5 research outputs found

    Visual control of multi-rotor UAVs

    Get PDF
    Recent miniaturization of computer hardware, MEMs sensors, and high energy density batteries have enabled highly capable mobile robots to become available at low cost. This has driven the rapid expansion of interest in multi-rotor unmanned aerial vehicles. Another area which has expanded simultaneously is small powerful computers, in the form of smartphones, which nearly always have a camera attached, many of which now contain a OpenCL compatible graphics processing units. By combining the results of those two developments a low-cost multi-rotor UAV can be produced with a low-power onboard computer capable of real-time computer vision. The system should also use general purpose computer vision software to facilitate a variety of experiments. To demonstrate this I have built a quadrotor UAV based on control hardware from the Pixhawk project, and paired it with an ARM based single board computer, similar those in high-end smartphones. The quadrotor weights 980 g and has a flight time of 10 minutes. The onboard computer capable of running a pose estimation algorithm above the 10 Hz requirement for stable visual control of a quadrotor. A feature tracking algorithm was developed for efficient pose estimation, which relaxed the requirement for outlier rejection during matching. Compared with a RANSAC- only algorithm the pose estimates were less variable with a Z-axis standard deviation 0.2 cm compared with 2.4 cm for RANSAC. Processing time per frame was also faster with tracking, with 95 % confidence that tracking would process the frame within 50 ms, while for RANSAC the 95 % confidence time was 73 ms. The onboard computer ran the algorithm with a total system load of less than 25 %. All computer vision software uses the OpenCV library for common computer vision algorithms, fulfilling the requirement for running general purpose software. The tracking algorithm was used to demonstrate the capability of the system by per- forming visual servoing of the quadrotor (after manual takeoff). Response to external perturbations was poor however, requiring manual intervention to avoid crashing. This was due to poor visual controller tuning, and to variations in image acquisition and attitude estimate timing due to using free running image acquisition. The system, and the tracking algorithm, serve as proof of concept that visual control of a quadrotor is possible using small low-power computers and general purpose computer vision software

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    On-board Obstacle Avoidance in the Teleoperation of Unmanned Aerial Vehicles

    Get PDF
    Teleoperation von Drohnen in Umgebungen ohne GPS-Verbindung und wenig Bewegungsspielraum stellt den Operator vor besondere Herausforderungen. Hindernisse in einer unbekannten Umgebung erfordern eine zuverlĂ€ssige ZustandsschĂ€tzung und Algorithmen zur Vermeidung von Kollisionen. In dieser Dissertation prĂ€sentieren wir ein System zur kollisionsfreien Navigation einer ferngesteuerten Drohne mit vier Propellern (Quadcopter) in abgeschlossenen RĂ€umen. Die Plattform ist mit einem Miniaturcomputer und dem Minimum an Sensoren ausgestattet. Diese Ausstattung genĂŒgt den Anforderungen an die Rechenleistung. Dieses Setup ermöglicht des Weiteren eine hochgenaue ZustandsschĂ€tzung mit Hilfe einer Kaskaden-Architektur, sehr gutes Folgeverhalten bezĂŒglich der kommandierten Geschwindigkeit, sowie eine kollisionsfreie Navigation. Ein KomplementĂ€rfilter berechnet die Höhe der Drohne, wĂ€hrend ein Kalman-Filter Beschleunigung durch eine IMU und Messungen eines Optical-Flow Sensors fusioniert und in die Softwarearchitektur integriert. Eine RGB-D Kamera stellt dem Operator ein visuelles Feedback, sowie Distanzmessungen zur VerfĂŒgung, um ein Roboter-zentriertes Modell umliegender Hindernisse mit Hilfe eines Bin-Occupancy-Filters zu erstellen. Der Algorithmus speichert die Position dieser Hindernisse, auch wenn sie das Sehfeld des Sensors verlassen, mit Hilfe des geschĂ€tzten Zustandes des Roboters. Das Prinzip des Ausweich-Algorithmus basiert auf dem Ansatz einer modell-prĂ€diktiven Regelung. Durch Vorhersage der wahrscheinlichen Position eines Hindernisses werden die durch den Operator kommandierten Sollwerte gefiltert, um eine mögliche Kollision mit einem Hindernis zu vermeiden. Die Plattform wurde experimentell sowohl in einer rĂ€umlich abgeschlossenen Umgebung mit zahlreichen Hindernissen als auch bei TestflĂŒgen in offener Umgebung mit natĂŒrlichen Hindernissen wie z.B. BĂ€ume getestet. Fliegende Roboter bergen das Risiko, im Fall eines Fehlers, sei es ein Bedienungs- oder Berechnungsfehler, durch einen Aufprall am Boden oder an Hindernissen Schaden zu nehmen. Aus diesem Grund nimmt die Entwicklung von Algorithmen dieser Roboter ein hohes Maß an Zeit und Ressourcen in Anspruch. In dieser Arbeit prĂ€sentieren wir zwei Methoden (Software-in-the-loop- und Hardware-in-the-loop-Simulation) um den Entwicklungsprozess zu vereinfachen. Via Software-in-the-loop-Simulation konnte der ZustandsschĂ€tzer mit Hilfe simulierter Sensoren und zuvor aufgenommener DatensĂ€tze verbessert werden. Eine Hardware-in-the-loop Simulation ermöglichte uns, den Roboter in Gazebo (ein bekannter frei verfĂŒgbarer ROS-Simulator) mit zusĂ€tzlicher auf dem Roboter installierter Hardware in Simulation zu bewegen. Ebenso können wir damit die EchtzeitfĂ€higkeit der Algorithmen direkt auf der Hardware validieren und verifizieren. Zu guter Letzt analysierten wir den Einfluss der Roboterbewegung auf das visuelle Feedback des Operators. Obwohl einige Drohnen die Möglichkeit einer mechanischen Stabilisierung der Kamera besitzen, können unsere Drohnen aufgrund von GewichtsbeschrĂ€nkungen nicht auf diese UnterstĂŒtzung zurĂŒckgreifen. Eine Fixierung der Kamera verursacht, wĂ€hrend der Roboter sich bewegt, oft unstetige Bewegungen des Bildes und beeintrĂ€chtigt damit negativ die Manövrierbarkeit des Roboters. Viele wissenschaftliche Arbeiten beschĂ€ftigen sich mit der Lösung dieses Problems durch Feature-Tracking. Damit kann die Bewegung der Kamera rekonstruiert und das Videosignal stabilisiert werden. Wir zeigen, dass diese Methode stark vereinfacht werden kann, durch die Verwendung der Roboter-internen IMU. Unsere Ergebnisse belegen, dass unser Algorithmus das Kamerabild erfolgreich stabilisieren und der rechnerische Aufwand deutlich reduziert werden kann. Ebenso prĂ€sentieren wir ein neues Design eines Quadcopters, um dessen Ausrichtung von der lateralen Bewegung zu entkoppeln. Unser Konzept erlaubt die Neigung der PropellerblĂ€tter unabhĂ€ngig von der Ausrichtung des Roboters mit Hilfe zweier zusĂ€tzlicher Aktuatoren. Nachdem wir das dynamische Modell dieses Systems hergeleitet haben, synthetisierten wir einen auf Feedback-Linearisierung basierten Regler. Simulationen bestĂ€tigen unsere Überlegungen und heben die Verbesserung der ManövrierfĂ€higkeit dieses neuartigen Designs hervor.The teleoperation of unmanned aerial vehicles (UAVs), especially in cramped, GPS-restricted, environments, poses many challenges. The presence of obstacles in an unfamiliar environment requires reliable state estimation and active algorithms to prevent collisions. In this dissertation, we present a collision-free indoor navigation system for a teleoperated quadrotor UAV. The platform is equipped with an on-board miniature computer and a minimal set of sensors for this task and is self-sufficient with respect to external tracking systems and computation. The platform is capable of highly accurate state-estimation, tracking of the velocity commanded by the user and collision-free navigation. The robot estimates its state in a cascade architecture. The attitude of the platform is calculated with a complementary filter and its linear velocity through a Kalman filter integration of inertial and optical flow measurements. An RGB-D camera serves the purpose of providing visual feedback to the operator and depth measurements to build a probabilistic, robot-centric obstacle state with a bin-occupancy filter. The algorithm tracks the obstacles when they leave the field of view of the sensor by updating their positions with the estimate of the robot's motion. The avoidance part of our navigation system is based on the Model Predictive Control approach. By predicting the possible future obstacles states, the UAV filters the operator commands by altering them to prevent collisions. Experiments in obstacle-rich indoor and outdoor environments validate the efficiency of the proposed setup. Flying robots are highly prone to damage in cases of control errors, as these most likely will cause them to fall to the ground. Therefore, the development of algorithm for UAVs entails considerable amount of time and resources. In this dissertation we present two simulation methods, i.e. software- and hardware-in-the-loop simulations, to facilitate this process. The software-in-the-loop testing was used for the development and tuning of the state estimator for our robot using both the simulated sensors and pre-recorded datasets of sensor measurements, e.g., from real robotic experiments. With hardware-in-the-loop simulations, we are able to command the robot simulated in Gazebo, a popular open source ROS-enabled physical simulator, using computational units that are embedded on our quadrotor UAVs. Hence, we can test in simulation not only the correct execution of algorithms, but also the computational feasibility directly on the robot's hardware. Lastly, we analyze the influence of the robot's motion on the visual feedback provided to the operator. While some UAVs have the capacity to carry mechanically stabilized camera equipment, weight limits or other problems may make mechanical stabilization impractical. With a fixed camera, the video stream is often unsteady due to the multirotor's movement and can impair the operator's situation awareness. There has been significant research on how to stabilize videos using feature tracking to determine camera movement, which in turn is used to manipulate frames and stabilize the camera stream. However, we believe that this process could be greatly simplified by using data from a UAV’s on-board inertial measurement unit to stabilize the camera feed. Our results show that our algorithm successfully stabilizes the camera stream with the added benefit of requiring less computational power. We also propose a novel quadrotor design concept to decouple its orientation from the lateral motion of the quadrotor. In our design the tilt angles of the propellers with respect to the quadrotor body are being simultaneously controlled with two additional actuators by employing the parallelogram principle. After deriving the dynamic model of this design, we propose a controller for this platform based on feedback linearization. Simulation results confirm our theoretical findings, highlighting the improved motion capabilities of this novel design with respect to standard quadrotors
    corecore