5 research outputs found

    The Baby project: processing character patterns in textual representations of language.

    Get PDF
    This thesis describes an investigation into a proposed theory of AI. The theory postulates that a machine can be programmed to predict aspects of human behaviour by selecting and processing stored, concrete examples of previously experienced patterns of behaviour. Validity is tested in the domain of natural language. Externalisations that model the resulting theory of NLP entail fuzzy components. Fuzzy formalisms may exhibit inaccuracy and/or over productivity. A research strategy is developed, designed to investigate this aspect of the theory. The strategy includes two experimental hypotheses designed to test, 1) whether the model can process simple language interaction, and 2) the effect of fuzzy processes on such language interaction. Experimental design requires three implementations, each with progressive degrees of fuzziness in their processes. They are respectively named: Nonfuzz Babe, CorrBab and FuzzBabe. Nonfuzz Babe is used to test the first hypothesis and all three implementations are used to test the second hypothesis. A system description is presented for Nonfuzz Babe. Testing the first hypothesis provides results that show NonfuzzBabe is able to process simple language interaction. A system description for CorrBabe and FuzzBabe is presented. Testing the second hypothesis, provides results that show a positive correlation between degree of fuzzy processes and improved simple language performance. FuzzBabe's ability to process more complex language interaction is then investigated and model-intrinsic limitations are found. Research to overcome this problem is designed to illustrate the potential of externalisation of the theory and is conducted less rigorously than previous part of this investigation. Augmenting FuzzBabe to include fuzzy evaluation of non-pattern elements of interaction is hypothesised as a possible solution. The term FuzzyBaby was coined for augmented implementation. Results of a pilot study designed to measure FuzzyBaby's reading comprehension are given. Little research has been conducted that investigates NLP by the fuzzy processing of concrete patterns in language. Consequently, it is proposed that this research contributes to the intellectual disciplines of NLP and AI in general

    Relating lexical and syntactic processes in language: Bridging research in humans and machines

    Get PDF
    Potential to bridge research on language in humans and machines is substantial - as linguists and cognitive scientists apply scientific theory and methods to understand how language is processed and represented by humans, computer scientists apply computational methods to determine how to process and represent language in machines. The present work integrates approaches from each of these domains in order to tackle an issue of relevance for both: the nature of the relationship between low-level lexical processes and syntactically-driven interpretation processes. In the first part of the dissertation, this distinction between lexical and syntactic processes focuses on understanding asyntactic lexical effects in online sentence comprehension in humans, and the relationship of those effects to syntactically-driven interpretation processes. I draw on computational methods for simulating these lexical effects and their relationship to interpretation processes. In the latter part of the dissertation, the lexical/syntactic distinction is focused on the application of semantic composition to complex lexical content, for derivation of sentence meaning. For this work I draw on methodology from cognitive neuroscience and linguistics to analyze the capacity of natural language processing systems to do vector-based sentence composition, in order to improve the capacities of models to compose and represent sentence meaning

    Naive Physics, Event Perception, Lexical Semantics, and Language Acquisition

    Get PDF
    This thesis proposes a computational model of how children may come to learn the meanings of words in their native language. The proposed model is divided into two separate components. One component produces semantic descriptions of visually observed events while the other correlates those descriptions with co-occurring descriptions of those events in natural language. The first part of this thesis describes three implementations of the correlation process whereby representations of the meanings of whole utterances can be decomposed into fragments assigned as representations of the meanings of individual words. The second part of this thesis describes an implemented computer program that recognizes the occurrence of simple spatial motion events in simulated video input
    corecore