchmark for using this framework on routers and end-user systems with comparable

hardware.

Wall clock time (or the gross time between submission and getting the result) is a poor

representative of complexity of the algorithm, since it takes into account all other resident

processes in the system. Hence, we profile our module to gather the direct CPU cost to run

it as a user level program as well as a kernel module. For the rest of this section, we report

the sum of the user level time as well as the system (kernel) level time.

For these round of experiments, we use a QoE space with upto one million (spurious)

entries. We report the worst case running time, where we assume that the desired QoE index

is found in the last comparison. In other words, if there were 1000 reference points and 20

parameters, the desired MOS is found after having compared the 1000 distortions to all 20

QoE indices.
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3.5.1 Experimental Setup

The topology used to measure complexity is shown in Figure 3.3. Our set-up consists of a

video server which initiates a push based stream onto the network. The server can encode

a video stream at various bit-rates and frame-rates. The server is connected an IneoQuest

(IQ) Sigulus G1-T [77] box configured in the ‘stimulus’ mode. In this mode, the IQ can

generate impairments to the flow by inducing loss, delay, or jitter. The flow is streamed to

another IneoQuest G1-T configured in the ‘analysis and playback mode’. The stream is then

passed on to a destination (Terminal-II) for visualization.

The boxes are connected through a switch, and we attach a Linux terminal (Terminal-

I) to this switch. Terminal-I runs MintMOS by passively snooping network traffic and

inferring QoE. Terminal-II, which is used for playback, also implements MintMOS where it

measures perceived quality at destination. We report the measured complexity of MintMOS

at Terminal-I.

3.5.2 Effect of number of samples (N)

The accuracy of MOS projections gets richer with more reference points in the QoE space. An

increase in the number of reference points means an increase in the number of comparisons

required to infer MOS.
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Figure 3.4: Processing overhead for MintMOS: (a) Effect of increasing number of (log)

partitions for k = 11; and, (b) Effect of increasing number of parameters for N = 106

The effect of increasing the number of QoE space partitions (log scale) to the output

rate is shown in Fig. 3.4(a). The output rate is the number of MOS calculations that can be

performed per second for the given number of QoE indices to be compared with. For a small

number of QoE indices, with less than 100 partitions, increasing the number of partitions

has no real effect in the output rate of the program. The effect only begins to show when the

number of partitions approaches 1000 or more. Shown in the plot is the effect of increasing

the number of partitions to one million samples. Even at such a large number, we could

perform 4 MOS calculations per second. Since our time measurement takes into account both

the user level interaction with the kernel as well as the actual CPU time that the program

consumes, this reflects on our ability to perform MOS calculations in real time on a router

with comparable hardware. In other words, our module can compute 1200 MOS calculations
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per minute for a small number of partitions (< 100), and can compute 240 computations

per minute even for one million reference points to compare to. For a reasonable number of

reference points, MintMOS can service more than a thousand flows per minute on a router

with a similar configuration.

3.5.3 Effect of number of parameters (k)

The cost of adding more parameters, or axes, to the QoE space should not come at a high

cost. In fact, more the number of parameters used in inferring MOS, more accurate shall be

the projections. We examine the effect of increasing the number of parameters in calculating

MOS for a QoE space with one million partitions by varying the number parameters from 3

to 13.

Fig. 3.4(b) shows the effect of increasing the number of parameters. When increasing k,

the only difference to the module is to compute k distances for each reference point. Even

with a large number of reference points in the sample space, increasing the value of k from

3 to 13 has little effect on the output rate, which drops from around 5.5 MOS calculations

per second to around 3.75 calculations per second. Again, this can be inferred as servicing

210 flows per minute for 3 parameters, and upto 23 flows per minute for 13 parameters for

one million reference points to compare to.
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3.5.4 Size of QoE space

We measure the memory consumption of MintMOS during execution. The executable code

apart, the only significant source of memory consumption is the QoE space. We measure the

amount of memory allocated to keep the entire QoE space in main memory during program

execution.

For 13 parameters and upto 1 million entries in it, QoE space consumes about 21MB of

resident memory. This is fairly lightweight even for such a large number of sample points to

compare to. This means that even an extensive QoE space will not require database support,

and can locally reside on a number of network nodes as a standalone module.

3.6 Discussions

During the week-long measurements using MintMOS on a 22-node wide area overlay network,

we observed a total of 329 outages. Though a single packet can potentially corrupt playout,

we distinguish an outage from a packet drop caused by a transient congestion by counting

instances where three or more consecutive sequence numbers were lost, thereby corrupting an

entire frame. Fig. 3.5 shows the CDF of the number of consecutive frames impacted during

times of such outages. We note that more than 10 consecutive frames are lost in more than

60% of the cases. The more number of contiguous frames affected during an outage, more

likely are the chances than an I-frame is subsequently corrupted. In effect, even best case
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outages can easily be converted to worst case outages if the degradation goes unchecked and

unreported. Real time path quality estimates from MintMOS can help detect and recover

from outages in a timely fashion.

In this section, we discuss various extensions of MintMOS in scenarios which benefit from

a knowledge of path quality measurement. Any pair of nodes running MintMOS can both

measure and exchange path reachability information in terms of perceived quality. We look

at the case of overlay networks, VoD/IPTV service providers, CDNs, and collecting end user

QoE; all of which can use MintMOS to infer and improve perceptual quality.

Overlay Networks: An overlay network can be imagined as a network built on top of

another network. Nodes in an overlay network are connected by virtual or logical links,

which are the default IP unicast paths in case of the Internet. Though overlay networks do

not have complete control over the virtual links built using the underlying network, they

certainly have the ability to select the sequence of nodes traversed to reach a destination.

As such, nodes running MintMOS can enable path switching based on perceived quality.

Further, they can switch to paths with greater QoE in short times scales (seconds) compared

to minutes of time lag before BGP advertises these outages.

Collecting End-User’s QoE: Most network service providers are at a complete loss when

it comes to keeping a log of QoE perceived by all of their clients. Our framework can be easily

adapted to run on virtually any client laptop or desktop to monitor user perceived quality

for a small set of flows that the user is viewing. These statistics can be bundled together

and sent back to source providing continuous feedback and making way for a comprehensive
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Figure 3.5: Duration of outages discovered by MintMOS over a one week period on a 22

node wide area measurement overlay built using PlanetLab.

log of QoE fluctuations. Such a log can be invaluable to service providers helping them plan

capacity, monitor peak hour QoE, as well as for billing their clients.

VoD and IPTV: Service provers of VoD and IPTV need to continuously monitor QoE at

five critical points in their network infrastructure: the source or server, the A/D servers, the

MJoin, the EQAM and the end user set-top-boxes.

Our framework can seamlessly be integrated at these critical points and provide percep-

tual QoE at these points to be streamed to the control plane, even for a large number of

flows. This would allow service providers to monitor QoE and its respective degradation

at all five points. This has direct implications in fault isolation, billing clients, capacity

planning, and purchasing new hardware to improve QoE.
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Content Delivery Networks: CDNs move streaming content “closer” to clients by caching

copies on multiple servers worldwide. CDNs perform extensive network and server measure-

ments, and use these to redirect clients to different servers over short time scales (e.g.,

Akamai [74], the worlds largest and most popular CDN).

A study by Su et. al. [50] from 140 vantage points in the Internet reveals that Akamai

redirections overwhelmingly correlate with network latencies. This implies that server redi-

rection are based on delay more than any other parameter. Servers in a CDN can utilize

their existing network measurements to estimate loss and delay rates, and utilize a QoE

space to perform server redirections based on estimated QoE rather than network latencies.

Feedback from MintMOS can further be used to decide encoding bitrates.

3.7 Conclusions

We presented MintMOS: a lightweight, scalable, no reference framework for inferring QoE

of a video stream and offering suggestions to improve it. MintMOS is flexible enough to ac-

commodate any number of parameters that can affect video quality, from network dependent

to network independent. MintMOS revolves around a QoE space, which is a k-dimensional

space for k parameters used to measure quality. The QoE space creates a mapping be-

tween parameter values and their associated perceptual quality. Inferring QoE or offering

suggestions to improve it use the QoE space to base their decisions. We instrumented a
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QoE space around 4 parameters and 54 partitions, and demonstrated its effectiveness in

projecting MOS.

We deployed MintMOS using this QoE space on 22-node wide area overlay on top of the

Internet using PlanetLab. We used this overlay to stream IP-traces of a variety of high and

low motions clips, and used MintMOS to record perceptual quality. MintMOS’s ratings were

compared offline to a survey with 49 subjects using 14 video clips reconstructed using their

IP-traces. Our results indicate that MintMOS’s projects were very accurate, and outperform

metrics like PSNR and VQM in assessing subjective perception.

We implemented MintMOS on standard, off-the-shelf Linux terminals. Testbed exper-

iments demonstrated the lightweight nature of MintMOS which scales well with a large

number of flows. We could measure the QoE for 1200 video flows per minute on standard

Linux terminals for a reasonably sized QoE space. MintMOS’s modular and lightweight

enable it to a viable tool for various networks elements.

Lastly, quality is an abstract concept. Even a numerical reduction of quality only helps in

indicating it and never accurately scoring it. However, QoE is the most significant measure of

human satisfaction, and has long been used to characterize customer experience with vendors

in a wide variety of domains. Understanding and improving QoE has had a profound impact

on the long term success of many organizations.
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A chain is only as strong as its weakest link

— English Proverb

CHAPTER 4

VIDEO QOE DEGRADATIONS OF INTERNET LINKS

The Internet is comprised of hundreds of Internet service providers (ISPs) and millions of

interconnecting links. Packets traverse through the Internet along these interconnecting links

which make up the typical Internet path. An Internet link can be one of two types: an intra-

ISP link that connects two routers within an ISP, and inter-ISP links or peering links which

connect two border routers of different ISPs. Link level degradations caused by intra-domain

routing policies and inter-ISP peering policies are hard to obtain, as ISPs often consider such

information proprietary. Understanding link level degradations will enable us in designing

future protocols, policies, and architectures to meet rising multimedia demands [59, 60].

This chapter presents a trace driven study to understand QoE capabilities of present day

Internet links using 51 diverse ISPs with a major presence in US, Europe and Asia-Pacific.

We study their links from 38 vantage points in the Internet using both passive tracing and
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active probing for six days. We provide the first measurements of link level degradations

and case studies of intra-ISP and inter-ISP peering links from a multimedia standpoint. Our

study offers surprising insights into intra domain traffic engineering, peering link loading,

(border gateway protocol) BGP and the inefficiencies of using AS-path lengths as a routing

metric. Though our results indicate that Internet routing policies are not optimized for

delivering high perceptual quality streaming services, we argue that alternative strategies

such as overlay networks can help meet QoE demands over the Internet.

4.1 Introduction

The Internet is organized as an interconnection of independent autonomous systems (AS’s).

Each AS is under the purview of an Internet service provider (ISP), and AS’s peer with each

other to co-operatively forward packets. Routing in the Internet is a process of finding a

series of paths traversing one or multiple AS’s to reach a destination. Intra-domain routing

policies, ISP-peering policies, as well as delay and jitter distributions of Internet links are

hard to obtain because ISPs often consider such information proprietary. As a result, the

quality of links both inside an AS and peering links used to exchange traffic between AS’s

are largely unknown. Since the quality of a video stream is as good as the quality offered

by the worst link along its path, understanding link level degradations will help characterize

the extent to which various factors in the Internet affect video QoE. This will help us gain

an insight into designing future protocols, policies and supporting architectures to meet the
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rising multimedia demands. Video QoE is known to be affected by three key network events:

loss, delay and jitter. While path-inflation and loss characteristics have been studied in the

past, no prior work has investigated the jitter levels of the Internet or the combined effect

of various factors on perceptual video quality at the link level.

In this chapter, we systematically study both intra- and inter-ISP links that collaborate

to perform present day Internet routing, and their respective video QoE capabilities. Our

study involves 51 ISPs with a dominant presence in either the US, Europe, or Asia Pacific.

We start by tracing all globally prefixed IP addresses for six days from 38 PlanetLab [82]

vantage points in the Internet to extract ISP topologies. IP level paths obtained from the

trace are converted to AS level paths, which reveal a rich collection on intra-ISP and inter-

ISP peering links. We actively probe these links from vantage points close to these links

to measure their response times and relative loading. We present 24-hour case studies of

both an intra-ISP link run by Level3 and a peering link between Sprint and Qwest that are

representative of a large fraction of the discovered links. Raw network statistics are mapped

to QoE capabilities of these Internet links using an objective function. Finally, we study

the combined interaction of traversing multiple links by analyzing an un-optimized playout

buffer of an end-to-end transmission of 150,000 packets between UCLA and CMU, separated

geographically by 2,400 miles.

Our major finding in this chapter can be summarized as follows: (i) Internet routing

policies are not well suited for streaming services, and much of the pathology has to do with

using AS path length as a routing metric and BGP itself, (ii) while ISPs are internally well
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connected, intra domain paths show greater delay variations in short time scales than inter-

ISP peering links. This suggests that ISPs either ignore load balancing or employ strategies

that create transient load oscillations. These oscillations are enough to bring down video

QoE, (iii) though inter-ISP peering links are inflated in terms of delay, we observed lesser

load fluctuations in these links promising higher QoE. This implies significant co-operation

amongst ISPs in peer link selection, (iv) the combined effect of various policies maps current

Internet QoE to be just about “acceptable”, (v) while the Internet may not be completely

multimedia ready, alternative approaches such as overlay networks are highly conducive to

streaming services.

4.2 Data Collection Methodology

This section describes our data collection and correlation methodology in detail. Our data

collection is broadly divided in two phases: (i) Phase-1: extract topology information of the

ISPs we choose to study, and (ii) Phase-2: perform active tracing to estimate loss, delay and

jitter inflation. In summary, phase-1 produced a dataset of more than 20 million traces from

38 PlanetLab [82] vantage points over 6 days to discover close to 50,293 router IP addresses

that belong to the 51 ISPs we chose to study. We inferred an ISP’s topology by classifying a

router as either a point-of-presence (POP) or a backbone router. In the second phase, active

probing was used to measure network event inflation between end-points which could either

be in the same ISP or use multiple ISPs to reach one another. Based on end-point proximity
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in terms of ISPs traveled, we isolate the impact of network events for both intra-domain and

inter-domain routing.

4.2.1 Choosing ISPs

We chose ISPs with great care to make our results as representative of Internet behavior as

possible. We chose ISPs who are dominant players in their respective zone. This ensures

that a chosen ISP carries a great portion of that zones traffic while ensuring geographical

diversity. We look for the following criteria in choosing ISP: diversity, degree (peering links),

and size. We also ensured an interesting mix of tiers, where tier-1 represents ISPs closest

to the Internet core, and tier-3 represents ISPs farthest from it. We chose 19 of the 22 tier-1

ISPs, while keeping a diverse mixture of tier-2 and tier-3 ISPs. Table 4.1 shows the list of

51 ISPs used in this study sorted by their tier.

4.2.2 Phase–1: Extracting ISP Topologies

An ISP typically consists of a backbone network and various points of presence (POPs).

The POPs peer with gateway backbone routers to connect traffic to and from spoke cities,

and the backbone routers typically route data between cities. We discover an ISP’s topology

by identifying these POPs and backbone routers. As an input to our analysis, we use used
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Table 4.1: The first 15 of the 51 ISPs used in our study. Refer to [60] for the remaining

ISPs.

Serial # Tier ISP AS Primary Degree

Name number Zone

1 1 ATT 7018 US 1490

2 1 Verizon 701 US 2569

3 1 Qwest 209 US 887

4 1 Level3 3356 US 539

5 1 Savvis 3561 US 806

6 1 Global Crossing 3549 US 585

7 1 Genuity 7405 US 622

8 1 Globix 4513 US 455

9 1 Sprint 1239 US 1735

10 1 Verio 2914 US 538

11 1 Williams Comm 7911 US 234

12 1 XO 2828 US 184

13 1 Colt 8220 Europe 161

14 1 DTAG 3320 Europe 111

15 1 Eqip 3300 Europe 67
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traceroute data collected from 38 PlanetLab vantage points. The vantage points were spread

across the globe, especially in the three dominant zones (US, Europe and Asia-Pacific). From

these vantage points, we traced to all of the 127,000 globally prefixed IP addresses extracted

from the BGP tables of RouteViews [83], which peers with 60 large ISPs. Tracing typically

took six consecutive days on any vantage point.

Traceroute data was processed to produce hop count, DNS names of routers (when avail-

able), and router IP addresses. The IP addresses found were then matched with the prefix

advertised by our list of ISPs in Routeviews to find routers that belong to one of them,

producing 50,293 unique matches. Of these routers, we discovered 19,832 POPs.

We inferred the AS numbers for every IP address based on prefix advertised by ISPs

in RouteViews tables. This converted IP-level traceroute data to AS-level paths to reveal

intra-ISP and inter-ISP peering links. A given link is intra-ISP if the source-destination pair

belongs to the same ISP. Likewise, when a source-destination pair belongs to different ISPs,

the link denotes an inter-ISP peering link.

We go one step further in processing these AS level paths to derive city level paths. We

use the undns [85] tool to assign DNS names to cities. POPs were assigned to their respective

cities by matching the DNS names with the ISPs naming convention. DNS names usually

have an airport code, city, and/or state abbreviation to denote their location. For exam-

ple, the DNS name cr1.st6wa.ip.att.net indicates a router in Seattle, WA (st6wa) run

by ATT, while te3-1.ccr01.lax01.atlas.cogentco.com denotes a router in Los Angeles
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(lax) run by Cogent. City level paths give us a benchmark (speed-of-light direct fiber) of the

expected network events on an idealized link connecting hosts to quantify degradation [49].

4.2.3 Phase–2: Studying Network Links

Once we discover all pairs of intra and inter-ISP links, we perform active probing from various

vantage points to measure response times and loading level of the link at various times of the

day. We analyze the effects of traversing multiple links using the probe train experiment.

Active Probing: Since it is practically impossible to run custom programs on arbitrary

routers and hops all over the Internet to perform measurements, we use an alternative way of

measuring these links from vantage points. A vantage point which discovers a link of the form

A → B from trace collection (usually less than 3 hops away to preserve accuracy [2]) sends

out back-to-back TTL-limited probes, three at a time every 50 ms, towards the destination

that produced A → B. It sends out probes such that the first set of probes expire as soon

as they arrive at A (TTL), and the second set of probes expire when they arrive at B.

Both routers A and B send out an ICMP TTL expired message to the vantage point. The

difference in RTTs provides a reasonable estimate to the level of loading experienced between

A and B [3, 49]. We ensured that the replies came from the intended routers A and B to

guard against routing changes. Also, the probes were sent in groups of three to break any

synchronization with a routers maintenance tasks (usually 60 secs [41, 49]).
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In addition to the above probes, we also use King [78] to estimate latencies between

routers in the Internet. Since King works by recursive DNS queries, it does not always

estimate the latency between every router pair. Hence, we include King estimates only

when available. We also convert these raw statistics to an anticipated video-QoE from

taking that link. To analyze the time-of-day effects of traversing such links, we perform

two representative case studies of an intra-ISP between Tampa and Houston run by Level3

measured from a vantage point in Orlando, and a peering link between Qwest and Sprint

measured from a vantage point in Berkeley.

Probe Train: We also conduct a probe train experiment, where a source in UCLA sent out

a train of 512 byte sized high frequency UDP packets to a destination in CMU, mimicking

a high-quality streaming application operating at 30 frames per second or higher. For more

than 150,000 packets sent, we measure the amount of “intact” information in an unoptimized

playout buffer at every time slot, as we analyze the effects of traversing multiple ISPs to

reach a destination. We also extrapolate results based on subjective perceptions of low and

high motion MPEG-2 clips.

4.2.4 Caveats and Data Completeness

A trace driven study such as this is vulnerable to errors, failures, and information mis-

interpretation. We look at possible caveats in our data collection methodology and discuss

steps taken to address them.
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Figure 4.1: New information added by additional vantage points to trace data

Dataset Consistency: The dataset should be correct, albeit redundant or in excess.

Though we use a small subset of ISPs, we ensured that these ISPs are major traffic carriers

in their zone. In fact, 87% of our traceroutes traversed at least one of these ISPs. During

phase-1 of our data collection, 3 of the vantage points failed during the six day event, and

a power outage at our host node (web-server) led to an incomplete overnight-worth of data

collection making us start afresh. However, we found that using multiple vantage points to

collect data sufficiently thwarted these failures. To measure the completeness of our data

set, we measured the number of new POPs discovered by the addition of each vantage point

to infer ISP topologies [49]. Fig. 4.1 shows that a single node alone accounts for a majority

of POPs learned, with additional vantage points adding marginally more information. With

our usage of 38 vantage points, we are well into the knee of the curve. We also ensure

that the routers we associate using prefix matching indeed belong to the ISPs that we infer
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them to be by comparing AS numbers obtained from aslookup [75]. We take a conservative

approach by using the common subset of ISP-router matches from these two methods.

Transient Routing Changes: Transient instabilities that happen on any one given day in

the Internet do not necessarily paint a correct picture of the state-of-affairs. To account for

transient routing changes or node failures, both phase-1 and phase-2 of data collection were

spread across multiple days. It has been shown that such transient routing changes do not

last more than a day [34, 35, 41, 49].

Spurious Links: Certain false links can appear due to transient routing changes, and TTL-

based traceroute path discovery. We identify spurious links by applying the speed-of-light

criterion: links that promise lower delay than possible are spurious.

4.3 Estimating Video-QoE of Links

A variety of investigations have been performed to infer and predict the QoE of a video

stream. Unlike the R-Score in the VoIP industry, there is no universal consensus on a video

QoE estimation model. However, researchers have consistently claimed two things: (i) QoE

is a much stronger indication of human perception over QoS models, and (ii) QoE is affected

by loss, delay and jitter as far as networking are concerned. To make our video QoE inference

as general as possible, we present both uninterpreted statistics of loss, delay and jitter, as

well as provide a mapping of QoE. We present three approaches to map trace data to QoE:
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Table 4.2: Default parameter values used in the objective QoE function from ITU-T [25]

Video Metric Default Value

Codec Type MPEG-2

Video Format VGA

Key Frame Interval 1 sec

Video Display size 9.2 inches

one using an objective function to return a numerical score, subjective surveys using video

clips with artificially induced errors, and by estimating the amount of “intact” information

at a receiver playback buffer.

Objective Function model: Objective mapping functions often return the inferred QoE

as a number, or a mean opinion score (MOS). MOS ratings loosely classify a video stream

as good, acceptable, poor, or anything in between. We use one such model recommended by

the ITU-T [25]. This model takes into account the network delay of audio and video packets,

the audio-video sync during playout, the encoding bitrate and framerate, as well as the type

of receiver to predict video quality (in a scale of 1–5). Raw network measurements are used

as an input to the model, which returns the anticipated quality degradation by using that

link. The defaults assumed in estimating QoE using this model are shown in Table 4.2. In

addition to the above, we also assume audio to be of the highest quality (not impaired).

Playout Buffer Analysis: We also look at the contents of a receivers “playback” buffer to

estimate video QoE. Ideally, if every host had a direct fiber optic connection to every other
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host in the network, streaming packets would arrive at a destination in the exact order and

time interspacing that they were sent at. In such a case, the destination would consistently

have a buffer’s worth of data to ensure a smooth playout. Hence, the amount of information

absent at a receiver buffer is a strong indication of what the network did to the video stream.

Jitter causes packets to arrive badly out of sequence long enough to be considered missing,

while loss directly contributes to missing information. We measure the amount of missing

information in 100 ms of buffering at the receiver. We infer perceptual quality based on

information available for playout.

4.4 Internet Video Streaming

We begin with a brief review of Internet routing requirements for streaming services, and

present a high-level overview of the Internet paths studied in this chapter. We base this in

the context of multimedia streaming over the Internet, and briefly discuss video buffering

and its effects on preserving interactivity.

4.4.1 The typical Internet route

Internet routing is a process of finding a series of AS’s to traverse from a source node to a

destination node. The As’s themselves are organized in a hierarchy of tier-1, tier-2 and tier-3
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ISPs, and are typically characterized as carrier ISPs (tier-1) or stub ISP’s (tier-2 and tier-

3). Carrier ISPs peer with stub ISP’s to route traffic between them, and this relationship

is dictated by provider-customer contractual agreements between the carriers and stubs.

Most source to destination pairs in the Internet traverse a combination of an ascending tier

path (lower to higher tiers) and a corresponding descending tier path, in that stub ISP’s are

typically reached via an intermediate tier-1 ISP. A few exceptions to this rule include the

presence of exchange points and specific peering relationships between stub ISP’s.

We begin with a high level characterization of an Internet path in traversing from source

to destination in terms of number of hops and the distribution of intra- and inter-ISP links

we observed from our traceroute (Table. 4.3). The table shows that a majority of links used

to traverse the Internet are intra-ISP links which account for 72% of all the links we studied.

This implies that degradations caused within an ISP can have a more profound impact on

video quality than due to peering links. An average Internet route today involves traversing

about three AS’s, and consists of a majority of intra-ISP paths and a few peering links, one

each when an AS boundary is crossed.

Table 4.3: Characterization of Internet routes studied

Path Metric Measured Value

Mean hop count 7.3

Intra-ISP links 72%

Inter-ISP (peering) links 28%
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Figure 4.2: Characterizing intra-ISP links: (a) Delay distributions, and (b) Jitter distribu-

tions for 800 intra-ISP links from six days of active probing

4.5 Intra ISP Routing Policies

We begin by analyzing intra-ISP links, and their relative impact on video QoE. Intra domain

links interconnect various routers that belong to an ISP, which are typically points of presence

(POPs) in the same or different city.

We perform active probing on a set of 800 intra-ISP links from our 38 vantage points.

Probing was continuously performed for an hour on each session, with at least 12 sessions

per day for 6 days. Probing at various times of the day smoothens rate fluctuations that

happen throughout the day, and probing for multiple days ensures we smoothen transient

routing changes.
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Our results offer surprising insights into intra-domain routing policies and their impact

on video QoE. While we find that ISPs are internally well connected, there seems to be

significant load imbalance in network links over short time scales. This suggests that ISPs

either do not perform extensive load balancing amongst their internal links, or the applied

strategies are topology insensitive resulting in load oscillations. Also, it well known that

RIP and OSFP, the most popular intra-ISP routing protocols, are load insensitive. Load

imbalance creates excessive jitter, which is known to have the greatest impact on video QoE.

4.5.1 Delay and Jitter Distributions

Active tracing reveals delay and jitter distributions for the set of intra-ISP links we study.

Delay distributions are shown in Fig. 4.2(a), which shows that a majority of path lengths are

fairly good (< 50 ms), with a great percentage (70% of all links) less than 25ms. This means

that ISPs are internally well connected. Though a majority of paths connect city pairs in

close proximity, we found certain intra-ISP links connecting city pairs across countries and

even continents. This was particularly true for tier-1 ISPs. We did not see any relative

difference in the mean delay values based on geographic dominance of an ISP, which seems

to indicate that ISP interconnection topologies are consistent (and possibly replicated) across

continents.

The jitter distributions (Fig. 4.2(b)), however, show a surprisingly high value for some

points. Jitter levels of more than 20ms are known to have a very adverse effect on perceptual
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quality [8]. The plot shows that approximately half the links we study have jitter levels more

than 20ms. Despite the fact that intra-domain routing is under the complete purview of an

ISP, high jitter indicates that ISPs either do not perform any kind of load balancing, or

perform load balancing which results in oscillations. In fact, the jitter distribution of intra-

ISP links was observed to be higher than inter-ISP peering links. We also observed higher

jitter values for many tier-1 ISPs links, which could be due to the fact tier-1 ISPs have a

large number of nodes making traffic engineering rather complex.

4.5.2 Case Study: Level3’s link between Tampa and Houston

We wondered why intra-domain routing would produce such high levels of jitter, and sought

out to investigate the true causes of it. We chose a representative link to perform sustained

active probing for 24 hours determine if there was a change in the loading level of that link.

A representative link would have mean delay and jitter levels below the knee of the curve

of Fig. 4.2(a) an Fig. 4.2(b), which maps about 70% of all links discovered. We chose an

intra-ISP link run by Level3 between Tampa (FL) and Houston (TX) from a vantage point

in Orlando (FL). We probed this link continuously for 24 hours on July 23 & 24, 2009 and

took measurements in bins of 2 minutes each. Each bin represents the result of 240 probes,

with a 24 hour study accounting for 172,800 probes.

Delay variations in the 24 hour period are shown in Fig. 4.3(a). The plot shows that

delay values vary depending upon the time of the day, where it peaks between 3:00 PM and
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Figure 4.3: A 24-hour observation of an intra-ISP link by Level3 connecting Tampa and

Houston: (a) Delay distribution, (b) Jitter distributions, (c) Mean loading of the peering

link, (d) Estimated QoE at various times of the day
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9:00PM for that day. We also discovered two significant outages, both before 9:00 AM on

July 24, where a good fraction of the probes were lost, whiles others made it in more than

100 ms. Delay values show fluctuations indicating jitter.

Jitter deviations are shown in Fig. 4.3(b). Jitter patterns correlate with the delay pat-

terns, in that they peak between 3:00 PM and 9:00 PM, and are reasonably high during

the outage times. Jitter values at 95% confidence interval tail the mean values closely. The

plot shows consistent jitter at around the 10ms range, which is enough to degrade video

streaming.

To indeed verify that jitter at this link is because of a fluctuation in traffic directed to this

link, we measured the median loading of the router at Tampa which connects to Houston.

To measure loading, we recorded the router times-tamp on the ICMP packets. Variations in

the time-difference at the destination router with no variations at the source are indications

of loading at the source link [49]. Fig. 4.3(c) shows the median loading at the router in 2

minute bins. Indeed, there are significant fluctuations in the link load in very short time

scales1. Also, loading continues to peak at around 6:00 PM, and was considerably high

during the outage times.

MOS variations for this study are shown in Fig. 4.3(d), which are obtained from the ITU-

T model [25]. The results suggest that MOS projections are overall in the “good” range, with

jitter spikes ensuing in consistent MOS ratings of less than “acceptable”. MOS dropped to

“poor” for an extended period of time at around 6:00 PM. Consistent jitter spikes, such as in

1with an OC3 link, median queuing delay of 1ms corresponds to 40 packets in the queue [41]
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Figure 4.4: Characterizing inter -ISP Peering links: (a) Delay distributions, and (b) Jitter

distributions for 1100 inter-ISP links from six days of active probing

this case, have subtle long term effects on QoE. Studies have also shown that subjects have

a “forgiveness” effect, where users rate a video clip relatively high if the playout is smooth

after a brief initial loss in quality. However, with a regular (almost periodic) degradation

of quality, users would generally rate the video sequence lower on a longer time scale than

the one we chose. The average MOS was around 2.46, which suggests quality between just

above “acceptable”.
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4.6 Inter-ISP Routing Policies

We next study the peering links used by ISPs to exchange traffic between one another. ISPs

often use multiple peering links between one another, and the policies used by ISPs to choose

peering links to exchange traffic is largely proprietary and driven by a multitude of factors.

We measured 1100 such links that connect routers of different ISPs using active probing to

measure the relative loading of each such link.

Our findings indicate that there is significant co-operation amongst ISPs in distributing

load across links, and that peering links are well balanced and even. This was particularly

the case for ISPs that used a large number of peering links between one another. Peering

links were overall good for tier-1 ISPs compared to cases when a tier-3 ISP was involved.

Peering links did not show fluctuations based on geographic presence. However, peering links

connecting multiple continents were relatively sub-optimal.

4.6.1 Delay and Jitter Distributions

Delay distributions for peering links is shown in Fig. 4.4(a). The plot shows that at least half

the links studied have delay distributions less than 25ms, and about 30% are in between 25

ms and 75 ms. Delay distributions are typically higher than intra ISP links, suggesting that

peering links are relatively lesser than intra-ISP links, and that peering links often connect
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Figure 4.5: A 24-hour observation of a peering link between Sprint and Qwest in California:

(a) Delay distribution, (b) Jitter distributions, (c) Mean loading of the peering link, (d)

Estimated QoE at various times of the day.
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distant routers. Certain peering links connect distant cities and even continents, which also

account for higher delay distributions.

Jitter variations are shown in Fig. 4.4(b), which shows that more that roughly half of

the links studied are in the “good” range (< 10ms), and a greater majority of the remaining

in the “acceptable” range. This means that delay variations of inter-ISP links are lesser

than delay variations of intra-ISP links, suggesting that there is significant load balancing

in peering link selection. We found jitter values to be lesser for peering links of tier-1 ISPs

than between links of tier-3 ISPs.

4.6.2 Case Study: Peering link between Sprint and Qwest

To provide a basis to compare a typical intra-ISP link to a peering link, we chose a peering

link that is representative of the delay and jitter distributions of Fig. 4.4(a) and Fig. 4.4(b).

We chose a peering link between Sprint and Qwest in California, measured from a vantage

point in Berkeley. We actively probed this link for 24 hours on July 23 & July 24, 2009 for

a total of 1,72,800 probes.

Delay distributions over various times of the day are shown in Fig. 4.5(a). Delay averaged

around 15 ms for most of the study, and peak around late afternoon to early evening.

However, the relative difference in delay values at short time scales is not too high. Jitter
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distributions for 24 hours is shown in Fig. 4.5(b). Jitter fluctuations are low at night and

most times of the day, reaching a peak at around 6:00 PM.

We also measured the load on the links origin router at Sprint (Fig. 4.5(d)). We compared

ICMP router timestamps to look for fluctuations at the Qwest router with little fluctuations

at the Sprint router. However, we found that the link was evenly loaded for most of the day,

with some fluctuations at around 6:00 PM. An even loading such as in this case strongly

indicates that traffic is evenly distributed across peering links used between Sprint and

Qwest, a trend that we predominantly saw for most of the peering links we studied.

The combined effect of these on video-QoE is shown in Fig. 4.5(d). A vast majority of

the projections are in the “good” range. Of the points not in the good range, almost all of

these are close to “acceptable” with no incidents of “poor” quality. The overall MOS for

this study was 2.8, much closer to “good” than the 2.46 of the Level3 link.

4.7 Playout Buffer Analysis

We next put together the combined end-to-end effect of choosing a combination of links to

traverse the Internet. We diverge from both active probing and an objective QoE model by

looking at the receiver playout buffer of an end-to-end transmission that mimics a real-time,

high quality multimedia stream. We round off this study by placing the results in the context

of an MPEG-2 stream, and discuss the impact of degradation for low and high motion clips.
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Figure 4.6: (a) Received sequence number at destination for the first 3600 packets. The

X axis denotes the time since the first arrival of a packet, while the Y axis indicates the

anticipated Sequence Number. (b) Contents of the unoptimized playout buffer in various

time slots. Horizontal bar represents the mean.

We sent 150,000 packets from a source in California (UCLA) to a destination 2,400

miles north-east in Pennsylvania (CMU). The packets were 1024 bytes each, and were sent

out at the rate of 1 packet every 10 milliseconds (or 100 packets per second). High data

rate applications typically transmit more than 30 frames per second, which amounts to 120

packets per second assuming each frame takes 4 packets to encode.

The destination receives packets and places them in a “playout” buffer, which stalls

for a certain time waiting for a batch of packets to arrive. A playout buffer of 100 ms is

recommended for our sending data-rate [8]. The buffer is un-optimized and non-adaptive,

and does not vary buffer limit based on the current reception count. Packets that do not

arrive in their expected time slot are discarded, but packets that arrive out of order in a

given time slot are received correctly. Certain enhancements to buffering strategies often
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adaptively increase the buffering limit in the face of little or no packet reception, stalling

playback at such times [16]. However, since our goal is to understand the raw capabilities

of the Internet without optimizations, we under-estimate buffering by choosing this playout

buffer.

4.7.1 Packet reception

We plot the reception time for each packet for the first 3600 packets received at the destina-

tion. Fig. 4.6(a) shows the time that each packet was received, with time starting from the

first packet received at destination. If the source destination pair had a hypothetical direct

optical fiber link between them, the data points would completely overlap the y = x line.

Though we observed little loss (< 0.1%), we see that packets frequently arrive beyond their

expected time.

4.7.2 Playout Buffer Contents

We now study the contents of the playout buffer at various time slots. We measure the

amount of “intact” information available in the playout buffer. We measure the intactness

by calculating the percentage of correctly received sequence numbers. The playout buffer
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Figure 4.7: CDF of the amount of ‘intact’ information in the playout buffer.

infers the expected set of sequence numbers based on the slot number since the time of the

first packets reception.

Fig.4.6(b) shows the intact information percentage at every time slot. Each time slot is

of 1 sec duration, which amounts to 1500 time slots for all packets. The amount of content

in the buffer shows great variation in time. Research has shown that even a marginal

loss in information manifests as user dis-satisfaction, and more than 20% loss certainly

degrades video [28]. The plot also shows that the buffer contains less than 40% of required

information at regular intervals of time, even dipping to less than 10% every 4 minutes

in the playout. This means that video quality will frequently dip to low ratings almost

periodically. Consistent loss in video quality manifests as a strong dissatisfaction. The mean

amount of information in the buffer was calculated to be 86.1%. Fig. 4.7 shows the CDF of

the information available in the playout buffer. The plot shows that the buffer has less than
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90% of intact information more than 30% of the time, and it has 100% intact information

less than 20% of the time. The combined effects of multiple links that induce jitter are hence

not merely additive.

4.7.3 An MPEG-2 playout perspective

Streaming content in IP networks is commonly transported as a data stream encoded using

the MPEG standard and transported via the real time protocol (RTP) over a UDP/IP

stack. MPEG encodes video streams as a series of Intra (I), Predictive (P) and Bidirectional

(B) frames. I-frames carry a complete video picture, and as such provide reference to the

following B- and P-frames for decoding an MPEG stream. P-frames predict the frames to

be coded using a preceding I or P-frame. Lastly, B-frames use the previous or next I-frame

for motion compensation. Each frame is typically fragmented into multiple IP packets for

transport over the Internet.

The frames are packed into a group of pictures (GOP), where each GOP consists of an

I-frame at the start and a series of B and P-frames which use it as a reference. Depending

upon the motion complexity inherent in a clip, the structure of a GOP can be very different:

low motion clips (like a news program) have larger I-frames and a handful of P and B-frames

to complete a GOP, while high motion (sports clip) clips have smaller I-frames and relatively

larger P-frames for motion compensation.
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Low Motion Clips: Loss of P- or B-frames seem to make little difference in perceptual

quality. The difference in perceptual quality for the loss of an I-frame over a P-frame,

however, is drastic (for e.g., compare sample-17 with sample-25 or sample-33 with sample-

41). Low motion clips have larger I-frames, which increase their odds of getting impacted

during an outage. Low motion clips have longer GOP structures with more P-frames, which

enables more compression. Because of their long GOP structures, the duration of on-screen

degradation tends to be longer.

High Motion Clips: I-frame loss is dominant, just like for low motion clips. However,

because of the inherent dynamism, P-frames tend to be larger and more informative. Hence,

loss of a P-frame draws a slightly more adverse reaction from the subjects than with low

motion clips (sample-17 v/s sample-21). Increased loss of P-frames continues to degrade

quality. Because scenes change frequently, I-frames tend to be shorter and less probable

candidates for loss during outages. Increased loss rates within an I-frame do not seem to

degrade quality any further [19, 20].

4.8 Discussions

We piece together the above studies to infer insights about the way the Internet operates,

and suggest several ways to overcome these shortcomings. We look at a variety of causes that

both contribute to these findings, and are affected by them. We take a closer look at intra

and inter-domain policies of BGP which governs route selection, and suggest workarounds.
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We analyze other solutions, such as increasing capacity, and multi homing as alternatives

to providing better streaming quality. Lastly, we take a close look at the prospect of using

overlay networks for deploying multimedia networks with one example deployment.

4.8.1 BGP and Path Selection

BGP is the de-facto routing protocol for inter-AS and intra-AS routing. It manages reacha-

bility information shared between two AS’s, and allows for diverse networks to interconnect

and become the Internet. BGP summarizes, and often hides, internal topological details

about an AS to prevent routing oscillations in a process called ‘route dampening’.

Intra-domain (iBGP): Intra domain routing is largely governed by iBGP sessions, which

are an overlay of nodes over the OSPF substrate. While ISPs are known to perform certain

optimizations intended towards load distribution, routing instabilities within an AS often

lead to short term anomalies. Short term traffic fluctuations are typically not captured or

accounted for, and are clearly not a metric for intra-domain routing. BGP convergence times

are of the order of minutes, and it has been shown that topology sensitive load balancing is

difficult with BGP. Prevalence of mechanisms such as early or late exit, and latency based

route selection within an AS largely contribute to load imbalance. Our results call for even

traffic distribution within an AS, which could help improve streaming quality. ISPs are

known to be internally well connected, and discovering and utilizing redundant paths to

distribute load could very well improve the quality of intra-ISP links [55].
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‘AS-path length’ based routing: BGP determines the choice of AS’s used to traverse

from source to destination. Route selection is typically performed by comparing AS-path

lengths advertised by address prefixes. Research has shown that about 11% of all new

paths learned by BGP are unreachable [34], and paths are often inflated in terms of distance

travelled [49]. Fig. 4.8 captures the effect of using AS-path lengths as a routing metric for our

probe train experiment between UCLA and CMU. Internet route selection took the packets

from California (far west) to Louisiana (east), back to Houston (west), then Atlanta (north-

east), and finally Washington (north) before making it to CMU. Clearly, the choice of ISPs

traversed badly mismatches a direct series of links between these two geographic locations.

Since our findings indicate that the quality or choice of peering links is not a factor for ISPs,

we argue that inefficiencies in route selection arise from using AS-path length as a routing

metric.

Given that a great majority of Internet traffic will carry multimedia content, we argue for

BGP advertising “geographical” information at BGP speaking routers. That way, even an

inexact reachability information at a router can be compensated by allowing video streams

to “flow” towards the destinations geographical zone. Though far fetched into the future,

we believe geographic co-ordinates embedded in BGP route advertisements can certainly

enhance streaming applications.
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Figure 4.8: Ideal path versus actual Internet path for the probe train experiment

4.8.2 Increasing Capacity and expected QoE as a metric

Increasing Capacity: A popular suggestion to improve performance is to increase capacity.

However, increasing capacity with high jitter levels in the network only exacerbates the

problem. This is because an increase in capacity provides higher peak levels for the traffic to

reach. When links are unbalanced, jitter typically increases with network capacity. In fact,

load balancing is known to have often increased the capacity of existing infrastructure.

Expected QoE as a Routing Metric: Intuitively, if inter-AS path selection was based

on expected QoE rather than AS-path length alone, streaming content would deliver higher

perceptual quality. However, this is not entirely practical for the following reasons: (i) it is

not possible for every router to probe each of its links continuously to create a picture of ex-

pected QoE, (ii) fluctuations in expected QoE may case route flapping, and (iii) changing the

behavior of the entire Internet known to be extremely slow. For example, QoS mechanisms
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such as IntServ and DiffServ were envisioned to be implemented at all network elements

from source to destination. The actual adoption, however, was sporadic and un-coordinated.

4.9 A Case for Overlay Networks

While change in the Internet may be slow, we look at alternative approaches that be provide

imminent solutions. We look at the case of network overlays tuned for multimedia. Infor-

mation ‘detouring’ [45] and overlay networks [1, 52] have shown to be effective workarounds

around Internet failures. Overlay networks are a collection of nodes in different autonomous

systems that maintain a virtual link to one another. A virtual link is the normal IP-level

path between these two nodes, which the nodes probe continuously to monitor signs of degra-

dation. Overlay nodes exchange this reachability information with each other periodically

to expose other redundant paths in the Internet across different AS’s that BGP cannot ad-

vertise. If the normal path between these two nodes experiences outages, nodes can switch

to alternate paths that reach the destination. It has been shown that at most one such

‘reroute’ is enough to route around outages [1]. We bring out benefits of using an overlay

based approach to route around IP failures using measurements from a measurement overlay

we deployed.

85



4.9.1 Methodology

We analyze weeklong measurements of a large number of Internet paths all over the world

to understand the benefits of quick redirections to preserve video-QoE and avoid transient

fluctuations within an ISP. We created an overlay of 32 nodes deployed in geographically

diverse locations, including the U.S., Europe and Asia-Pacific.

Experimental Setup and Video Clips: Between January 22 to 29, 2010, every node

streamed 1024 byte UDP packets every 5 minutes to a randomly selected destination. The

stream mimics the IP-packet trace of a randomly selected high or low motion clip from a set

of five clips used in the previous round of study. We passed the name of the clip and the

type of frame the packet carries in the packet payload, creating an IP-trace of the clip at the

receiver. For any of our overlay with N nodes, the source indirectly probed the destination

via the N − 2 other intermediaries while streaming packets to the destination. This probing

is performed only when transmitting key frames within the clips. For low motion clips, we

mark the I-frame alone as the key frame. For high motion clips, we mark both the I- and

P-frames as key frames. We record the receiver trace at the destination, and the probe

responses from the intermediaries at source to analyze offline the suitability of alternate

paths during outages.
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4.9.2 Benefits of an Overlay Network

A potential workaround to transient degradations that occur within an ISP is to switch to

a route that avoids the ISP is question, usually involving a one-hop detour through a node

that avoids this ISP [45]. To determine the benefits of switching, and in particular switching

early, we measure the probability of restoring key frames following a degradation in Fig. 4.9.

This plot shows the probability of the next key frame being received successfully after

observing a certain number of consecutive drops in a key frame. We plot this probability

for upto 6 consecutive packet losses observed for the default IP-path, a random-1 path, and

the “ideal” detour path. The random-1 path is derived by attempting to detour with any

random intermediary from our set of 32 nodes. The “ideal” detour path is the most optimum

path to take following a degradation, usually obtained by extensive background monitoring

of alternative paths. In effect, we base the default-IP path against a measurement free

(random-1) and measurement based informed detours.

After only two successive packet drops, the probability of the default IP-path restoring

the next key frame seem to diminish to around 0.42. The “ideal” detour maintains a higher

recovery probability of more than 80% for upto 5 consecutive drops. The plot also shows

that even random-1 is able to provide higher returns than the default IP-path when 3 or

more packets are lost in succession. This leads us to believe that an early detection and

subsequent detour can help recover from degradations.
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Figure 4.9: Recovering from perceptual degradations: a case for overlays that avoid faulty

AS’s.

In general, overlay networks can solve the following problems in terms of raising per-

ceptual quality: (i) while Internet routers cannot individually monitor expected-QoE along

links, a small set of overlay nodes can easily achieve this with low overhead probing, and

re-route packets based on expected QoE; (ii) discover and expose redundant paths that can-

not be exposed by BGP, providing greater routing options especially around ISPs which

experience transient degradations, (iii) implement policy routing, and allow customized me-

dia dissemination, and (iv) converge faster than BGP, and recover from outages quickly. In

other words, we believe overlay networks can provide a flexible way of implementing policy

based networking changes that cannot be immediately brought about in the Internet.
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4.10 Conclusions

Network service providers need to raise video QoE to attract customers and prevent churn.

QoE has been found to be the most significant measure of human satisfaction, and has long

been used to characterize customer experience with vendors in a wide variety of domains.

Understanding and improving QoE has had a profound impact on the long term success of

many organizations.

This chapter presented the first empirical observation of Internet links from a QoE per-

spective. We studied intra- and inter-ISP links of 51 major ISPs spread across the US,

Europe and Asia-Pacific from 38 vantage points in the Internet. We closely studied these

links for six days to infer their suitability for streaming services.

Our findings offer surprising insights at link level fluctuations in the Internet: (i) we

find that intra-domain links are poorly engineered, showing significant loading fluctuations

which can degrade video quality. This could largely be attributed to BGP, which makes

topology sensitive load balancing hard; (ii) contrary to popular belief, ISP peering links are

well engineered and quiet suitable for carrying streaming content. This implies that ISPs are

not limited by their choice or quality of peering links, rather, AS-path lengths are insufficient

as a routing metric; (iii) the overall effect of Internet route selection maps the current QoE to

just about “acceptable”; and, (iv) overlay networks could overcome a majority of Internet’s

shortcomings in delivering multimedia; both because they can be deployed with relative
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ease compared to re-engineering the Internet, and provide alternative routes that avoid AS’s

which experience transient fluctuations in delivering packets.

90



“Alice if you don’t know which road to take then any road will get you there but just

don’t choose the road that isn’t any road, you could end up in a terrible place and

loose your muchness. That’s how you lost you muchness last time you chose the road,

but I know this time you will choose the right road

— Lewis Carroll (Alice in Wonderland)

CHAPTER 5

EFFECTS OF INTERNET PATH SELECTION ON VIDEO-QOE

5.1 Introduction

Having characterized Internet video-QoE at the link level, we now turn our attention towards

studying the goodness of end-to-end Internet paths in assuring video-QoE. This chapter

presents large scale Internet measurements to understand and improve the effects of Internet

path selection on perceived video quality [58]. We seek answers to the following questions: (i)

how do Internet outages effect video-QoE?, (ii) where in the path do these outages frequent?,

(iii) how can redundant Internet paths be utilized to improve QoE?, and (iv) is there a simple,

scalable approach that can utilize these redundant paths? An empirical understanding of
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QoE degradations along an Internet path, and simple alternative path selection strategies

that go beyond default IP-routing, would help us overcome some of these limitations.

To answer these questions, we begin by probing popular VoD/IPTV servers and PPLive

hosts on the Internet for 7 days from 62 geographically diverse PlanetLab nodes in a manner

that mimics “fetching” content. These probings reveal the nature of outages and where they

occur along the path. High level results indicate that 89% of outages on paths to servers

and 62% of outages to broad-band hosts can potentially be recovered from if the source

used alternative routes. Further, we use the IP-level trace obtained from this experiment

to reconstruct 54 video clips representative of a large fraction of the outages. These clips

were used to conduct extensive surveys with 77 human subjects. Our surveys indicate that

perceptual quality degradations depend of motion complexity of the clip, the type of frame

impacted, and packet loss rates. We argue that perceptual quality can be increased by a

combination of: (i) application specific policies (e.g., preserve key frames, provide bounds on

response time etc.,), and (ii) path selection strategies which can preserve application specific

policies.

We also investigate ways to recover from QoE degradation by choosing alternate Internet

paths that preserve application specific policies. We seek simple, scalable path selection

strategies without the need for background path monitoring or apriori path knowledge of any

kind. To do this, we deployed five measurement overlays: one each in the US, Europe, Asia-

Pacific, and two spread across the globe. We used these to stream IP-traces of a variety of

clips between source-destination pairs while probing alternate paths for an entire week. Our
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results indicate that a source can recover from upto 90% of the degradations by attempting

to restore QoE with any five randomly chosen nodes in an overlay. We argue that our results

are robust across datasets.

5.2 Probing Internet Destinations

Streaming content on the Internet today is most commonly disseminated by VoD/IPTV

service providers or by peer-to-peer (p2p) streaming (e.g., Joost, BBC iPlayer, PPLive etc.).

Hence, we begin by measuring the round trip path to these destinations from geographically

diverse client locations. We analyze outages on these paths, their recurring frequency, as well

as their location along the path. We provide upper bounds on the fraction of outages that

occur on the last hop, which cannot be recovered by using alternate paths. Overall, results

presented in this section are crucial to understanding paths used to disseminate streaming

content from popular sites/hosts all over the Internet.

5.2.1 Vantage Points and Destination Sets

Vantage Points: IP-based streaming services are currently popular in Germany, France,

Belgium, United States, Korea, and China among other nations. Hence, we select vantage

points that have a presence in these countries and are generally placed in United States,
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Europe and Asia. We initially began with a list of 70 vantage points1. However, we re-

moved data from 8 vantage points which had more than 24 hours worth of data loss due to

downtimes, effectively reducing our vantage points to 62 nodes.

Destination Sets: To create our destination set, we gathered a list of the 200 most popular

IPTV/VoD service providers from various Internet sources. To create a destination set for

P2P video sharing hosts, we used 1,200 IP addresses of broadband hosts obtained from crawls

of TVUNetworks and PPLive. In the end, our source-destination pairs are representative of

typical round trip paths on the Internet used to disseminate streaming content.

5.2.2 Probing Methodology

Between January 08 and 14, 2010, we systematically studied paths between our vantage

points and destination sets. We probed the destinations from our vantage points mimicking

a “fetch” operation of streaming content using UDP probes of 1024 bytes. To do this, we

timed our probes according to the IP-level trace of a variety of low and high motion clips.

We use three representative low motion clips (Foreman, Akiyo, Coastguard) and two high

motion clips (Football, Tennis) to obtain IP-level traces. The IP-level trace of these clips

were recorded using an Ineoquest Singulus digital media analyzer [77] with a fragmentation

limit of 1024 bytes. We use a 15:2 GOP at 30 frames per second to encode a given clip.

1All our vantage points and destination sets can be found at [80]
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Every 5 minutes, each vantage point selects the IP-trace of a randomly chosen clip to

probe a randomly chosen destination from its destination set. The destination’s response to

these probes enables us to create an IP-level trace of the chosen clip at the receiver, which

we use to infer path quality. We partitioned the destination sets across our vantage points

ensuring an even mix of servers and P2P hosts.

Failures v/s outages: While even a single packet loss can potentially induce perceptual

degradation, we strive to distinguish between short lived congestion drops and a true path

outage in this round of study. We declare a path to experience a failure event if three or

more consecutive probe packets fail to receive a response. As soon as this happens, we

issue a traceroute from the vantage point to that destination. If the first traceroute after a

failure event also fails, we declare a destination outage. Upon detecting an outage, we send

a continuous stream of probes to the destination until the path return to normal. The path

is deemed normal with the first incident of successfully receiving 10 probe responses. In the

end, any definition of an outage based on probe loss patterns is arbitrary.

Traceroutes: When a path experiences a failure event, we used TCP traceroutes to de-

termine the possible location of the failure. TCP traceroute return results faster than the

standard ICMP based traceroute to determine failure location within milliseconds of its hap-

pening [22]. We broadly classify failure locations as source side, destination side, last hop,

or middle core (backbone) [22, 51].
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Table 5.1: Overview of outage locations for paths to servers and P2PTV hosts observed from

62 vantage points in a one week period.

Event Servers P2P hosts

paths probed 18,600 62,000

Failure Events 4,181 16,724

Path failures 1829 6743

Classifiable path 915 3439

failures

Last hop failures 101 (11%) 1308 (38%)

Non last hop failures 814 (89%) 2131 (62%)

Unclassifiable 914 3304
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5.2.3 Outage Locations

We begin with characterizing failure locations summarized in Table 5.1. A ‘failure event’

is the loss of three consecutive probe packets. A ‘path failure’ is the additional failure of

the first traceroute issued. Likewise, a ‘classifiable’ failure is when we can potentially isolate

the location of failure from traceroute. We group the classifiable failures as either a ‘last

hop’ failure or failures occurring elsewhere. Last hop failures are failures that happen on

the last hop to the destination, and are very hard to recover from using alternate Internet

paths. Lastly, we group outages as ‘unclassified’ if we cannot infer the location of failure

from traceroute.

We observe that on paths to servers, only 11% of the failures happen at the last hop.

This both indicates that servers are well provisioned and server side path outages are less

frequent. This also implies that it is possible to potentially recover from 89% of outages on

a path to a server. The last hop failure rate for broadband hosts is quite high (38%). This

implies that routing around failures can potentially solve upto 62% of the outages. This has

further implications for content providers: while a providers “walled garden network” may

be well provisioned, performance is bound by the quality of their clients last hop links.

Of the classifiable failures, we present in Figure 5.1 the ratio of failures observed on each

path segment to the total number of classifiable failures. To better group failure location, we

divide a path into four segments [22]: Last hop failures are either the last access link failure

or a ‘destination unreachable’ failure of traceroute, Middle failures occur in the backbone
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Source Middle Dest. Last Hop Unclassified

Location of failure

 

servers

p2p hosts

Figure 5.1: Fraction of location failures for classifiable failures; the last column shows fraction

of unclassifiable failures observed for all path failures.

network (Tier-1 ISPs) that peer with a POP at the source’s ISP [51]. We infer a middle

failure by checking the router addresses to infer a backbone link. Likewise, Source and

Destination are the path segments before and after Middle. The plot shows that failures

to servers and P2P hosts are equally likely at ‘source’ and ‘destination’. However, paths to

servers experience lower last hop failures.

5.2.4 Failure Rate

We also measure the number of failures observed by each path over the seven day period

(Figure 5.2), which represents failure rate for the seven day observation period. Paths are

ranked by the number of failures they encountered sorted by highest to lowest. We observe

that a fraction of the total paths measured in each destination set experience a majority of
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Figure 5.2: Failure rate (log-log scale) of individual paths to servers and broadband hosts.

the failures observed, with few paths registering loss free incidents. Paths to servers observe

relatively lesser failures than paths to P2P hosts. Most paths that observe failures share

similar number of failures.

5.2.5 Failure Duration

Also of interest is the duration of an outage, which gives us a measure of failure persistence.

We report on failure duration in terms of the number of consecutive MPEG-2 frames impacted

due an outage. We count a frame corrupt if at least one packet loss is observed in a given

frame, and we continue counting corrupt frames until an intact frame reception is inferred.

Figure 5.3 shows the CDF of the number of consecutive frames impacted as a result of

network induced degradation. In more than 50% of the case, there are more than 10 frames
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Figure 5.3: Failure duration: number of consecutive frames impacted during outages.

that are impacted during an outage. The probability that a key frame is lost increases with

the number of frames impacted per outage. Also, 20% of the outages result in the corruption

of more than 50 frames. This strongly brings out the need to detect and quickly recover

from on-screen degradations as soon as they occur.

5.2.6 Summarizing

The above results make a strong case for Internet redirection, with upto 89% of paths

to servers and 62% of paths to broadband hosts potentially recoverable by timely routing

redirections; the few paths that observe very high failure rates would almost certainly benefit

from redirections. A majority of the paths that evenly observe failures would benefit from

timely redirections when outages start occurring. Since BGP convergence times are high
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and Internet paths are not chosen based on QoE, route selection will not discover new paths

to switch to until the outage continues to corrupt multiple frames. In general, outages that

do not occur at last hops can potentially be alleviated by using alternate routes, provided

the detection of QoE degradation and path switching happen in a timely fashion.

5.3 Impact on Perceptual Quality

This section analyzes the perceptual degradations caused by packet drops resulting from

network anomalies in the IP-traces obtained from the previous round of study. We discuss

our methodology of reconstructing MPEG-2 video clips using the IP-traces. These clips were

used to conduct a survey with human subjects to better understand perceptual degradations,

the factors that affect it, and user preferences. Finally, we summarize our key finding from

this round of study to derive application specific parameters that can help preserve QoE.

5.3.1 Outage Impact on Perceived Quality

Since destinations were probed using the IP-trace of a given clip, the probe responses create

an IP-trace at the receiver which contains round trip times and sequence numbers. We

analyze this trace to look for missing information caused by network level degradations.

Missing sequence numbers directly capture network drops. To account for jitter, we mark a
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Figure 5.4: Outages and their impacts on paths to servers: (a) Best case video artifact

durations for low and high motion clips, and (b) Corresponding worst case artifact durations.

received probe response as lost if the round trip time exceeds 1 sec (typical playout buffer

sizes, e.g. VLC [86]). Hence, after this process, we have an IP-level trace of packet reception

for a given video clip.

We quantify the type of visual impairment and its expected duration within a playout by

observing the instantaneous contents in a 1 sec playout buffer and discuss user perception

of these impairments from our survey. We make a distinction between the actual failure

observed on a path and the perceived failure. The actual failure is measure of the number of

packets lost. However, the perceived failure is the severity of perceptual degradation and its

on-screen persistent caused by the actual failure. A worst case degradation is when the loss

corrupts an I-frame. Likewise, best case degradation happen when a loss does not impact an

I-frame.
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While relative priorities of MPEG frames have been emphasized in the past, we seek

to characterize the persistence of on-screen degradation that we infer from the IP-traces.

The best case on-screen artifact duration as a result of the corrupted frames for different

motion clips is shown in Figure 5.4(a). We note that the on-screen persistence can range

from less than 100 ms to about 700 ms. Best case artifacts can range from minor glitches

to frozen frames. The worst case artifact duration for the same number of corrupted frames

is very different (Figure 5.4(b)). Worst case degradation occurs when the loss corrupts

an I-frame, manifesting pixellization, ghosting, and extreme distortions. In this case, the

remaining frames cannot reconstruct the scenes and depending upon motion complexity, the

persistence of on screen degradation is longer. Even a single corrupt I-frame (10ms loss)

results in impairments that persist for over 600 ms.

5.3.2 Reconstructing Video Clips for Survey

To better understand the perceptual experience of viewing clips with the aforesaid loss pat-

terns and artifacts, we decided to recreate a set of clips that are representative of the most

commonly occurring loss patterns. From our traces, we observed loss rates of less than 0.1 in

a majority of cases, with typical loss rates crowding at around 0.01, 0.05 and 0.1. Loss rate

occasionally reached 0.5 and above. We re-constructed video clips at various bitrates using

these loss rates. To do this, we manually edited the IP-trace of the low and high motion

clips originally obtained to induce these loss rates in a variety of frames. We consider two
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possibilities of loss impacting an MPEG frame: (i) loss in key frames (or worst case losses),

and (ii) loss in non-key frames (best case losses). We consider an I-frame as a key frame

for all clips. We used three encoding bitrates of 800, 3200 and 6400 kbps to reconstruct the

video clips. In summary, we recreated a set of 54 unique combinations of losses impacting

key frames of high and low motion clips at three encoding bitrates2.

5.3.3 Survey with Subjects

The reconstructed video clips were used to conduct a survey with an initial set of 80 human

subjects in an indoor lab environment. Subjects were shown the original video sequences,

and were asked to rate the distorted sequences on a scale of 1 to 5. Subjects were chosen with

sufficient diversity in age, gender, and expertise in subject matter. Outliers were identified

by interspersing a shown video sequence multiple times and recording their ratings each

time. We identified a total of 3 outliers in the lab environment, effectively reducing our

survey strength to 77.

We observed many interesting patterns in subjective perception of these video clips with

artifacts. For a given loss rate, the perceptual quality can vary significantly depending on

the motion complexity of the clip and the type of frames impacted during loss. Subjects

were less irritated with best case artifacts for low motion clips, and generally rate the clips as

“good”. However, subjects were more irritated with increased P-frame losses in high motion

2All our clips can be examined at [80]
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clips, and rate the clips as just about “acceptable”. Subjects consistently rated worst case

degradations as “unacceptable”. Low motion clips have larger proportion of I-frames, hence

it is more likely that an I-frame is impacted during a loss. Also, because of the longer sizes

of GOPs for low motion clips, the persistence of playout distortion tends to be longer.

Interestingly, once the playout reaches “below acceptable” perception, subjects seemed

to hardly react any further with continued losses within that GOP. Subjects also tend to

“forgive” the degradation if the on-screen artifact suddenly heals with the new arrival of an

intact I-frame.

5.3.4 Summarizing

Video-QoE is known to be multidimensional, and the overall perceived quality of a service

provider depend on parameters that go beyond network efficiency. Next, we focus on dis-

covering network induced degradations that are addressable by using alternate paths in the

Internet.

We summarize our basic assumptions about QoE that we use for the rest of this chapter

as follows. For each instance of a corrupted frame in a GOP, an artifact is produced.

Not all artifacts induce the same user reaction. Subjective perception degrades to “below

acceptable” when key frames are corrupted within a GOP. For low motion clips, we mark the

I-frame as a key frame. For high motion clips, we mark both I- and P-frames as key frames.
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While subjective perception degrades with the loss of key frames, immediate restoration of

key frames following a degradation induce a “forgiveness” effect. Interactivity delay of more

than 500 ms network round trip time degrades QoE.

5.4 Using Routing Redirections

Given that 89% of outages on paths to servers and 62% of paths to broadband hosts are

recoverable by alternate routing, we investigate frame preserving policies and path selection

strategies that can raise perceptual quality. We observe that a strategy of preserving key

frames following a degradation can instantly convert worst case degradations to a best case

degradation and raise perceptual experience. Given a degradation on an Internet path,

however, we need a deeper understanding on how long an outage persists when a frame

is corrupted, how soon should one switch paths, and what is the best strategy to utilize

redundant Internet paths without the need for background monitoring. Choosing paths

without background monitoring allows overlays to scale to large number of nodes. It also

makes such strategies generally applicable in a wide variety of streaming services without

burdening the existing infrastructure.

The Internet by default returns one path for a given destination to the source. Alternative

paths can be derived by creating an overlay network. Overlays are not a new concept to

computer networking: the Internet itself was built as an overlay on top of the telephone

network [1, 22]. Current examples of overlays built on top of the Internet include: P2P
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networks, content delivery networks or CDNs (e.g., Akamai [74]), multicast networks [27],

OverQoS [52] etc. These networks often have a multitude of nodes in different ASs that can

likely provide redirections around outages.

5.4.1 Methodology

We analyze five different datasets that contain weeklong measurements of a large number

of Internet paths all over the world. We streamed packets using IP-traces of a variety

of low motion and high clips between source destination pairs. When transmitting key

frames from the clip, we simultaneously probe every intermediary which indirectly probes

the destination. We record the receiver trace at the destination, and the probe responses

from the intermediaries at source to analyze offline the suitability of alternate paths during

outages. We then derive ways to select alternate paths while preserving zapping delays

without the need to perform background monitoring of any kind.

Datasets: We created five measurement overlays in different parts of the world, both within

a continent and across continents. We created one overlay each within United States (US),

Europe (EU) and Asia-Pacific (AP) consisting 19, 21, and 22 nodes respectively. In addition,

we created two international overlays D1 and D2 consisting of 22 and 32 nodes evenly spread

across the U.S., Europe and Asia-Pacific.
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Figure 5.5: CDF of number of useful intermediaries as a function of the upper bound on

tolerable delay.

Experimental Setup and Video Clips: Between January 22 to 29, 2010, every node

streamed 1024 byte UDP packets every 5 minutes to a randomly selected destination. The

stream mimics the IP-packet trace of a randomly selected high or low motion clip from a set

of five clips used in the previous round of study. We passed the name of the clip and the

type of frame the packet carries in the packet payload, creating an IP-trace of the clip at the

receiver. For any of our overlay with N nodes, the source indirectly probed the destination

via the N − 2 other intermediaries while streaming packets to the destination. This probing

is performed only when transmitting key frames. For low motion clips, we mark the I-frame

alone as the key frame. For high motion clips, we mark both the I- and P-frames as key

frames.
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5.4.2 What kind of paths help QoE?

In general, preserving key frames and providing consistent zapping times are excellent

network level support to raise perceptual quality. Hence, paths that can re-route subse-

quent key frames and ensure that zapping times don’t exceed a given bound are excellent

candidates for selection in times of an outage. By “bound”, we mean that the differ-

ence in RTTs of the new path and the default IP path is within a given threshold, i.e,

RTTnew < RTTDefault−IP + bound. As a result, not all intermediaries can be of use if they

exceed this bound even if they are determined to be loss free.

5.4.3 Suitability of Intermediaries

For a default IP-path from source (S) to destination (D), and intermediary (I) is considered

“useful” when the alternative route stitched together by combining paths of (S,I) and (I,D)

is loss free and whose round trip time is bounded by a given value. The choice of this bound

limit can have a significant effect in the choice of intermediaries that can be considered

useful.

Shown in Fig. 5.5 are the number of useful intermediaries each time a frame was corrupt

at the receiver as a function of the delay bound. When bounds are tight (50 ms), the number

of useful intermediaries in times of an outage are low. In fact, the same chosen few nodes

tend to help recovery and the probability of finding newer nodes are low. When the bound

109



0 1−3 4−6 7−9 10−12 13−15 16−18 19+
0

1

3

5

7

9

Number of intermediate nodes

 

 

D1 (Intl)

D2 (Intl.)

US (United States)

EU (Europe)

AP (Asia−Pacific)

Figure 5.6: Number of intermediaries that offered a better path in times of failures.

is loosened to around 1 sec, we see an even likelihood of finding a varying number of useful

intermediaries for every instance of an outage. We also observed (not shown in the plot)

that the number of useful intermediaries tend to be more when the overlay is confined to a

geographical area, largely because of the availability of paths with round trip times within

the defined tolerable bounds. Note that this plot reports data from dataset D2, which is

spread all over the world.

From our survey in the previous round, we note that worst case degradations often persist

between 600 ms to 1 sec depending upon the severity of impact. Also, subjective perception

does degrade any further with increases losses for the entire GOP given an impaired I-frame.

Hence, given the duration of on-screen artifact persistence and subjective perception, we

choose an upper bound for RTT as 500 ms for selecting intermediaries.
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5.4.4 Useful Intermediaries

For every instance of a corrupt frame at the receiver, we analyze the number of useful

intermediaries that can help preserve subsequent frames with a bound of 500 ms. Fig. 5.6

shows the fraction of times the number of intermediaries (in bins of 3) were determined

useful each time a frame was corrupt. We observe that few failures could be exclusively

addressed by a small number of nodes (bin [1-3]). A large number of failures could find

many intermediate nodes that prove helpful. We also observe that a fraction of these failures

could not be recovered by any alternate route (the left most bar). This number seems to be

relatively higher for international datasets (D1 and D2) than datasets derived from within a

geographical area.

5.4.5 Choosing Intermediaries

Given the number of useful intermediaries in times of an outage, we now look at path

selection strategies that can improve perceived quality. Our key requirements in designing a

path selection strategy is twofold: (i) path selection is done without the need for background

monitoring or apriori path quality knowledge of any kind, and (ii) the approach is simple,

lightweight and adds negligible computational overhead at the sender. We assume that the

receiver can provide a feedback to source informing an outage whenever key frames are

corrupt.

111



Similar in spirit to randomized load allocation [12, 15, 22], we employ a strategy of

randomly selecting any k intermediate nodes in times of an outage, and simultaneously

attempting to transmit the subsequent key frames through them. The first such intermediate

node of the chosen k which is loss free and whose RTT is bounded is chosen as the best

alternative and we continue streaming via that node. A subsequent failure on that path

again triggers the random-k strategy until a new path is found. In case of finding no paths,

we re-invoke random-k until we find a suitable intermediary or if the IP-path self repairs.

By sending the next set of key frames of multiple paths, we maximize the chances of at least

one of the paths to deliver the frames that helps restore quality.

A natural question then is the what value of k presents a reasonable tradeoff between

reducing the number of nodes to be simultaneously attempted for recovery while maximizing

gains in the resulting perceived quality. To answer this, we measure the fraction of outages

recovered by various values of k across all our datasets. An outage is considered recovered if

the subsequent key frames are corrupted in the default IP-path while the path through the

intermediary was both loss free and within a desired round trip delay bounds.

Fig. 5.7 shows this for all five datasets, and additionally shows the results for different

delay bounds with dataset D2. Each datapoint was obtained by calculating the recovery

percentage using that value of k for the entire trace period on a given dataset. We observe

that for all datasets, the value of k = 5 presents a reasonable tradeoff in selecting intermedi-

aries. Beyond k = 5, we observe the law of diminishing returns: attempting to recover from

more number of intermediaries results in little gain. For datasets confined to a geographical
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Figure 5.7: Fraction of outages recovered by transmitting the next GOP to k-intermediate

nodes; for dataset D2, we additionally plot success for different delay bounds.

area (e.g., US or EU) we observe that the value of k = 4 provides comparable gains owing to

more intermediaries within the desired RTT bounds. For smaller RTT bounds, we observe

that the gains hit a ceiling after a small number of intermediaries because only a few select

intermediaries out of the available ones can help recover from outages.

5.4.6 Path Switching with random-5

Path switching is performed when the destination reports a degradation which impairs per-

ceptual quality. We now investigate the following question: how soon should a receiver

inform of a degradation, and what are the benefits of switching paths early.
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We begin by looking at the typical loss patterns in key frames that were corrupt at the

receiver. For dataset D2, Fig. 5.8 shows the typical number of consecutive packet drops

observed in key frames for low and high motion clips. The plot shows that reception is void

of any losses 51% of the time. Consecutive losses of 2 or more packets are seen only seen

in 29% of the cases. Since a single loss in sufficient to degrade quality, we argue that the

receiver should inform source to switch paths after a single packet lost in a key frame.

The benefits of switching paths early are further shown in Fig. 5.9. This plot shows the

probability of the next key frame being received successfully after observing a certain number

of consecutive drops in a key frame. We plot this probability for upto 6 consecutive packet

losses observed for k = (1, 5, 10) alongwith the performance of the default IP-path. After

only two successive drops, the probability of the default IP-path restoring the next key frame

seem to diminish to around 0.42. Both random-5 and random-10 maintain a higher recovery

probability of more than 80% for upto 5 consecutive drops. Once again, the additional gains

by selecting 10 nodes over 5 for transmitting key frames are marginal. This leads us to

believe that paths should indeed be switched early. The plot also shows that even random-1

is able to provide higher returns than the default IP-path when 3 or more packets are lost

in succession.
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Figure 5.8: CDF of packet loss distributions in key frames.
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Figure 5.9: Benefits of switching early: probability of recovery after consecutive packet losses

in key frames.
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5.4.7 Robustness

We further elucidate the robustness of random-5 by next looking at the probability of re-

covering from a perceptual degradation either due to random-5 recovering from an outage

or the IP-path self-repairing itself when random-5 cannot solve the problem after persistent

efforts. Fig. 5.10 shows the CDF of all degradations recovered from either due to random-5

or the IP-path self repairing itself as a function of time elapsed since the destination re-

ported a degradation. The success probability of random-5 continues to be 0.84 irrespective

of the time elapsed since the degradation was reported. The IP-path, however, repairs itself

with an increasing probability with elapsed time since an outage. The mean time to recover

from outages for the default IP-path is typically 30 secs. The plot highlights the ability of

random-5 to recover quickly from perceived degradations to restoring playout within the first

few seconds.

5.4.8 Preserving Interactivity

When a source selects a path using the random-5 strategy, it automatically ensures two

things: (i) the key frames make it to the destination in the least time possible using any of the

five alternate paths, and (ii) the selection of the path with the minimum delay within specified

maximum bounds ensures round trip times do not exceed the stated bound. Fig. 5.11 shows

the difference between the mean round trip time of the default IP-path and paths due to

116



random-5 between all source destination pairs for all our datasets. While it is easy to observe

that the additional round trip delay by choosing alternate paths is bounded (because the

source will not consider a path successful until the round trip is within bounds), what is

interesting to observe is the occasional improvement in round trip time. An improvement in

RTT could be either due to: (i) the alternate path having a round trip time that is indeed

less than the default IP-path, and (ii) during times of an outage, the round trip path to the

source increases and the alternate paths which do not experience that outage have a smaller

RTTs. We observe that the difference is smaller for overlays confined to a geographical area

compared to overlays spanning multiple continents. This is largely because of the higher

availability of alternate paths with desired RTT bounds within a continent.

5.4.9 Summarizing

Though a number of intermediaries have loss free paths to the destination in times of a

perceptual degradation, not all of them can be a viable alternative if the desired round trip

delay is bounded to preserve interactivity. Using a bound of 500 ms, we investigated ways

to restore perceptual quality by attempting to preserve key frames following an outage using

intermediate nodes. Our results indicate that a source can restore perceptual quality by

simultaneously transmitting key frames to five randomly chosen intermediaries following a

degradation. We observe that random-5 is robust across all our datasets.
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Figure 5.10: Resilience of random-5 recovery time over IP-path self repairing itself.
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Figure 5.11: Difference in round trip times resulting from random-5 path selection with

bound = 500ms.
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5.5 Conclusions

This chapter presented large scale Internet measurements to understand the effects of Inter-

net path selection on perceptual quality of MPEG-2 video and investigates ways to improve

it. We began by performing repeated video “fetching” acts from top IPTV/VoD providers,

PPLive hosts and random Internet destinations for one week from geographically diverse

PlanetLab nodes. We mapped the probe responses to perceptual quality by reconstruct-

ing numerous representative low and high motion video sequences and conducted subjective

surveys using them. Consistent with recent research, our findings indicate that degradation

depend upon motion complexity and type of frame impacted among other things. High level

results also indicate that upto 89% of paths to servers and 62% of paths to broadband are

recoverable by using alternate paths.

To understand the benefits of using alternate paths, we collected weeklong measurements

from five different datasets that both confine to and span multiple continents with a dominant

presence of online streaming services. We observe that not all alternative paths can be useful

even if they are loss free, and that a large fraction of degradations could be overcome by

a large number of alternate paths. We investigated ways to restore quality by attempting

to route successive key frames through k random intermediate nodes without relying on any

kind of background path monitoring or apriori path knowledge. Our results indicate that

k = 5 provides a reasonable tradeoff between minimizing k and maximizing gains, and we

argue that our results are consistent across datasets.
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We believe our results have implications for any video source that streams content across

the Internet. A technique of randomly choosing intermediaries requires little overhead. This

promises large, scalable overlays to be easily build, deploy and maintain. We show that it

is possible to achieve substantive gains in perceptual quality using our prototype on top of

todays best effort Internet.
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“All I want to do is wake up and get out of this endless mess of twisted paths” Alice

told the cat.

“If that was what you desire you would have already chosen that path. You’ll know

which path to take if you just look closely” the cat replied.

— Lewis Carroll (Alice in Wonderland)

CHAPTER 6

RANDOMIZED PATH SELECTION IN LARGE

UNSTRUCTURED OVERLAYS

6.1 Introduction

In the previous chapter, we found that randomized path selection in routing overlays holds

a promise for raising video-QoE. Routing overlays have been proposed to overcome many

of Internet’s deficiencies by exposing numerous alternative paths. This allows end-hosts

greater control over the path taken by its packet. Overlay networks have the potential to

offer low delay paths and provide quicker path recovery. The biggest challenge in building
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scalable multimedia overlays, however, is to consistently negotiate faster paths while scaling

to thousands (even millions) of users.

Path selection in routing overlays is currently achieved either by background monitoring

of alternate paths [1, 52] or by embedding overlay participants in a co-ordinate space [67].

With background monitoring, an overlay of N nodes requires constant monitoring of O(N2)

paths to choose the best detour at any given time. Though this provides the most accurate

result, the adoptability of this approach quickly diminishes with increasing number of nodes.

Furthermore, all-to-all probing makes available far more paths than necessary for reliability or

latency reduction: most such paths are useless. Another approach to scalable overlay services

is to embed node locations to a co-ordinate space, and predicting detour performance based

on node location. Such a set-up leads to highly scalable overlay networks since it requires

little or no background monitoring. However, end-to-end latencies in the Internet exhibit

triangle inequality violations (TIV). Consider three nodes in Fig. 6.1 that form a triangle

such that node-B can offer a detour to messages from node-A to node-C. This triangle ABC

exhibits a TIV, since the (side)-AC > (side)-AB + (side)-BC. Research has shown that more

than 5% of triples and more than 50% of pairs of nodes on the Internet exhibit TIV [32, 67].

Naturally, TIVs severely hamper latency estimation by introducing non-trivial errors in delay

estimation. This again leads to sub-optimal performance. Hence, there is a pressing need

to overcome fundamental limitations of building efficient, large scale overlays to improve

Internet path selection for a variety of interactive multimedia applications.
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Figure 6.1: Errors when embedding nodes to a co-ordinate space with TIV. Parentheses

(right) show errors from embedding

This chapter investigates ways of building scalable latency reducing overlays that do

not rely on background monitoring or location information to select alternate paths. Using

weeklong measurements from 500+ vantage points in the Internet, we show that it is sufficient

to reroute using ‘k’ randomly chosen intermediate nodes for an overlay with N nodes. We

show that the value of k is bounded by O(ln N); which implies that k = 8 for an overlay

with 1000 nodes, and k is just 14 for an overlay with one-million nodes. We also observed

that for random-k to be effective, the subset k should be uniformly representative of the N

nodes in the participating overlay.

Key properties of an overlay built using the random-k philosophy (and its variants) are

further investigated. Our results indicate that: (i) random-k takes more than 75% of all

potential detours that an idealized path selection would take, (ii) random-k is very effective

at negotiating faster paths, and reduces RTT by more than 50 ms more than 80% the of

time, (iii) random-k increases availability of end-hosts, and (iv) random-k leads to improved

fairness amongst participating nodes.
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6.2 Data Collection Methodology

This section describes our data collection and correlation methodology in detail, which we

use as an input for the rest of this chapter. We discuss our choice of vantage points, some

possible caveats and steps we took to address them.

6.2.1 Vantage Points

We observe that Internet based multimedia services are popular in the U.S., Canada, Ger-

many, France, Belgium, U.K., China, Korea and Taiwan to name a few. To better reflect

on these locations, our vantage points are generally located in US/Canada, Europe, and the

Asia-Pacific. A total of 556 PlanetLab [82] vantage points were used on the wide area In-

ternet. Fig. 6.2 shows a graphical representation of our experimental setup, highlighting the

concentration of nodes in specific geographical locations. The vantage points were chosen

with a ratio of 3:2:2 for US:EU:AP.

We initially began with 700 vantage points. However, we removed data from 144 vantage

points which either failed during the weeklong probing or had more than 48 hours worth of

trace data loss, effectively reducing our set of vantage points to 556.
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Figure 6.2: Experimental set-up consists of 556 nodes deployed across the US/Canada, EU

and AP

6.2.2 Experimental Setup

Probing: Starting January 17, 2011, each vantage point continuously probed every other

vantage point in our list for seven consecutive days. Probes were responded to by the

destination node that allows each source node to record round trip times (RTT) from taking

that path. Probing was performed in individual sessions, where each session consists of 120

probes spread over 2 minutes. As a result, every vantage point performed 720 sessions for

every destination per day. When a vantage point (say ‘A’) probed a destination vantage

point (B), it also simultaneously probed the destination B indirectly via all the other 554

vantage points. In the end, we obtained probing results for 154,290 direct paths which we

could compare to 308,024 detour paths to analyze offline the path dynamics connecting every

source-destination pair. This allows us to analyze offline ways to choose these paths without

having to perform background monitoring.
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Table 6.1: Dataset Overview

Dataset Name # of nodes # of paths

PL-master 556 154,290

US 239 28,441

EU 159 12,561

AP 158 12,403

Data Correlation: Trace data collected from probing was organized in a way that allowed

us to analyze paths based on a list of participating nodes in the overlay. Though we collect

data from one central global overlay, we could create multiple views of the same data to

analyze local geographical behavior. Table 6.1 shows the four different views of the dataset

we use. PL-master is the central repository of all our data, while datasets US, EU and AP

are subsets of PL-master which only contain paths within the respective geographical area.

The table also shows the number of paths within each overlay we report results from.

6.2.3 Caveats

We discuss some possible caveats in our data collection methodology, and discuss steps we

took verify them.

Data Completeness: Path characteristics from our dataset should be representative of

Internet behavior. Before we began probing paths connecting our vantage points, we issued
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numerous traceroutes between every pair of vantage points. Traceroute data allows us to

analyze the list of ISPs used by these paths. We find that 86% of these paths traverse at

least one of the 51 major ISPs in US, EU and AP [49]. Also, we avoided sites that are knows

to use an Internet–2 connection, which is known to be superior.

Transient routing changes: Transient routing changes and load fluctuations in the Inter-

net do not paint an accurate picture of the state of affairs. To smoothen transient changes

data-collection was spread over multiple times of the day, including weekdays and weekend,

to eliminate bias.

6.3 Overview of random-k

How can a source select alternate overlay paths to a destination to ensure the best RTT,

without any apriori knowledge of detour path characteristics? This problem is akin to a

distributed service that must track other participants to choose the best alternative. Ideally,

this amounts to continuously tracking every participant to take the most informed decision;

this is infeasible beyond a few hundred nodes. Randomized load allocation can reduce or

even eliminate the need to continuously track participants, while holding the promise to

scale to millions of users [12, 15, 22, 58].

Using randomized load allocation, a source can periodically (every ∆t) attempt

to concurrently re-route packets using a random subset of k nodes from the overlay. The
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first such path that gets an acknowledgement from the receiver is deemed to be the best

path and the source continues to use that path for the remainder of ∆t, until it retries

again. Assuming a simple feedback mechanism from the destination, this strategy enables

the source to discover and choose from upto k paths compared to the single default-IP path

presented by the Internet. We next investigate the effectiveness of this strategy in its ability

to improve IP-path selection.

6.3.1 k nodes are enough

We begin with a high-level overview of the number of successful Internet detours provided

by a random-k strategy for all four datasets. A successful detour is one that either reduces

the current latency, or provides a loss free path with an RTT increase of no more than 50 ms

when the default path is deemed lossy. We compare the performance of random-k against

an idealized path selection which has complete global knowledge of all detour paths.

Fig. 6.3 provides a high level overview of these results. The plot indicates the ability of

random-k at successfully providing detours as a function of k. We report on the percentage of

detours offered when compared to idealized path selection which returns 100% of all detours

possible. By definition, random-N is similar to the idealized path selection.

We observe that even random-1 takes 30% of the possible detours across the four datasets.

For each dataset, we also notice a “knee of the curve”: an optimum value of k beyond which
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Figure 6.3: Percentage of potential detours taken using a random subset of k nodes

there are diminishing gains. For smaller overlays (US, EU, and AP), we observe that k = 5

provides a reasonable tradeoff. For PL-master, the optimum value of k is approximately 7.

Across all four datasets, we observe that random-k offers more than 75% of detours available

from idealized route selection.

6.3.2 Composing k

Given that k nodes are sufficient for providing successful detours, we next look at various

ways of composing k. Specifically, we are interested in strategies that a node must employ

to derive maximum gains from creating such random subsets. For e.g., consider a node in

U.S. that participates in such an overlay that wishes to communicate with nodes in Europe.
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Figure 6.4: Importance of composing a representative subset: effects of skew (PL-master)

Intuitively, if the random subset is formed entirely of nodes from AP (owing to random

selection), the promise of offering detours is likely to diminish for this scenario.

Our results indicate that the subset k should be uniformly representative of all partic-

ipating nodes in the overlay. In other words, since the participating overlay consisted of

nodes in the ratio 3:2:2 for US:EU:AP, the subset k should also follow a similar ratio for

optimum performance. Fig. 6.4 shows the effects of skew in composing k on the end-to-end

RTT between nodes: cases when this ratio was violated. We call a composition skewed when

one of US, EU, or AP is more dominant in the makeup of the random subset. For example,

when k is ‘US-skewed’, the ratio of k’s makeup was 5:1:1. The plot shows that when k is

skewed towards more nodes in US, EU or AP, the performance degrades.
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Table 6.2: Comparison of overhead incurred

Overlay Type Overhead (packets)

random-k (∆t = 60) 550,000

random-k (∆t = 120) 120,000

random-k (∆t = 300) 40,000

O(N2) monitoring 12×108

6.3.3 Overhead

We next look at the number of redundant transmissions required for the upkeep for an overlay

using random-k for various values of ∆t. Since the source attempts k simultaneous nodes

every ∆t seconds to negotiate a better path, there amounts a certain number of redundant

copies which form an overhead. We assume the worst case scenario: every node in the overlay

continuously uses the overlay for the entire hour, seeking to negotiate a newer path every ∆t

seconds. Note that overlay nodes are normally not required to invoke random-k when not

sending packets into the network.

Table 6.2 summarizes the number of overhead packets for one hour of usage for an overlay

of 550 nodes. We observe that ∆t = 120 provides a reasonable trade-off between number of

redundant copies to frequent path selection. We also observe that for an overlay employing

per-second O(N2) monitoring, the amount of overhead required in this same period is greater

by a factor of 103.
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6.3.4 Summarizing

High level results indicate that it is sufficient to reroute packets using a random subset of k

nodes in an N node overlay for large scale latency reducing overlays with ∆t = 120 seconds.

Such a scheme can take upto 75% of all detours an idealized path selection would take. We

also observed that random-k performs at its optimum when the random subset k is uniformly

representative of participating nodes.

6.4 Characterizing Random-k

We next look at alternatives of random-k and their potential benefits and tradeoffs. We

explore two variants of random-k which use increased global state information to provide

detours to compare with our stateless approach. We compare their ability to select better

detour paths, as well as the ensuing fairness in detour selection.

6.4.1 Can we improve random-k?

We observed the law of diminishing returns in Fig. 6.3: the gains hit a ceiling with increasing

values of k. We next look at ways to achieve additional gains by exploring two variants

of random-k which use increased global state knowledge. We compare random-k to these

variants to understand its true benefits and limitations.
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History-k: The first variant is a philosophy similar to random-k, but the source node

remembers and additionally retries the last successful detour. In other words, the source

selects k − 1 detour nodes at random (uniformly representative), and additionally chooses

the last successful detour node to form a random subset. The rationale behind this is that

the last successful detour node can likely provide further redirections if it indeed has superior

connectivity. It has been observed that in many overlays, few nodes offer a majority of all

detours within the overlay [32].

Disjoint-AS-k: This variant assumes complete global knowledge of Internet autonomous

system (AS) connectivity, and specifically selects a random subset that avoid AS’s that the

default path takes. The source node chooses the k most promising detours whose paths

traverse AS’s different than all the AS seen on the source-destination path. While this

strategy may not be feasible in implementation (such global knowledge is impractical), this

exercise allows us to evaluate the effectiveness of random-k against an idealized version to

understand its true potential.

Fig. 6.5 compares the effectiveness of random-k against these policies using the PL-master

dataset. The plot shows the percentage of valid detours each strategy takes for various values

of k compared to idealized path selection. We notice that for small values of k, both history-k

and disjoint-k outperform random-k very quantitatively. However, with rising values of k,

the gap between these strategies quickly diminishes. This leads us to believe that the gains

are comparable. In fact, little separates random-k with disjoint-AS-k for high values of k.

We also note that history-k seems to perform slightly better amongst all three variants in
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Figure 6.5: Variants of random selection and relative performance gains

taking a higher percentage of correct detours.

The benefits of using variants of random-k with increased state information are marginal.

In effect, these strategies bias their choice of subsets towards detours with higher promise,

and this bias results in some additional gains. The gains, however, quickly diminish when

we consider the increased state knowledge or the effects of bias on fairness. Disjoint-AS-k

assumes global knowledge of Internet connectivity, making it infeasible as a strategy of choice.

History-k, as we will soon see, leads to decreased fairness amongst participating nodes. The

practicality and ease in implementation that comes with random-k, with reduced deployment

costs, makes it a more suitable choice of choosing subsets.
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6.4.2 Fairness

While overlay networks make a diversity of paths available, it is often possible for nodes

with superior connectivity to service a majority of all detours. This leads to a network that

consists of a large fraction of freeloaders who use the remaining (smaller) fraction of nodes

for detours. In the previous round of study, we noticed that history-k often performs slightly

better than random-k in offering detours. We next look at fairness in selecting detours by

comparing history-k to random-k.

Fig. 6.6 shows the frequency of a node offering a detour for all nodes across all four

datasets for both history-k and random-k. Nodes are sorted by their ‘rank’, which is deter-

mined by the number of times they appear as a detour node for all source-destination pairs.

By design, history-k is biased towards a successful detour node, and ends up creating greater

unfairness in load selection. Random-k, on the other hand, uses no history data and gener-

ally results in spreading the detour load amongst a greater number of participating nodes. In

general, randomness is a proven technique to improve fairness in many load-sharing systems.

Summarizing: We tested random-k against two variants which assume global connectivity

knowledge or rely on history to better select alternate paths. We observed that random-k is

comparable in terms of gains, while significantly reducing deployment costs and increasing

fairness.
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Figure 6.6: Random selection leads to improved fairness in detour selection

6.5 Discussions

We next look at real-world benefits of using random-k to derive low latency paths and

empirically characterize the value of k for any overlay of N nodes. We discuss the implications

of our results, and summarize them as key guidelines for building an Internet path selection

mechanism that a variety of multimedia applications can benefit from.

6.5.1 Reduction in RTT

We begin by looking at the reduction in RTT possible using the random-k strategy. A source

repeats the random-k strategy every 120 secs to look for a better path that reduces latency

and avoids loss.
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Figure 6.7: Reduction in RTT from using detour paths with random-k

Fig. 6.7 shows the reduction in RTT achieved by random-k across all four datasets. For

PL-master, the gains are consistently above 50 ms more than 70% of the time, and more

than 150 ms at least 20% of the time. For datasets US and AP, the gains hit a ceiling at

around 30 ms, as we observe that a majority of reductions are within that range. We observe

a slightly larger reduction in RTT for the EU dataset.

The plot shows that RTT reduction is generally not a factor of geographical prescience

since the gains are consistent across continents. This implies that ISP topologies and inter-

connects are possibly replicated. Also, we did not observe fluctuations in gains for week-

days/weekend.
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6.5.2 k is bounded by O(lnN)

A key property in building a scalable overlay architecture is that the number of paths to be

probed should grow sub-linearly. In other words, for an overlay of O(N) nodes, the value of

k necessarily needs to be less than N . We next empirically characterize k as a function of

N , and establish upper bounds on the value of k for random-k to be universally applicable

to any latency reducing overlay.

Fig. 6.8 shows the optimum value of k for overlays of different sizes. An optimum k

is derived by results presented earlier in the chapter: k is uniformly representative of all

nodes in the overlay, and ∆t = 120 seconds. Each data point for the optimum value of k

was observed by calculating the tipping point observed in Fig. 6.3 for different sizes of the

overlay. The tipping point is the value of k beyond which there is little gains in random-k’s

ability to select better paths. We use the PL-master to calculate this tipping point.

We observe that the value of k completely contained within the curve y =ln(x) + 3,

where x is the number of nodes in the overlay. In other words, this provides an empirical

characterization that k is bounded by O(lnN) for an overlay with N nodes. We also note that

O(lnN) grows sub-linearly with N , which means that overlays built using this philosophy

are scalable. We also note that our results have implications for any overlay service built on

the Internet, including CDNs and peer-to-peer networks.
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Figure 6.8: The value of k is bounded by O(ln(N)) for any given N nodes in the overlay

6.5.3 Discussions

Group Membership: Nodes wanting to join an overlay could simply send a ‘join’ message

to any existing overlay node, which propagates (gossip) the new node’s presence in the

network in return for a list of participating nodes.

Availability: The overlay should be available for nodes to freely query and negotiate faster

paths. Notice that our design does not assume the support of a centralized server, and as

such avoids single point of failures. Since nodes compute random subsets in a distributed

manner, the scheme inherently promotes scalability. We believe such a system can also

handle node churn seamlessly. Nodes may become unavailable due to a variety of reasons. If

a node fails to respond to random-k discovery for a threshold number of attempts, a source

node can simply evict that option from future retries.
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Security: The overlay is inherently secure against denial of service (DoS) attacks. Since

detour nodes are chosen randomly, the overlay can never become compromised even if a

subset of its nodes come under a DoS attack. Also, the random subsets calculated by a node

are not shared with any other node in the overlay, making it impossible for any attacker to

selectively target overlay nodes to disrupt the infrastructure. Though not investigated as a

part of this chapter, we plan to conduct further studies to ground our beliefs as future work.

6.5.4 Putting it all together

The end result of this study is to build an architecture on the Internet that a variety of

multimedia applications can query to consistently obtain low-delay, loss-free paths that go

beyond Internet path selection. Akin to CDNs transparently redirecting clients to a nearby

server, we envision a routing underlay which transparently discovers suitable alternate In-

ternet paths for multimedia applications querying it. Such a system shall operate requiring

little state information to do this while scaling to millions of nodes.

Nodes participating in the overlay are envisioned to use the overlay using a simple API

such as SendMessage(dest). The underlying substrate at every source transparently revokes

random-k every ∆t or based on feedback from destination. Such an overlay could comprise

of end-user clients and multimedia dissemination servers (video, audio, games). As we have

seen, this mechanism leads to a k-fold increase in path options for a source; options that

often outperform Internet path selection.
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Summary of key findings

1. Nodes sending/receiving multimedia content

participate in an overlay; nodes include clients/servers.

Such an overlay provides k-fold increase in path options.

2. Source randomly selects k intermediaries every ∆t

3. k is uniformly representative of participating nodes

4. Source attempts to simultaneously route packets via

k nodes to reach the destination

5. Destination ACKs back the path-of-choice that

the sources uses for the remainder of ∆t

6. At ∆t, go back to Step. 2

7. Alternatively, if dest. reports an ‘outage’ goto Step. 2
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6.6 Source Initiated Frame Restoration

Using the insights from the previous section, we now design and implement a prototype

called SIFR, or source initiated frame restoration. SIFR employs frame preserving policies

coupled with a random-5 path selection strategy for improving perceptual quality of stream-

ing content. We deploy SIFR on 32 PlanetLab nodes which were used to obtain dataset

D2. We evaluate the effectiveness SIFR over the default IP-path in restoring and improving

perceptual quality.

6.6.1 Prototype description

SIFR requires deployment at source, destination, and intermediate nodes. SIFR at source

applies application specific policies to packet generation following a degradation, and chooses

intermediate paths based on the random-5 strategy to restore key frames. The receiver takes

ingress packets and counts the number of correctly received frames in a 1 sec playout buffer.

When losses that manifest in perceptual degradation are observed, the destination issues an

“outage” feedback to the source. Upon reception of this, the source tries to recover from

the degradation by sending the next set of key frames simultaneously through five randomly

chosen intermediaries. When the destination receives an intact GOP from a path after an

outage, it reports of this successful reception using this path back to the source. We use a
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custom header to capture feedback from the destination. Finally, the intermediaries simply

forward ingress packets to the announced destination.

6.6.2 Methodology

We select three pairs of PlanetLab nodes to act as a source, with one pair each in the US,

Germany and Korea. Each pair of nodes in a country belong to the same site (university)

that hosts them, and are as such geographically co-located (i.e., within the same campus);

one runs SIFR while the other uses the default IP path to reach destinations. We verify that

the source pairs take similar ASs to reach a variety of destinations to eliminate bias in our

results. Our destination and intermediary set consists of 32 PlanetLab nodes used in the

previous round to obtain dataset D2. Our goal is to compare the perceptual quality of video

streams that use SIFR over using the default IP-path.

Every minute, each source pair cycles through a list of five low and high motion clips

used in our previous rounds to stream to a destination. The destination is likewise cycled

through each of the 32 intermediaries every instance. Using the IP packet trace of the clip,

each source pair generate packets with a fragmentation limit of 1024 bytes to the destination.

The destination records the packet trace received from each pair of source, which enables

us to compare the performance of our prototype over the default IP-path in recovering from

outages. We ran this experiment for a little over 48 hours starting Feb 08, 2010.
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Table 6.3: Comparing perceptual quality of SIFR against default IP-routing

Performance Metric SIFR Default

IP-path

total # of GOP degradations 303 779

# of degradation “episodes” 251 293

Mean # of corrupt GOP per episode 1.167 2.65

% of times episodes were 96% 82%

limited to one GOP

Mean time to restore quality < 1 sec 5.23 secs

6.6.3 Results

Table 6.3 summarizes a comparison of receiver traces of source nodes that implement SIFR

against source nodes that only used the default IP path. We report the number of events

when playout degraded to ‘below acceptable’, the number of ‘episodes’ where the degradation

persisted on screen, the percentage of times playout could be restored in the very next GOP,

and the mean time to restore on screen perceptual quality.

A GOP is considered ‘degraded’ when a key frame is corrupt within a GOP, which

manifest artifacts resulting in strong user dissatisfaction. We observed a total of 303 such

instances on source nodes that implement SIFR and 779 degraded GOPs using the default

IP-path. Overall, this indicates that SIFR could preserve about 61% of GOPs that the
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default IP-path could not. Since SIFR reroutes key frames after the destination reports of

a degradation, a fraction of degradations cannot be prevented. To further elucidate this, we

analyze the number of degradation ‘episode’. A degradation episode begins with a degraded

GOP and lasts until the first arrival of an intact GOP. We observe that on paths using SIFR,

there were 251 episodes of degradation. For every such episode, the destination would have

sent a feedback to source requesting a route change. The default IP-path registers about

293 degradations, which seems to indicate that the combination of alternative paths used by

SIFR were marginally better in terms of episodes observed.

Of interest then is the mean number of degraded GOPs per episode, which dictates the

mean on screen degradation time. For SIFR, we observe that this amounts to 1.2, which

indicates that SIFR is able to restore a GOP on most occasions following a degradation.

For the default IP-path the mean is about 2.65, which indicates that SIFR could improve

episode duration by about 55%.

To better estimate recovery using SIFR, we measure the percentage of times the degra-

dation episode was limited to one GOP. Our results indicate that 96% of the time, SIFR

could restore playout following a degradation using alternate paths. For default IP-paths

this is around 82%, which in a way reflects on the IP-path in self healing itself. In effect,

the availability of higher on screen perceptual quality benefits by 14% with SIFR. We also

measure the mean time to restore quality when it degrades. The mean time for IP-path to

recover is around 5.23 secs, while SIFR takes less than one second on average.
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(a) (b)

Figure 6.9: (a) Default IP-path v/s (b) SIFR, following a degradation: SIFR recovers from

perceptual degradation by restoring key frames.

The perceptual benefits of preserving key frames is substantive. To better illustrate the

perceptual benefits of restoring frames, consider the screenshots in Fig. 6.9(a) and Fig. 6.9(b).

After an degradation on the default IP-path, the quality of playout degraded to below ac-

ceptable. SIFR successfully restored playout by quickly rerouting frames (Fig. 6.9(b)), while

the IP-path continued to experience a longer episode of degradation (Fig. 6.9(a)).

6.7 Conclusions

This chapter explored a basic mechanism of randomized overlay route selection that a source

can use to increase its Internet routing options k-fold. We argue that it is sufficient to

randomly pick k nodes in any overlay of N nodes, where k is bounded by O(ln(N)), to
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derive low-delay and loss-free paths from the Internet. We explored various properties of

such random subsets, like composing an optimum k, and variants of random-k.

Our results indicate that an overlay built using such a philosophy can reduce RTT by more

than 50 ms in more than 70% of the time. We show that such path selection mechanisms

require little or no state information, do not burden existing infrastructure, can scale to

millions of nodes, improve fairness, and are generally robust because they are completely

distributed. We believe this design can be used to build an underlay in the Internet that

multimedia applications can query to derive suitable paths, and that such paths can easily

outperform Internet path selection.
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If I have seen further it is by standing on the shoulders of giants

— Sir Issac Newton

CHAPTER 7

RELATED WORK

We round off this discussion by taking a closer look at related research. Work related to the

material presented in this thesis can be broadly classified as Internet measurement based

studies and work on inferring perceptual quality. Though work has been done on both

the fronts, little has been done to quantify, infer or improve Internet QoE. We believe our

work compliments much of prior Internet based measurement studies and directions towards

improving Internet video-QoE. Our measurements of popular Internet destinations and the

benefits of using alternative routes can provide valuable insights to service providers and

ISPs with major commercial and technical implications.
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7.1 Quality Evaluation

Depending upon the amount of information needed to perform video quality assessment,

architectures can be broadly classified as no-reference (NR), full reference (FR) or reduced

reference (RR). FR schemes requires the entire copy of the original frame to infer quality,

while RR schemes require partial (key parameters extracted from video) information. The

only feasible scheme which can reside as a standalone module in the network core are the

NR types.

Video quality assessment can be either objective or subjective. Objective video quality

assessment [40] usually involves a characterizing function of measurable parameters (network-

ing or transcoding) that evaluates the quality of a reconstructed frame. Objective quality

assessment often fails to correlate with subjective perception. For example, the media de-

livery index (MDI) [69] is a no-reference framework that can reside in network terminals to

report loss and delay rates. While it can provide a comprehensive log of these statistics, it

does not map them to subjective perception. Other objective quality assessment techniques

like PSNR that are FR in nature are both infeasible inside the network core and grossly

inaccurate at inferring perceptual quality.

There has been a recent surge of interest in subjectively assessing quality of a video

stream. Even at a time when there is little or no consensus on the exact nature of such

a model, the basic idea has been to provide a subjective interpretation of various events

on a video stream, such as loss, delay, jitter and so on. For example, authors in [37] train
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a random neural network to adjust to viewer responses, and infer the quality of a video

stream based on what is observed along the data path. The nature of their deployment,

the size of the neural network base, or its suitability of operation at arbitrary network

nodes is unknown. Similarly, the video quality metric (VQM) [43] provides a reasonably

good indication of subjective perception. However, VQM requires the original frame for

reference and is likewise infeasible inside the network core. Apart from these, there are other

proprietary video quality metrics exclusive to organizations that own them (e.g., Agilent [73],

Symmetricom [84] etc.). These metrics are not open to the public for free inspection or usage.

Subjective quality evaluation usually culminate in a mean opinion score (MOS), which

is recommended by the ITU-T [24]. MOS on a chosen scale rates the quality of a video

sequence. MOS as a metric has been known to have its share of drawbacks [10, 28, 68]: (i)

subjects tend to avoid the extreme scores, (ii) “forgiveness effect”, where users tend to give

higher rating when a playout is long and smooth, is not uncommon; and (iii) quality in itself

is not a very well defined notion, and has many dimensions to it.

Alternates to using MOS have also been suggested. Work by Tasaka et. al. [54] expresses

QoE in terms of interval scale or psychological scale, where the proposed SCS strategy

switches from error concealment to frame skipping based on a threshold of error. Paired

comparisons as an alternate to gathering subjective surveys was proposed in [10]. A multi-

disciplinary approach to map QoS metrics to QoE for distributed interactive multimedia

was discussed in [72]. Some other studies ask the user to provide certain specific feedbacks

instead of MOS. For example, users could be asked to report visibility of certain artifacts
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on screen [38], or to suggest changes to artifacts to make the sequence more appealing to

them [44]. However, MOS is a convenient way of quantifying scores because it provides a

uniform interpretation of quality for various purposes (billing, peak hour usage, capacity

planning, customer satisfaction, quality assurance etc.).

7.2 Internet Measurements

Internet pathologies have been well investigated in the past [30, 42]. The first such large

scale study revealed that Internet path selection was often sub-optimal with persistent rout-

ing loops, failures, and network unreachability [42]. Even after a decade since that paper,

researchers have consistently found that Internet outages are both unpredictable, and worse,

can go undetected for a while [1, 34, 35, 45, 49, 52]. Recent work continues to highlight

path inflation in Internet [49], and likewise, BGP anomalies and mis-configurations [34].

However, much of prior research has concentrated on improving reliability of Internet paths

with respect to elastic applications. It is a well known fact that Internet path selection

today is primarily driven by ISP customer-provider relationships, and is solely based on

hop-count and AS-reachability. Authors in [22] investigate ways to improve path selection

to increase availability of end-hosts using randomized load allocation. The ensuing gains

for elastic applications, however, was marginal. As far as streaming services are concerned,

VoIP performance study on the Internet backbone links reveal that a significant number of

paths yield poor quality (e.g., [36]).
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Internet QoS was aimed at enabling streaming services. The IETF standardized IntServ

and DiffServ router mechanisms to improve quality of streaming content, which required

changes to every router in the Internet. Given the scale of the Internet, as well as the diversity

of various AS’s that comprise it, these changes could not be completely co-ordinated. Even

after years of slow adoption, there has been no significant performance enhancements in

terms of video quality, as the Internet continues to operate on a ‘best-effort’ delivery model.

OverQoS proposed to overcome QoS deployment issues by instead enforcing QoS mech-

anisms on a small overlay of nodes, thereby providing statistical QoS guarantees [52]. How-

ever, OverQoS operates by probing O(N2) links and cannot scale to a large number of nodes.

Further, QoS mechanisms operate with a notion of providing service guarantees to enhance

application performance. However, service guarantees alone are not sufficient to raise per-

ceptual quality. Perceptual quality is best characterized by QoE, which attempts to infer

quality from a user’s perspective. Random subsets to build scalable application-layer over-

lay trees by background monitoring k paths was presented in [29]. Our results reinforce the

potential of randomized load allocation, as we establish several key features of composing

random subsets while experimentally providing upper bounds to the value of k.

Scalable overlays can be built by embedding node locations to a co-ordinate space [13].

However, RTT variations in the Internet exhibit triangle inequality violations, often reducing

the accuracy of such approaches. It has been shown that the error from embedding is non-

trivial [32, 67], limiting their applicability. To the best of our knowledge, no prior work has
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been performed on developing a generic large scale architecture that a variety of multimedia

applications can query to improve Internet path selection.
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Nothing is as easy as it looks in the beginning

Or as difficult as it looks in the middle

Or as complete as it looks in the end

— Chinese Proverb

CHAPTER 8

CONCLUSIONS

This work presented the first empirical observation of Internet links and paths from a QoE

perspective, and tools and protocols to efficiently infer and improve video QoE. To enable

QoE inference at arbitrary nodes in the Internet, we presented MintMOS: a lightweight,

scalable, no reference framework for inferring QoE of a video stream and offering suggestions

to improve it. MintMOS is flexible enough to accommodate any number of parameters that

can affect video quality, from network dependent to network independent. MintMOS revolves

around a QoE space, which is a k-dimensional space for k parameters used to measure quality.

The QoE space creates a mapping between parameter values and their associated perceptual

quality. Inferring QoE or offering suggestions to improve it use the QoE space to base

their decisions. We instrumented a QoE space around 4 parameters and 54 partitions, and
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demonstrated its effectiveness in projecting MOS. Subjective surveys verify the accuracy of

MintMOS projections.

We studied intra- and inter-ISP links of 51 major ISPs spread across the US, Europe and

Asia-Pacific from 38 vantage points in the Internet. We closely studied these links for six days

to infer their suitability for streaming services. Our findings offered surprising insights at link

level fluctuations in the Internet: (i) we find that intra-domain links are poorly engineered,

showing significant loading fluctuations which can degrade video quality. This could largely

be attributed to BGP, which makes topology sensitive load balancing hard; (ii) contrary to

popular belief, ISP peering links are well engineered and quiet suitable for carrying streaming

content. This implies that ISPs are not limited by their choice or quality of peering links,

rather, AS-path lengths alone are insufficient as a routing metric; (iii) the overall effect of

Internet route selection maps the current QoE to just about ”acceptable”; and, (iv) overlay

networks could overcome a majority of Internet’s shortcomings in delivering multimedia; both

because they can be deployed with relative ease compared to re-engineering the Internet,

and provide alternative routes that avoid AS’s which experience transient fluctuations in

delivering packets.

We then studied a large number of end-to-end Internet paths to empirically characterize

location, persistence, duration and recurring frequency of Internet outages and their effect

on perceptual video quality. To do this, we systematically studied end-to-end paths of

source-destination pairs on the Internet to the top 100+ VoD and IPTV service providers.

Our results indicate that upto 89% of outages on paths to servers and 62% of outages on
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paths to P2P clients are potentially recoverable by using one-hop detours. We collected

weeklong measurements from five different datasets that both confine to and span multiple

continents with a dominant geographical presence of online streaming services. We observe

that not all alternative paths can be useful even if they are loss free, and that a large

fraction of degradations could be overcome by a large number of alternate paths. For small

scale overlays, we additionally observed that a simple strategy of choosing five random

intermediaries in an overlay is sufficient to overcome 90% of outages. We call this strategy

“random-5”.

To make randomized route selection a practical solution for large unstructured overlays,

we deployed a measurement overlay consisting of 550+ nodes on the wide area Internet for

one week. Using this overlay, we explored a basic mechanism of randomized overlay route

selection (called “random-k”) that a source can use to increase its Internet routing options

k-fold. We argue that it is sufficient to randomly pick k nodes in any overlay of N nodes,

where k is bounded by O(ln(N)), to derive low-delay and loss-free paths from the Internet.

We explored various properties of such random subsets, like composing an optimum k, and

variants of random-k. Our results indicate that an overlay built using such a philosophy

can reduce RTT by more than 50 ms in more than 70% of the time. We show that such

path selection mechanisms require little or no state information, does not burden existing

infrastructure, can scale to millions of nodes, improve fairness and are generally robust

because they are completely distributed. We believe this design can be used to build an
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underlay in the Internet that multimedia applications can query to derive suitable paths,

and that such paths can easily outperform Internet path selection.

Finally, we designed a prototype called SIFR for choosing intermediate nodes in a simple,

lightweight, yet efficient manner to improve perceptual quality. SIFR outperforms default

IP-routing over a 2 day period across wide-area links on the Internet. We show that it is

possible to achieve substantive gains in perceptual quality using SIFR on top of todays best

effort Internet.

157



LIST OF REFERENCES

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, R. Morris, “Resilient Overlay Net-
works”, Proc. 18th ACM SOSP, Oct 2001.

[2] A. Akella, S. Seshan, and A. Shaikh, “An Empirical Evaluation of Wide-Area Internet
Bottlenecks”, ACM Sigmetrics’03, June 2003.

[3] K. Anagnostakis, M. Greenwald and R. S. Ryger, “cing: Measuring network internal
delays using only existing infrastructure”, IEEE Infocom, March 2003.

[4] J. Babiarz, K. Chan, and F. Baker, “Configuration Guidelines for DiffServ Service
Classes”, IETF RFC# 4594. Aug. 2006.

[5] S. Blake et. al., “An Architecture for Differentiated Services”, IETF RFC 2475. Dec.
1998.

[6] R. Braden, D. Clark and S. Shenker, “Integrated Services in the Internet Architecture:
an Overview”, IETF RFC# 1633. June 1994.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin, “Resource ReSerVation Pro-
tocol (RSVP)”, IETF RFC# 2205. Sept. 1997.

[8] P. Calyam, M. Sridharan, W. Mandrawa, and P. Schopis, “Performance Measurement
and Analysis of H.323 Traffic”, Passive and Active Measurements (PAM), April 2004

[9] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain, “Watching television
over an IP network”, Proc. ACM IMC, Vouliagmeni, Greece. Oct. 2008.

[10] K. T. Chen, C. C. Wu, Y. C. Chang, and C. L. Lei, “A crowdsourceable QoE evaluation
framework for multimedia content”, Proc. Intl. Conf. on Multimedia, Beijing, China,
Oct. 2009.

[11] Cisco White Paper, “Cisco Visual Networking Index: Forecast and Methodology, 2009–
2014”, Cisco Inc. Availabale: www.cisco.com. June 2010.

[12] A. Czumaj and V. Stemann, “Randomized Allocation Processes”, Symp. on Foundations
of Computer Science, Miami, FL. Oct. 1997.

158



[13] F. Dabek, R. Cox, M. F. Kaahoek, and R. Morris, “Vivaldi: A Decentralized Network
Coordinate System”, ACM Sigcomm, Portland, OR. Aug. 2004.

[14] P. de Cuetos and K. W. Ross, “Optimal Streaming of Layered Video: Joint Scheduling
and Error Concealment”, Proc. ACM Intl. Conf. on Multimedia, Berkeley, CA. Nov
2003.

[15] D. Eager, E. Lazowska, and J. Zahorjan, “Adaptive load sharing in homogeneous dis-
tributed systems”, IEEE Trans. on Software Engg., vol. 12(5), May 1986.

[16] K. Fujimoto, S. Ata, and M. Murata, “Adaptive playout buffer algorithm for enhancing
perceived quality of streaming applications”, IEEE Globecom, Nov. 2002.

[17] A. Gersho and R. M. Gary, Vector Quantization and Signal Compression, Kluwer Aca-
demic Publishers, 1991.

[18] R. Govindan and V. Paxson, “Estimating router ICMP generation delays”, Passive and
Active Measurements (PAM), March 2002.

[19] J. Greengrass, J. Evans, and A. C. Begen, “Not All Packets Are Equal, Part I: Streaming
Video Coding and SLA Requirements”, IEEE Internet Computing, vol. 13(1), March
2009.

[20] J. Greengrass, J. Evans, and A. C. Begen, “Not All Packets Are Equal, Part II: The
Impact of Network Packet Loss on Video Quality ”, IEEE Internet Computing, vol.
13(2), March 2009.

[21] D. Grossman, “New Terminology and Clarifications for Diffserv”, IETF RFC# 3260.
April 2002.

[22] K. Gummadi, H. Madhyastha, S. Gribble, H. Levy, and D. Wetherall, “Improving the
reliability of internet paths with one-hop source routing”, Proc. OSDI, San Fransico,
CA. Dec. 2004.

[23] D.S. Hands, “A basic multimedia quality model”, IEEE Trans. on Multimedia, Vol.
6(6), pp. 806 – 816, Dec. 2004.

[24] International Telecommunication Union, “Subjective video quality assessment methods
for multimedia applications”, Rec. ITU-T P.910, Sept. 1999.

[25] Internation Telecommunication Union, “Opinion model for video-telephony applica-
tions”, Rec. ITU-T G. 1070, Nov. 2009.

[26] R. Jain, “Quality of Experience”, IEEE Multimedia, Vol. 11(1), pp 95–96, March 2004.

[27] J. Jannotti, D. Gifford, K. Johnson, M. F. Kaashoek, and J. O’Toole, “Overcast: Reli-
able Multicasting with an Overlay Network”, Proc. OSDI, San Diego, CA. Oct. 2000.

159



[28] S. Kanumuri, P. C. Cosman, A. R. Reibman, and V. A. Vaishampayan, “Modeling
packet-loss visibility in MPEG-2 video”, IEEE Trans. on Multimedia, 8(2), pp. 341–
355, April 2006.

[29] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat, “Using Random
Subsets to Build Scalable Network Services”, Proc. USITS, Seattle, WA. March 2003.

[30] C. Labovitz, R. Malan, and F. Jahanian, “Internet Routing Instability”, IEEE/ACM
Trans. on Networking, 6(5). 1998.

[31] M. Lu, J. Wu, K. Peng, P. Huang, J. Yao, and H. Chen, “Design and Evaluation of
a P2P IPTV System for Heterogeneous Networks”, IEEE Trans. on Multimedia, Vol.
9(8), Dec. 2007.

[32] C. Lumezanu, R. Baden, D. Levin, N. Spring, and B. Bhattacharjee, “Symbiotic rela-
tionships in Internet routing overlays”, Usenix NSDI, Boston, MA. April 2009.

[33] C. Ly, C. Hsu, and M. Hafeeda, “Improving Online Gaming Quality using Detour
paths”, ACM Multimedia, Firenze, Italy. Oct 2010.

[34] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link weights using
end-to-end measurements”, ACM Sigcomm Internet Measurement Workshop, 2002.

[35] R. Mahajan, N. Spring, and T. Anderson, “Understanding BGP Misconfiguration”,
ACM Sigcomm, Aug 2002.

[36] A. Markopoulou, F.Tobagi, and M.Karam, “Assessment of VoIP quality over Internet
backbones”, Proc. IEEE Infocom, June 2002

[37] S. Mohamed and G. Rubino, “A Study of Realtime Packet Video Quality Using Random
Neural Networks, IEEE Transactions On Circuits and Systems for Video Technology,
vol. 12(12), pp. 1071 – 1083, Dec. 2002.

[38] M. S. Moore, S. K. Mitra, and J. M. Foley, “Defect visibility and content importance
implications for the design of an objective video fidelity metric, Proc. IEEE ICIP,
Rochester, NY. June 2002.

[39] K. Nichols, S. Blake, F. Baker and D. Black, “Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers”, IETF RFC# 2474. Dec. 1998.

[40] O. Olsson, M. Stoppiana, and J. Baina, “Objective methods for assessment of video
quality: State of the art”, IEEE Trans. on Broadcasting, vol. 43, pp. 487–495, Dec.
1997

[41] K. Papagiannaki et. al., “Analysis of measured single hop delay from an operational
backbone network”, IEEE Infocom, June 2002.

160



[42] V. Paxson, “End-to-end routing behavior in the Internet”, IEEE/ACM Trans. on Net-
working, 5(5), pp. 601–615, 1997.

[43] M. H. Pinson and S. Wolf, “A New Standardized Method for Objectively Measuring
Video Quality”, IEEE Trans. on Broadcasting, Vol. 50(3). Sept 2003.

[44] M. G. Ramos and S. S. Hemami, “Suprathreshold wavelet co-efficient quantization in
complex stimuli: Pshychophysical evaluation and analysis”, J. Opt. Soc. Amer., 20 (7),
pp. 1164–1180, July 2003.

[45] S. Savage et. al., “Detour: A Case for informed internet routing and transport”, IEEE
Micro, 19(1), Jan. 1999.

[46] S. Shenker, C. Partridge, and R. Guerin, “Specification of Guaranteed Quality of Ser-
vice”, IETF RFC# 2212. Sept. 1997.

[47] S. Shenker and J. Wroclawski, “General Characterization Parameters for Integrated
Service Network Elements”, IETF RFC# 2215. Sept. 1997.

[48] M. Siller and J. Woods, “QoS arbitration for improving the QoE in multimedia trans-
mission”, Proc. Intl. Conf. on Visual Information Engineering, 2003.

[49] N. Spring, R. Mahajan and T. Anderson, “Quantifying the Causes of Path Inflation”,
ACM SIGCOMM, Sept. 2006.

[50] A. Su, D. Choffnes, A. Kuzmanovic, and F. Bustamante, “Drafting Behind Akamai”,
ACM SIGCOMM, Pisa, Italy, Sept 2006.

[51] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Characterizing the Internet
hierarchy from multiple vantage points”, IEEE Infocom’02, New York. June 2002.

[52] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz, “OverQoS: An Overlay Based
Architecture for Enhancing Internet QoS”, Usenix NSDI, March 2004.

[53] S. Tao and R. Guerin, “Application-Specific Path Switching: A Case Study for Stream-
ing Video”, Proc. ACM Multimedia, New York, NY. October 2004.

[54] S. Tasaka, H. Yoshimi, A. Hirashima, and T. Nunome, “The Effectiveness of a QoE-
Based Video Output Scheme for Audio-Video IP Transmission”, ACM Multimedia, Van-
couver, Canada, Oct. 2008.

[55] R. Teixeira , K. Marzullo, S. Savage, and G. Voelker, “In Search of Path Diversity in
ISP Networks”, ACM Internet Measurement Conference (IMC), 2003.

[56] C. J. van den Branden Lambrecht, and O. Verscheure, “Perceptual quality measure
using a spatio temporal model of the human visual system”, Proc. IST/SPIE Conference
Digital Video and Compression: Algorithms and Technologies 1996, vol 2668, Feb 1996

161



[57] M. Venkataraman and M. Chatterjee, “Inferring video-QoE in Real Time”, IEEE Net-
work, 25(1), Jan 2011.

[58] M. Venkataraman and M. Chatterjee, “Effects of Internet Path Selection on Video-
QoE”, ACM Multimedia Systems (MMSys), San Jose, CA. Feb. 2011 .

[59] M. Venkataraman and M. Chatterjee, “Case Study of Internet Links: What degrades
Video QoE?”, IEEE Globecom, Miami, FL. Dec 2010.

[60] M. Venkataraman and M. Chatterjee, “Quantifying Video QoE-degradation of Internet
links”, IEEE/ACM Trans. on Networking (revision submitted).

[61] M. Venkataraman, M. Chatterjee, and S. Chattopadhyay, “Lighweight, real-time, no-
reference framework for inferring subjective-QoE”, IEEE Globecom, Dec. 2009.

[62] M. Venkataraman and M. Chatterjee, “MintMOS: A Lightweight, Real Time, No-
Reference Tool for Inferring Video-QoE along Internet paths”, IEEE Trans. on Multi-
media (submitted), March 2011.

[63] M. Venkataraman and M. Chatterjee, “Effects of Internet Path Selection on Video-
QoE: Analysis and Improvements”, IEEE/ACM Trans. on Networking (submitted)
April 2011.

[64] M. Venkataraman, S. Sengupta, M. Chatterjee and R. Neogi, “Towards a Video-QoE
Definition in Converged Networks”, Internation Conference on Digital Communications
(ICDT), San Jose, CA. July 2007.

[65] M. Venkataraman, S. Sengupta, M. Chatterjee and R. Neogi, “Designing a Collector
Overlay Architecture for Fault Diagnosis in Video Networks”, Elsevier Computer Com-
munications, May 2011.

[66] M. Venkataraman, S. Sengupta, M. Chatterjee and R. Neogi, “A Collector Overlay
Architecture for Fault Diagnosis in Access Networks”, IEEE CCNC, Las Vegas, NV.
Jan. 2009.

[67] G. Wang, B. Zhang, and T. S. Eugene Ng, “Towards network triangle inequality viola-
tion aware distributed systems”, ACM IMC, San Diego, CA. Oct. 2007.

[68] A. Watson and M. A. Sasse, “Measuring perceived quality of speech and video in mul-
timedia conferencing applications”, Proc. ACM Multimedia, pp. 55–60, Apr 1998.

[69] J. Welch and J. Clark, “A Proposed Media Delivery Index (MDI)”, IETF RFC 4445.
Apr 2006

[70] J. Wroclawski, “Specification of the Controlled-Load Network Element Service”, IETF
RFC# 2211. Sept. 1997.

162



[71] H. R. Wu, T. Ferguson, and B. Qiu, “Digital video quality evaluation using quantitative
quality models”, Proc. 4th Intl. Conf. on Signal Processing, Beijing, China, Oct. 1998.

[72] W. Wu, A. Arefin, R. Rivas, K. Nahrstedt, R. Sheppard, Z. Yang, “Quality of experience
in distributed interactive multimedia environments: toward a theoretical framework”,
Proc. ACM Multimedia, Beijing, China. Oct. 2009.

[73] Agilent Technologies Inc., www.agilent.com

[74] Akamai Inc., www.akamai.com

[75] AS Number lookup Utility tool. http://www.bugest.net/software/aslookup/

index-e.html, July 2009.

[76] The libpcap project at SourceForge. http://sourceforge.net/projects/libpcap/

[77] Ineoquest Singulus G1-T Equipment. www.ineoquest.com/singulus-family

[78] King : A tool to estimate latency between any two Internet hosts, from any other
Internet host. Available: http://www.mpi-sws.org/~gummadi/king/

[79] MintMOS Validation Clips: http://sites.google.com/site/anonmintmos Houses all
sample clips used in this thesis.

[80] PlanetLab vantage points, discussions, and video clips used to conduct subjective sur-
veys. http://sites.google.com/site/anonqoe/

[81] Video Evaluation Toolkit (Moscow State University, Moscow, Russia).
http://graphics.cs.msu.ru. Available for free download. Aug. 2008.

[82] PlanetLab Consortium. http://www.planet-lab.org/

[83] The “RouteViews” Project at University of Oregon. http://www.routeviews.org/,
July 2009.

[84] Symmetricomm Inc., http://www.symmetricom.com/

[85] Undns tool, router hostname to location decoder.
http://www.scriptroute.org/source/

[86] VLC Media Player, http://www.videolan.org/vlc

[87] YouTube(R). www.youtube.com. April 2009.

163


	Measuring And Improving Internet Video Quality Of Experience
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 Quality of Experience: A Primer
	1.1.1 Why QoE?

	1.2 Contributions of this Work
	1.2.1 Inferring QoE in real-time at arbitrary Internet nodes
	1.2.2 A link-level study of Internet's QoE shortcomings
	1.2.3 Video-QoE along an Internet path
	1.2.4 Improving Internet video-QoE with one-hop redirections

	1.3 The Structure of this Dissertation

	CHAPTER 2 QUALITY OF EXPERIENCE
	2.1 Introduction to QoE
	2.2 Multimedia QoS
	2.3 An MPEG-2 Perspective
	2.3.1 MPEG-2 GOP Structure
	2.3.2 QoS v/s QoE for MPEG-2

	2.4 Factors affecting QoE
	2.5 Summarizing

	CHAPTER 3 MINTMOS: INFERRING VIDEO-QOE IN REAL TIME
	3.1 Introduction
	3.2 Framework Architecture
	3.2.1 QoE space
	3.2.2 Choice of Number of Partitions (N)
	3.2.3 QoE Inference Engine (IE)
	3.2.4 Improving QoE: Suggestions Engine (SE)
	3.2.5 Sniffer

	3.3 Instrumenting MintMOS
	3.3.1 Creating a QoE space: Survey with Human Subjects
	3.3.2 Running SE

	3.4 Validating the framework
	3.5 Complexity of the Framework
	3.5.1 Experimental Setup
	3.5.2 Effect of number of samples (N)
	3.5.3 Effect of number of parameters (k)
	3.5.4 Size of QoE space

	3.6 Discussions
	3.7 Conclusions

	CHAPTER 4 VIDEO QOE DEGRADATIONS OF INTERNET LINKS
	4.1 Introduction
	4.2 Data Collection Methodology
	4.2.1 Choosing ISPs
	4.2.2 Phase--1: Extracting ISP Topologies
	4.2.3 Phase--2: Studying Network Links
	4.2.4 Caveats and Data Completeness

	4.3 Estimating Video-QoE of Links
	4.4 Internet Video Streaming
	4.4.1 The typical Internet route

	4.5 Intra ISP Routing Policies
	4.5.1 Delay and Jitter Distributions
	4.5.2 Case Study: Level3's link between Tampa and Houston

	4.6 Inter-ISP Routing Policies
	4.6.1 Delay and Jitter Distributions
	4.6.2 Case Study: Peering link between Sprint and Qwest

	4.7 Playout Buffer Analysis
	4.7.1 Packet reception
	4.7.2 Playout Buffer Contents
	4.7.3 An MPEG-2 playout perspective

	4.8  Discussions
	4.8.1 BGP and Path Selection
	4.8.2 Increasing Capacity and expected QoE as a metric

	4.9 A Case for Overlay Networks
	4.9.1 Methodology
	4.9.2 Benefits of an Overlay Network

	4.10 Conclusions

	CHAPTER 5 EFFECTS OF INTERNET PATH SELECTION ON VIDEO-QOE
	5.1 Introduction
	5.2 Probing Internet Destinations
	5.2.1 Vantage Points and Destination Sets
	5.2.2 Probing Methodology
	5.2.3 Outage Locations
	5.2.4 Failure Rate
	5.2.5 Failure Duration
	5.2.6 Summarizing

	5.3 Impact on Perceptual Quality
	5.3.1 Outage Impact on Perceived Quality
	5.3.2 Reconstructing Video Clips for Survey
	5.3.3 Survey with Subjects
	5.3.4 Summarizing

	5.4  Using Routing Redirections
	5.4.1 Methodology
	5.4.2 What kind of paths help QoE?
	5.4.3 Suitability of Intermediaries
	5.4.4 Useful Intermediaries
	5.4.5 Choosing Intermediaries
	5.4.6 Path Switching with random-5
	5.4.7 Robustness
	5.4.8 Preserving Interactivity
	5.4.9 Summarizing

	5.5 Conclusions

	CHAPTER 6 RANDOMIZED PATH SELECTION IN LARGE UNSTRUCTURED OVERLAYS
	6.1 Introduction
	6.2 Data Collection Methodology
	6.2.1 Vantage Points
	6.2.2 Experimental Setup
	6.2.3 Caveats

	6.3 Overview of random-k
	6.3.1 k nodes are enough
	6.3.2 Composing k
	6.3.3 Overhead
	6.3.4 Summarizing

	6.4 Characterizing Random-k
	6.4.1 Can we improve random-k?
	6.4.2 Fairness

	6.5 Discussions
	6.5.1 Reduction in RTT
	6.5.2 k is bounded by O(lnN)
	6.5.3 Discussions
	6.5.4 Putting it all together

	6.6 Source Initiated Frame Restoration
	6.6.1 Prototype description
	6.6.2 Methodology
	6.6.3 Results

	6.7 Conclusions

	CHAPTER 7 RELATED WORK
	7.1 Quality Evaluation
	7.2 Internet Measurements

	CHAPTER 8 CONCLUSIONS
	LIST OF REFERENCES

