648 research outputs found

    A pilot in the loop analysis of helicopter acceleration/deceleration maneuvers

    Get PDF
    Helicopter flight acceleration/deceleration maneuvers are quantified and put to use in the fields of handling qualities, flight training and evaluation of simulator fidelity. The three specific cases include the normal speed change maneuver, the nap-of-the-Earth dash/quickstop, and the decelerating approach to hover. All of these maneuvers share common generic features in terms of pilot adaptation and mathematical description; yet each differs in terms of the essential feedback loop structure, implications for handling qualities requirements, and simulator fidelity criteria

    Simulation of Airbus-A320 fuselage surface pressure fluctuations at cruise conditions in "Aeroacoustics research in Europe: The CEAS-ASC report on 2019 highlights"

    Get PDF
    The fuselage surface pressure fluctuations on an Airbus-A320 aircraft at cruise conditions are simulated by solving a Poisson equation. The right-hand-side source terms of the Poisson equation, including both the mean-shear term and the turbulence-turbulence term, are realized with synthetic anisotropic turbulence generated by the Fast Random Particle-Mesh Method. The stochastic realization is based on time-averaged turbulence statistics derived from a RANS simulation under the same condition as in the flight tests, conducted with DLR's Airbus-A320 research aircraft. The fuselage surface pressure fluctuations are calculated at three streamwise positions from front to rear corresponding to the measurement positions in the flight tests. One- and two-point spectral features of the pressure fluctuations relevant to the fuselage surface excitation are obtained and analysed

    Aeronautical engineering: A continuing bibliography with indexes (supplement 315)

    Get PDF
    This bibliography lists 217 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Agricultural aviation user requirement priorities

    Get PDF
    The results are given of a research project pertaining to the development of agricultural aviation user requirement priorities. The raw data utilized in the project was obtained from the National Agricultural Aviation Association. A specially configured poll, developed by the Actuarial Research Corporation was used to solicit responses from NAAA members and others. The primary product of the poll is the specification of seriousness as determined by the respondents for some selected agricultural aviation problem areas identified and defined during the course of an intensive analysis by the Actuarial Research Corporation

    Helicopter tail rotor thrust and main rotor wake coupling in crosswind flight

    Get PDF
    The tail rotor of a helicopter with a single main rotor configuration can experience a significant reduction in thrust when the aircraft operates in crosswind flight. Brown’s vorticity transport model has been used to simulate a main rotor and tail rotor system translating at a sideslip angle that causes the tail rotor to interact with the main rotor tip vortices as they propagate downstream at the lateral extremities of the wake. The tail rotor is shown to exhibit a distinct directionally dependent mode during which tail rotors that are configured so that the blades travel forward at the top of the disk develop less thrust than tail rotors with the reverse sense of rotation. The range of flight speeds over which this mode exists is shown to vary considerably with the vertical location of the tail rotor. At low flight speeds, the directionally dependent mode occurs because the tail rotor is immersed within not only the downwash from the main rotor but also the rotational flow associated with clusters of largely disorganized vorticity within the main rotor wake. At higher flight speeds, however, the tail rotor is immersed within a coherent supervortex that strongly influences the velocity field surrounding the tail rotor

    Aeronautical engineering: A continuing bibliography with indexes (supplement 210)

    Get PDF
    This bibliography lists 409 reports, articles and other documents introduced into the NASA scientific and technical information system in January 1987

    Converting a C-130 Hercules into a Compound Helicopter: A Conceptual Design Study

    Get PDF
    This study presents the performance and weight changes for a Compound C-130 as compared to the Baseline C-130H Hercules, using NDARC as the primary analysis tool. First, the C-130H was modeled within NDARC, from which performance at various conditions and a parametric weight statement were generated. Then, the C-130H NDARC file was modified to represent the Compound C-130, which was then put through the same performance analysis as the C-130H. A parametric weight statement was also calculated for the Compound C-130, which allowed for comparison to the C-130H. As part of the modeling of the Compound C-130, a Rotor Design Spreadsheet was created that would allow the direct calculation of the weight of the main rotors being added. Using composite materials led to considerable weight savings for both the rotor system and the hub weights. These weight savings are reflected in the NDARC Technology Factors which were determined to be 0.71 and 0.5 for the rotor blades and the hub/hinge system, respectively. Such Technology Factors suggest that using composites for other components could drastically lighten the Operating Empty Weight of the aircraft. The weight statements show the weights for each of the components on each aircraft. It is quite evident that the Compound C-130 has a higher Operating Empty Weight due to the addition of the two main rotors and a drive system to connect each engine group on the wing tips. Upon further analysis, the main weight driver is the drive system. While the main rotor/hub/hinge weight increase is to be expected, the weight increase due to the transmission drive and gear boxes are cause for concern. Unless a method can be found of reducing the weight of the drive system, the weight penalty makes the Compound a C-130 an inefficient aircraft in terms of payload/fuel capacity. Possible solutions are either off-loading some of the power requirements through the drive system or using composite materials in the construction of the drive system. The performance of the Compound C-130 versus the C-130H shows a clear need for more powerful engines than are currently present on the C-130H. This would also adversely affect the Operating Empty Weight since a larger power plant requires more weight. However, one advantage that the Compound C-130 presents is the ability to hover and operate at low speeds in Helicopter Mode. While the C-130H is unable to travel at speeds lower than its stall speed, the Compound C-130 is able to hover using the main rotors. Thus, the Compound C-130 is able to operate independent of runways, let alone the condition of the nearest runway. Ultimately, the Compound C-130 is an effective aircraft in theaters requiring VTOL aircraft due to geographical considerations in terms or performance. Unfortunately, the weight penalty associated with converting the C-130H to a Compound C-130 suggests that further work in the area of the drive systems is required

    Helicopter brownout - can it be modelled?

    Get PDF
    Significant progress has been made to date in modelling, computationally, the formation and development of the dust cloud that forms in the air surrounding the rotorcraft under brownout conditions. Modern computational methods are able to replicate not only the development of the dust cloud in appropriate operational scenarios, but also the sensitivity of the shape and density of the dust cloud to the detailed design of the rotorcraft. Results so far suggest that attempts to ameliorate brownout by aerodynamic means, for instance by modifying the rotor properties, will be frustrated to some extent by the inherent instability of the °flow field that is produced by the helicopter. Nonetheless, very recent advances in understanding the fundamental mechanisms that lead to the formation of the dust cloud may allow substantial progress to be made once certain elements of the basic physics of the problem are more fully understood and better quantified

    A new appreciation of inflow modelling for autorotative rotors

    Get PDF
    A dynamic inflow model is a powerful tool for predicting the induced velocity distribution over a rotor disc. On account of its closed form and simplicity, the model is highly practical especially for studying flight mechanics and designing control systems for helicopters. However, scant attention has been so far paid to applying this model to analyse autorotative rotors (i.e. rotors in the windmill-brake state), which differ from powered helicopter rotors (i.e. rotors in the normal working state) in that the geometric relation between the inflow and the rotor disc. The principal aim of this research is to theoretically investigate the applicability of existing dynamic inflow models for autorotative rotors, and if necessary, to provide a new dynamic inflow model for autorotative rotors. The contemporary dynamic inflow modelling is reviewed in detail from first principles in this thesis, and this identifies a modification to the mass-flow parameter for autorotative rotors. A qualitative assessment of this change indicates that it is likely to have a negligible impact on the trim state of rotorcraft in autorotation, but a significant effect on the dynamic inflow models in certain flight conditions. In addition, this thesis includes a discussion about the small wake skew angle assumption, which is invariably used in the derivation of Peters and He model. The mathematical validity of the assumption is cast doubt, despite the resultant model has experimentally been fully validated. The author discusses on a theoretical ground the possible reason why the Peters and He model works well in spite of its inconsistent derivatio
    corecore