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ABSTRACT

Recent miniaturization of computer hardware, MEMs sensors, and high energy density

batteries have enabled highly capable mobile robots to become available at low cost.

This has driven the rapid expansion of interest in multi-rotor unmanned aerial vehicles.

Another area which has expanded simultaneously is small powerful computers, in the

form of smartphones, which nearly always have a camera attached, many of which now

contain a OpenCL compatible graphics processing units. By combining the results of

those two developments a low-cost multi-rotor UAV can be produced with a low-power

onboard computer capable of real-time computer vision. The system should also use

general purpose computer vision software to facilitate a variety of experiments.

To demonstrate this I have built a quadrotor UAV based on control hardware from

the Pixhawk project, and paired it with an ARM based single board computer, similar

those in high-end smartphones. The quadrotor weights 980 g and has a flight time of

10minutes. The onboard computer capable of running a pose estimation algorithm

above the 10Hz requirement for stable visual control of a quadrotor.

A feature tracking algorithm was developed for efficient pose estimation, which relaxed

the requirement for outlier rejection during matching. Compared with a RANSAC-

only algorithm the pose estimates were less variable with a Z-axis standard deviation

0.2 cm compared with 2.4 cm for RANSAC. Processing time per frame was also faster

with tracking, with 95% confidence that tracking would process the frame within 50ms,

while for RANSAC the 95% confidence time was 73ms. The onboard computer ran the

algorithm with a total system load of less than 25%. All computer vision software uses

the OpenCV library for common computer vision algorithms, fulfilling the requirement

for running general purpose software.

The tracking algorithm was used to demonstrate the capability of the system by per-

forming visual servoing of the quadrotor (after manual takeoff). Response to external

perturbations was poor however, requiring manual intervention to avoid crashing. This

was due to poor visual controller tuning, and to variations in image acquisition and

attitude estimate timing due to using free running image acquisition.

The system, and the tracking algorithm, serve as proof of concept that visual control of

a quadrotor is possible using small low-power computers and general purpose computer

vision software.
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Chapter 1

INTRODUCTION

Unmanned aerial vehicles (UAVs) are quickly becoming a ubiquitous fixture of modern

industry. They have applications in search and rescue (Doherty and Rudol, 2007,

Goodrich et al., 2008), aerial photography and remote sensing (Jensen et al., 2008,

Rango et al., 2009), surveillance (Rodriguez et al., 2006), and many other fields. Some

specific applications include power line inspection (Li et al., 2008, 2010) and providing

sensory feedback for precision agriculture (Herwitz et al., 2004, Zarco-Tejada et al.,

2008, Cohen et al., 2012, Primicerio et al., 2012, Schellberg et al., 2008, Pea-Barragn

et al., 2010, Zhang and Kovacs, 2012). Most UAVs require human operators, and in the

case of hover-capable UAVs, manual control requires a high level of concentration and

skill. Modern autopilots can assist operators by using inertial sensors for stabilization,

however, visual feedback has the potential to significantly simplify operator interaction.

Visual control has successfully been used to perform position hold (Meier et al., 2012,

Amidi, 1996), simultaneous localization and mapping (SLAM) (Davison et al., 2007,

Meier et al., 2012), and is used for other tasks such as collision avoidance (Tsalantsanis

et al., 2007, Green and Oh, 2008) or odometry (Caballero et al., 2009, Achtelik et al.,

2009, Smith and Dodds, 2009).

This thesis presents a multi-rotor UAV with an onboard computer for visual control.

The onboard vision computer is based on a low-power ARM system on chip (SOC),

which is lighter and consumes less power than the Intel based single board computers

used onboard other systems (Meier et al., 2012, Stowers, 2013). A simple monocular

pose estimation and visual servoing algorithm is implemented to demonstrate the ca-

pability of the system. The control software is based on the general purpose OpenCV

library, showing that real-time performance is now possible from low-power hardware

without using intensive hand-optimized algorithms.

1.1 MOTIVATION

Small modern UAVs offer several advantages over manned aircraft and larger UAVs.

They are cheaper to build and to operate, and in the case of multi-rotor UAVs require

little maintenance at all. They are safer; a crash does not necessarily endanger human

life, and nearly all of them are electrically powered which mitigates the danger posed
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by flammable liquid fuel[1]. For multi-rotor UAVs the individual rotors are also smaller

than tilt-rotor craft, which limits the rotational energy of the blades compared to

tilt-rotor UAVs of the same weight (Stowers, 2013). This minimizes potential impact

damage on contact with objects or with people. In some cases rotor guards (Parrot,

2013a) even allow crashing with no damage at all. Their reduced size has allowed

research on a smaller scale and conveniently allows test flights to be carried out indoors.

It is not surprising that a large body of work involving small multi-rotor UAVs has been

generated over the last decade. This thesis aims to add to this work by demonstrating

that it is now possible to run general purpose computer vision software in real time

on small, cheap ARM single board computers for controlling multi-rotor UAVs in real

time.

1.1.1 Autonomy Using GPS

GPS is commonly used for outdoor autonomy, however it is desirable to operate small

autonomous UAVs in GPS-denied environments, particularly indoors. Many other en-

vironments lack reliable GPS signals, such as under dense forest canopies, in caves, in

extraterrestrial environments (He et al., 2008), and even in built up urban environments

(Zenk et al., 2011). GPS accuracy is also in the order of metres where visual algorithms

can achieve position estimates with accuracies in the order of centimetres (Hightower

and Borriello, 2001, Sharp et al., 2001). Visual control is therefore an attractive al-

ternative: cameras are lightweight and low-power while providing high-resolution data

from which accurate position and speed data can be used. Visual control, in the case

of onboard processing, is independent of offboard systems and therefore can be used in

isolated and GPS-denied environments.

1.1.2 Onboard Processing

Real time offboard processing requires a high-bandwidth low-latency data connection

between the UAV and an offboard computer, and for the system to be useful the

link must be wireless. The latency inherent in any communication link places stricter

constraints on the performance of the offboard computer, and requires a high-power

wireless transmitter onboard the UAV. The data link also limits the operating range

of the UAV, and adds an additional point of failure.

Traditionally onboard processing was achieved either by using specialized hardware

such as FPGAs (Fowers et al., 2007) or digital signal processing (DSP) hardware

(Amidi, 1996), or by using high powered single board computers based on Intel’s mobile

architectures (Meier et al., 2012). The recent proliferation of high-end smartphones,

however, has driven the development of small, efficient, portable computers based on

[1]Although LiPo batteries can be explosive the risk can be minimized by physical battery protection

and good short-circuit protection
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the ARM ‘system on a chip’ (SOC) architectures. Many of these are multi-core imple-

mentations and include parallel processing extensions to the ARM architecture, mak-

ing them ideally suited to processing large amounts of data efficiently. Additionally,

when considering visual control, smartphones nearly always have a camera attached.

This has driven the development of ARM-optimized computer vision libraries such as

FastCV (Qualcomm, 2013) for use in augmented reality, facial recognition, and other

applications which require real-time performance from limited processing power.

These developments present an attractive alternative to offboard processing, with re-

duced power consumption, weight, and complexity over Intel computers which have

been used in the past.

1.1.3 Multi-Rotor Craft

With the increase in mobile processing power and the availability of cheap inertial

sensors and high energy density Lithium Polymer (LiPo) battery technology, multi-

rotor UAVs have become popular among researchers, hobbyists, and in commercial

applications. The attraction of multi-rotor craft is their simplicity: the only moving

parts are the motors. Additionally their manoeuvrability, and their ability to hover,

is desirable in many situations such as remote inspection. This is also convenient for

performing experiments in smaller indoor environments.

1.2 RELATED WORK

Modern micro aerial vehicles (MAVs) typically weigh 0.5-1.5 kg and have payload ca-

pacities of a few hundred grams (Meier et al., 2012). Their size affords convenient and

relatively safe indoor operation, this coupled with the affordability and the capabili-

ties of modern quadrotors, has made them popular research platforms and generated a

large body of research involving quadrotor UAVs. A timeline of notable progress over

the last two decades is given in Figure 1.1

1.2.1 The State of the Art

Traditionally autonomous aerial vehicles have had larger payload capacities, with early

UAVs weighing around 10-20 kg (Meier et al., 2012). There was some early work on

visual control of tilt rotor helicopters, notably by Amidi (1996) and by Johnson et al.

(1996). However there is a vast body of more recent and more relevant work based on

quadrotors, it is this work that I will review here.

Most of the recent work on visual control is focused on simultaneous localization and

mapping (SLAM). To facilitate high-level interaction with its environment a robot must

have knowledge of its position relative to objects in its environment. SLAM algorithms

attempt to construct a map of landmarks surrounding the robot while simultaneously
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Figure 1.1: Notable developments which have driven autonomous UAV research.
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tracking its pose. Complete theoretical solutions are outlined by Durrant-Whyte and

Bailey (2006), so the theoretical SLAM problem is considered solved. There remain,

however, many implementation challenges, most significantly scalability: SLAM maps

are built using observed landmarks, which requires position estimates for each land-

mark. This results in a large state vector which can become intractable for large or

cluttered environments. Furthermore, computing the state vector is O(n2) in the num-

ber of landmarks (Durrant-Whyte and Bailey, 2006). Nevertheless, there have been

numerous successful implementations (Davison et al., 2007, Bryson and Sukkarieh,

2007, Royer et al., 2007, Artieda et al., 2009, Milford and Wyeth, 2010). Davison

et al. (2007) developed the first ‘pure vision’ monocular SLAM algorithm, based on

a sparse map of natural landmarks. Royer et al. (2007) demonstrated stereo SLAM

using a three-stage algorithm where a path was recorded under manual control (stage

1), and a 3D map was generated using the recorded data (stage 2). In the third stage

the quadrotor could then follow the recorded path. The system was also capable of

taking paths within the mapped area differing from the one used to generate the map.

SLAM has also been performed based on artificial markers; an example is the Pixhawk

Cheetah system which used markers from the ARToolkit+ (ARToolkit, 2013).

Despite the popularity of SLAM, there is another class of visual control algorithm

which forgoes the mapping requirement and assumes direct control of the attitude of

the UAV. These algorithms typically automate simple behaviour such as maintaining

a fixed position or altitude, terrain following, or collision avoidance (Stowers, 2013,

Tsalantsanis et al., 2007). Collision avoidance has been demonstrated based on avoiding

the centre of expansion of optical flow (Stowers, 2013). Minimizing the optical flow is a

common approach to eliminate hover drift in helicopters (Meier et al., 2012, Dille et al.,

2010). Another example is terrain following, that is holding a fixed altitude above the

ground during a traverse, which has been demonstrated based on a statistical model of

horizontal line placement (Stowers, 2013), and by using optical flow (Hérissé et al., 2010,

Campbell et al., 2004) and assuming constant ground-speed. Both of these approaches

have been implemented on real systems.

1.2.2 Existing Systems

Some of the earliest published work on visual control of small multi-rotor UAVs was by

Altuğ et al. (2002). This system was based on an early commercial quadrotor and used

an onboard and an offboard camera in conjunction with coloured markers mounted

on the UAV and in the flight area. They were later able to demonstrate autonomous

position hold based on pose estimation (Altuğ et al., 2003).

Work by Kemp (2006) demonstrated control based on a known 3D model of the flight

area. Kemp used images from a small low-resolution onboard camera with offboard

processing. To overcome the low image quality he used 2D to 3D edge matching
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instead of point features. Kemp was able to demonstrate stable visual servoing using

this system.

One of the first successful attempts to process data onboard was by Fowers et al. (2007)

who achieved real time processing by using an FPGA implementation of their control

algorithm. They developed a visual approach to minimize UAV drift when hovering

based on tracking Harris corners.

Blosch et al. (2010) presented one of the first implementations of visual SLAM using

a quadrotor, however, the offboard processing was achieved using a USB cable for

image transmission. This work was based on the AscTec Hummingbird quadrotor

platform, and subsequent work by Achtelik et al. (2011) extended it to process data

onboard using a bespoke onboard computer also from AscTec. Achtelik demonstrated

a modified SLAM algorithm with a 10Hz visual control loop. The system was one of

the first to use the Robot Operating System (ROS, 2013) framework for robot control,

and one of the first to use a general purpose computer for onboard computer vision.

Work by Williams et al. (2011) resulted in monocular visual control based on three

flight modes: fast traverse, hovering, and ingress (moving through doorways or other

openings). The work was tested using a recorded sequence. Williams demonstrated

that pose estimates from this approach were accurate to within 0.25% of a ground truth

pose estimated using a stereo imaging system.

Bills et al. (2011) used the native forwards and downwards facing cameras of the Parrot

AR.Drone visually navigate previously unseen corridors, stairs, and around corners.

Processing was performed offboard, with images and control commands transmitted

over WiFi.

Li et al. (2011) developed a multi-robot ground-air system which used onboard pro-

cessing with an AscTec quadrotor and a ground robot. Using infrared markers on the

ground robot and IMU data from both robots, they were able to demonstrate pose

estimation using both optical flow and visual markers.

Carrillo et al. (2011, 2012) developed a quadrotor for visual control and demonstrated

hovering over a known marker using monocular vision. This work was extended to use

a stereo imaging system which was able to take off, hover, and land autonomously. In

both cases visual data was processed offboard.

In addition to control using onboard cameras, there has also been interest in using

cameras from the perspective of an observer. The most notable developments are from

the GRASP lab at the university of Pennsylvania (Univ of Penn, 2013). The GRASP

flight area consists of a (5×4×3.5m) zone monitored by a Vicon motion capture system

which uses fiduciary markers mounted on the UAVs (Michael et al., 2010). This system

has been used to demonstrate dynamic behaviour such as flying through a narrow slot

requiring significant roll or pitch angles to allow the quadrotor through, or ‘perching’

on an inverted landing pad. GRASP has also been used to investigate the disturbances
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introduced when multiple quadrotors are flown in close proximity.

1.2.3 Pixhawk

The open source Pixhawk (2013) project was launched in 2009 and combined a custom

high-powered single board computer with an AscTec quadrotor resulting in the Chee-

tah system (Meier et al., 2011, 2012). MAVLINK (Pixhawk, 2013c) and the Mavconn

communication framework (Pixhawk, 2013b) were released as part of this project. Vi-

sual autonomy was demonstrated with the Cheetah autonomous quadrotor which was

able to navigate using fiduciary markers from ARToolkit+ (ARToolkit, 2013).

The PX4FMU (Pixhawk, 2013a) is the second generation autopilot from Pixhawk, and

was designed for the Parrot AR.Drone flight hardware. This combination provides a

highly capable autopilot with low cost off-the-shelf flight hardware for a cheap and

convenient research platform, albeit only suited for offboard processing.

1.3 THESIS OVERVIEW

This thesis describes a vision-capable quadrotor. Chapter 2 begins by introducing

fundamental concepts of computer vision in the context of visual control of robots.

Topics ranging from image formation and camera geometry to image features and

optical flow are presented. Chapter 3 presents the quadrotor platform developed for

the experimental work in this thesis, including a small ARM computer for onboard

processing. Chapter 4 presents the implementation of the visual control software which

is designed around the Mavconn communication framework and OpenCV. Chapter 5

presents visual servoing based on pose estimates from a feature tracking algorithm. The

pose estimation algorithm is tested both on a recorded sequence of images, and used

to demonstrate visual servoing of the quadrotor from Chapter 3. Some background

theory on RANSAC and feature matching is also presented. Chapter 6 concludes this

thesis with a recommendation for future system for visual research.



Chapter 2

VISION AND NAVIGATION

As humans we effortlessly perceive the world as a collection of objects, surfaces, and

space (Gibson, 1950). Our high level perception allows us to interact with a wide vari-

ety of objects and environments which we need not have encountered before. Human

vision is also imperfect and we lack the precision of computers. Our estimates of sizes,

distances, and colours are at best rough estimates. However this is sufficient to sup-

port fast and complex interactions with our environment. Computer vision seeks to

give mobile robots similar perceptive abilities and enable them to interact with their

surroundings in a similar manner. Computers lack any innate or learned perceptive

ability that humans or other animals may possess, however, and the processing me-

chanics behind human vision are also poorly understood. We don’t even have a precise

picture of what we are trying to copy. Furthermore, the visual data available to com-

puters consists only of arrays of noisy quantized numbers representing images which

have been distorted by imperfect optical components. From this imperfect visual data

we attempt to use mathematics and geometry to infer enough useful information for

a robot to perform tasks such as avoiding collisions or constructing a map of an un-

known area. In the context of the visual navigation of small flying robots with onboard

processing there are additional constraints imposed by the limited payload capacities.

Nevertheless progress has been made, as described in Chapter 1.2.

This chapter gives an overview of topics of computer vision used in visual navigation.

Section 2.1 begins by describing the mathematical model of an ideal camera upon which

pose estimation, stereo imaging, and other geometric operations are based. The model

is then extended to include the imperfections of real cameras in Section 2.1.2. The

overview of the fundamental geometric model concludes with multiple view geometry

in Section 2.2. Section 2.3 then introduces the detection, description, and matching of

image features, which are used to provide the point correspondences required for the

methods described in Section 2.2. Section 2.4 introduces optical flow and gives some

common methods used to compute flow (Section 2.4.1).
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2.1 IMAGE FORMATION

Digital images are stored as arrays of numbers representing the irradiance sampled at

points in a scene as illustrated by Figure 2.1. In computer vision the most common

form of digital image encodes the monochromatic irradiance (called intensity images)

of the scene, however, colour images are also common, and with the arrival of low-

cost structured light cameras such as the Microsoft Kinect (kin, 2014) depth images

are becoming more common. In depth images each pixel value represents the distance

from the camera to the point in the scene, or the depth of the point. Regardless of the

data representation all images are formed by sampling the irradiance of a scene over an

array of sensor elements with finite areas (called pixels). This array is the only visual

data available to computers.

48 57 64 44 51 78 71 48 52 74 83 67
43 50 55 41 55 74 59 46 46 70 79 51
38 50 48 44 56 54 40 47 54 64 63 56
41 57 43 56 58 38 31 47 58 55 62 47
57 71 43 52 51 38 29 39 54 47 52 40
72 75 45 40 31 21 28 42 54 53 41 44
67 56 41 27 24 27 21 24 28 43 36 26
60 68 68 57 53 54 40 42 43 52 36 35
65 61 55 54 57 64 57 66 68 66 57 46
84 75 72 72 65 71 65 61 67 67 62 50
113 91 76 77 77 74 74 78 76 80 64 52
125 107 83 81 81 81 77 80 84 88 70 53
113 109 80 79 75 86 88 83 78 85 62 55
105 106 67 66 74 79 79 85 87 91 67 57
113 105 91 64 65 97 90 80 71 69 58 63
112 112 97 82 115 127 105 110 82 74 72 104
107 117 143 189 206 202 71 80 67 78 92 106
172 178 193 225 233 226 122 51 56 61 90 74
202 206 201 224 230 225 184 46 60 71 80 57
195 190 194 213 226 231 218 102 60 72 74 74
201 206 202 205 225 231 230 175 137 176 134 121
190 200 197 196 224 224 229 217 151 191 147 104
179 192 192 199 225 230 228 225 179 126 100 54
182 184 189 198 228 219 226 209 194 195 161 63

(b)

(a)

Figure 2.1: A digital image. (a) Image rendered in greyscale, (b) the numerical values
of a small patch of pixels.

Finite pixel areas of digital imaging sensors result in spatial quantization of points

in images. In addition to the spatial quantization, the measured irradiance also has

dynamic range limitations imposed by the sensing hardware, in some cases limited

to 8-bits of precision. Quantization, and dynamic range compression introduce noise

into the image. And before the light is even sampled it passes through one or more

optical lenses, whose imperfections can introduce spatially varying distortions such as

the barrel distortion shown in Figure 2.4. In order to model these effects and to extract

useful information from an image we must start with the simple pinhole model of a

camera and extend it to account for the effects mentioned above.
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2.1.1 The Pinhole Model

The pinhole camera is both a physical device and a mathematical model (Hartley and

Zisserman, 2004). The physical device consists of a chamber with an infinitesimal

‘pinhole’ in the centre of one face, through which an inverted image of the scene is

projected onto the opposite face (the image plane). A lens is not required but due to

the small aperture of the pinhole the light collected is insufficient to produce an images

with adequate signal to noise ratios (SNR) without either a bright scene or a long

integration time. The projection lines pass through the origin of the camera coordinate

system, which is called the principal point. Figure 2.2 shows a geometric representation

of the model. The model is similar to the physical device, but for simplicity the image

plane is placed in front of the principal point. The model exhibits scale ambiguity

along the projection lines: any point on the line p̄p̄′ is projected to the same point p

in the image.

u

v

w

(a)

(b)

p̄

p

p̄′

f

y

x

Figure 2.2: The pinhole camera model showing the position of the (a) principal point
and (b) the image plane separated along along the w axis by the focal length f . p̄
=[u, v, w]T is a point in the (u, v, w) world coordinate system which is projected onto
the image plane along the blue line passing through the optical centre. The imaged
point p =[x, y]T is in the (x, y) image plane coordinate system. The model exhibits
scale ambiguity: Points are unique only up to scale along the projection line so p̄ and
p̄′ are both imaged at the same point p.

Mathematically the model is simple,

p =

[

x

y

]

=
f

w

[

u

v

]

, (2.1)

where p =[x, y]T is the point in the image coordinate system and f is the focal length.

p̄ =[u, v, w]T are the coordinates of the point in the camera coordinate system with

the origin at the optical centre.

Because of the projective nature of the model, it is most often expressed in homogeneous
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Optical Axis

p̄

b

ff

O

p

Figure 2.3: The thin lens model is an approximate model which applies to lenses
whose thickness along the optical axis is negligible compared to their focal length. O
is analogous to the principal point of the simplified model in Figure 2.2, however the
camera no longer has infinite focal depth; the projection lines from p̄ diverge on either
side of p.

coordinates (For an overview of homogeneous coordinates see Appendix A).

p =







x

y

1






= Cp̄ =







1, 0, 0, 0

0, 1, 0, 0

0, 0, 1
f
, 0



















u

v

w

1













, (2.2)

whereC is the camera matrix for the ideal pinhole model. The projective representation

captures the scale ambiguity of the model by expressing 2D coordinates using three

elements and normalizing the coordinate so that the third element is always equal to 1.

The pinhole model in this form is the basis for geometric camera operations, however,

it is necessary to consider the effects of the non-ideality of real cameras.

2.1.2 Modeling Real cameras

In real cameras lenses are employed to collect more light by focusing plane waves instead

of single rays. Lenses are necessary as it is impossible to produce an image with a good

signal to noise ratio using the amount of light passing through an infinitesimal pinhole.

A lens limits the focal depth of the image, as shown in Figure 2.3, and can also introduce

distortions due to imperfections. In addition to lens effects, the pinhole model in (2.1)

and (2.2) does not include the effects of spatial quantization or finite pixel area, or

pixel skew along the x and y axes of the image plane.
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In order to account for these effects and to include the position and orientation (the

pose) of the camera in the world coordinate system the model is extended by adding

three sets of parameters:

• Intrinsic parameters (Hartley and Zisserman, 2004)

Pixel scale on each axis x0 and y0

Pixel skew γ

Focal length f

• Extrinsic parameters (Hartley and Zisserman, 2004)

Rotation R

Translation t

• Lens imperfections (distortion coefficients) (Bradski and Kaeher, 2008)

Radial distortion (imperfect optical components)

Tangential distortion (imperfect lens alignment)

Intrinsic and extrinsic parameters are normally expressed in matrix form and require

points to be expressed in homogeneous coordinates.

(a) (b)

Figure 2.4: An example of an image captured with an imperfect lens (a) before and
(b) after correction using the undistort (OpenCV, 2013c) function in OpenCV. Note
that the distortion is non-uniform, and the curving of straight lines is more pronounced
near the edges of the image. This is an example of barrel distortion, caused by imper-
fectly shaped optical components.

2.1.3 Intrinsic Parameters

Intrinsic parameters are parameters of the camera and consist of the focal length, pixel

scale factors, and skew between the x and y axes. These effects are uniform over the
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image and are necessary to calibrate the camera in order to give its geometric quantities

real units. The intrinsic parameters are encapsulated in the (3× 3) matrix A.

A =







αx γ x0

0 αy y0

0 0 1






, (2.3)

where [x0, y0]
T is the location of the principle point, γ is the skew coefficient between

the x and y axes (usually zero), and αx and αy represent focal length in terms of pixels

along each axis,

αx = fmx, αy = fmy, (2.4)

where mx and my are scale factors which convert pixels to units of distance along each

axis.

2.1.4 Extrinsic Parameters

Extrinsic parameters convert between the camera-centric coordinate system to the fixed

world coordinate system. They represent the camera pose using a translation vector t

and a rotation matrix R.

R =







R11 R12 R13

R21 R22 R23

R31 R32 R33






, t =







∆u

∆v

∆w






, (2.5)

which is usually expressed as a single 3× 4 matrix [R,t],

[R, t] =







R11 R12 R13 ∆u

R21 R22 R23 ∆v

R31 R32 R33 ∆w






, (2.6)

The concatenated pose matrix in (2.6) allows the complete model to be expressed

conveniently using homogeneous coordinates

p = w







x

y

1






= A[R, t]













u

v

w

1













, (2.7)

where [x, y]T is in image space and [u, v, w]T is a point in world coordinate space. R

and t are the extrinsic parameters which convert from the world space to camera space,

and A is the matrix of intrinsic camera parameters.
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2.1.5 Distortion Coefficients

Generally radial distortion is dominant and in most cases it is sufficient to consider only

radial distortion (Zhang, 2000, Du et al., 2011), which is corrected in openCV after

estimating a set of distortion coefficients k1, k2 and k3 during calibration (OpenCV,

2013b)

x̂ = x(2 + k1r
2 + k2r

4 + k3r
6)

ŷ = y(2 + k1r
2 + k2r

4 + k3r
6),

(2.8)

However, the OpenCV library also calibrates and corrects for tangential distortion

(OpenCV, 2013b) by estimating p1 and p2

x̂ = x+ (2p1xy + p2(r
2 − 2x2))

ŷ = y + (2p1xy + p2(r
2 − 2y2)),

(2.9)

where in both (2.8) and (2.9) x̂ and ŷ are the corrected locations of coordinates the

point observed at (x, y) coordinates of an observed point in the image. This is repeated

for each pixel in the image. This approach is based on work by Zhang (2000). For all

of the work in this thesis it is assumed that the camera is calibrated and the images

are corrected using the above method.

2.1.6 Camera Calibration

Generally the camera parameters and the distortion coefficients are unknown and must

be estimated. Camera calibration (also called resectioning) refers to the process by

which the parameters are estimated. During calibration a planar object with a known

pattern, such as the checkerboard in Figure 2.4, is imaged at various orientations and

the expected feature locations are compared with the observed ones. In this case

the features of interest are the corners of the checkerboard squares. The calibration

routine uses the algorithms outlined in Zhang (2000), Du et al. (2011) to estimate

the distortion coefficients of Brown’s model, which are then used in (2.8) and (2.9) to

correct the distorted image. Figure 2.4 shows an example of applying this method of

distortion correction to the chessboard pattern used to estimate the parameters.

2.2 MULTIPLE VIEW GEOMETRY

The most common example of multiple view geometry is stereo imaging, however,

the only requirement is that a common scene is viewed from multiple camera poses.

Multiple views can be achieved through camera motion, assuming the scene is static.

In this section, stereo imaging notation is used to denote different camera views for

simplicity; pL and pR are the projections of p̄ into images by the left and right
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cameras respectively. The mathematics applies to the general case of any two images

captured at different camera poses.

OL

OR

eR

eL

p̄

pR

pL

LP(p̄)

ER,L

Figure 2.5: Epipolar geometry relates common points in images captured from different
camera positions. This figure shows the stereo case where the point p̄ is projected
onto left (pL) and right (pR) pinhole cameras with principal points at OL and OR

respectively. The epipoles are the principal points of each view projected onto the
opposite image plane. (eL and er). Each point has an epipolar line between the
epipole and its projection onto the image plane, which is the same as the image of the
points projection line onto the other image plane Here p̄ is projected onto the left hand
image and LP(p̄) is imaged in the right hand plane as the epipolar line ER,L.

Epipolar geometry is the more specific topic which relates the projections of a 3D point

into multiple camera views. This is based on geometric transformations represented by

matrices, and assumes points are represented using homogeneous coordinates.

2.2.1 Essential and Fundamental Matrices

The essential matrix was first defined by the Longuet-Higgins equation (Longuet-

Higgins, 1981)

pT
L EpR = 0, (2.10)

where pL and pR are expressed in normalized homogeneous coordinates and correspond

to the same 3D point imaged by the left and right cameras respectively. E is the

essential matrix. Epipolar geometry can be expressed in matrix form using the essential

or fundamental matrix of a system. The essential matrix relates the projection of a

point in one view to its projection in another view, assuming an ideal pinhole camera.
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The essential matrix is defined in terms of the rotation and translation between the

camera views

E = R[t]×, (2.11)

where [t]× is the matrix representation of the cross product of t,

[t]× =







0 −t3 t2

t3 0 −t1

−t2 t1 0






, t =







t1

t2

t3






. (2.12)

This can be extended to non-ideal cameras, if the intrinsic camera matrices are known

E = AT
LMAR, (2.13)

where M is the fundamental matrix and AL and AR are the intrinsic calibration

matrices for the left and right cameras respectively. M replaces E in (2.10) and extends

the equation to non-ideal cameras with known parameters

pT
L MpR = 0 (2.14)

The fundamental and essential matrices are the mathematical representation of the

epipolar constraint illustrated in Figure 2.5. That is, the projection of a point into one

camera view(the left image from a stereo system for example) will be projected to a

point which lies on its epipolar line in another view (the right image). The epipolar

line is the image of the points projection line into the opposite view.

2.2.2 Estimating the Essential and Fundamental matrices

The essential matrix can be estimated using the eight-point algorithm presented by

Longuet-Higgins (1981). As the name suggests the algorithm uses eight point cor-

respondences to solve the Longuet-Higgins equation for the essential or fundamental

matrix. Equation (2.10) is rearranged as

(pLipRi)M = 0, i = [1, 8], (2.15)

where pLi and pRi are the ith corresponding points in the left and right images ex-

pressed in homogeneous coordinates, and M is the fundamental matrix. Eight equa-

tions of the form (2.15) are solved simultaneously for the elements of M. This is

typically achieved by expressing M as a column vector m and using (2.15) to collate

the 8 point correspondences into a matrix A

Am = 0, (2.16)
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where

Ai = [xx′, xy′, x, yx′, yy′, y, x′y′, 1] (2.17)

is the ith row of A, pLi = [x, y], pRi = [x′, y′], and

m = [M11,M21,M31,M12,M22,M32,M13,M23,M33]
T , (2.18)

This uses the rank-deficient property of M requiring just 8 point correspondences. This

requires A to be at most rank 8. In practice, perturbations and incorrect point matches

cause A to be rank 9 (or more if more than 8 points are used). To avoid ambiguity an

additional constraint is added

‖m‖ = 1. (2.19)

The eight point algorithm avoids the iterative solution which is possible with only five

correspondences (Longuet-Higgins, 1981) and provides an analytical solution instead.

The resulting fundamental matrix M is required to have rank 2, however, equations in

the form of (2.15) do not generally produce matrices subject to this constraint. This

constraint is typically enforced using Singular Value Decomposition (SVD) (Hartley,

1997). In practice, the normalized variant of the 8-point algorithm where the corre-

spondences are normalized before estimating the matrix, with a speed up of 20 over

iterative methods with similar accuracy (Hartley, 1997). An further improvement over

the normalized algorithm is the use of total least-squares (TLS) Total least-squares

estimate (Mühlich and Mester, 1998)

2.2.3 Planar Homography

From the model in (2.7) the projection matrix A = [R, t] has size 3 × 4. If all of the

interest points lie on the same plane then the world coordinate system can be defined

so that one component (e.g., the w component) is zero for all of the points. In this case

projection matrix can be simplified by discarding one column (e.g. the third column if

the w component is zero). The simplified projection matrix is the homography matrix

mapping the points in the plane to the image plane of a camera. This can be used

to map points between camera views, for example mapping a point in the right hand

camera of a stereo imaging system to its expected location in the image plane of the

left camera

pL = ALHRLA
−1
R pR, (2.20)

where AL and AR are the intrinsic camera matrices for the left and right cameras. The

homography matrix is defined in terms of the rotation and translation between the two

planes

HRL = R−
tnT

d
, (2.21)
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where R is the matrix describing the rotation between the two image planes and t is

the translation. n is the normal vector to the plane being imaged.

2.2.4 Stereo Triangulation

OL

OR

p̄

pR

pL

Figure 2.6: The point p̄ is projected into the left and right cameras as pL and pR

respectively. From the camera parameters the projection lines can be calculated and
the intersection of the lines can be found to determine the depth of the point.

From the pinhole model introduced in Section 2.1.1, the exact 3D position of a point,

p̄, in the world coordinate system can be computed if the point is imaged from two

different positions. Given that the camera matrices are known, the projection lines can

be computed, and their intersection will give the 3D position of the point. However,

pixel quantization makes it impossible to measure the exact position of the projected

point in either image, so the straightforward back-projection approach will fail Hartley

and Zisserman (2004).

The triangulation function is expressed as a function of the camera matrices AL and

AR, and the projection of p̄ onto each image plane (pL and pR).

p̂ = τ (pL,pR,AL,AR) (2.22)

where p̂ is an estimate of p̄.
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2.2.5 Pose Estimation

The perspective n-point (PnP) problem refers to the estimation of the pose (position

and orientation) of a camera given the camera parameters and a set of n point cor-

respondences between known 3D points and their 2D projections (Lepetit and Fua,

2006). The earliest algebraic solution was found by Horaud et al. (1989), and since

there has been a large body of work published on the problem (Quan and Lan, 1999,

Horaud et al., 1989, Lepetit and Fua, 2006), resulting in many solutions, both itera-

tive and analytical. This section will consider the ePnP method by Lepetit and Fua

(2006), which has some notable advantages over its alternatives. ePnP is a non-iterative

method which scales linearly with n, the number of point correspondences. The next

best scaling non-iterative method is O(n2), and for comparable robustness to noise

the next best scaling method is O(n5) (Lepetit and Fua, 2006). It also operates on

any number of point correspondences so long as n ≥ 4, and it is faster than iterative

methods, but with comparable accuracy (Lepetit and Fua, 2006).

The premise of ePnP is to express each of the n 3D points as a weighted sum of four

control points

ωi

[

ui

1

]

= A

4
∑

j=1

αijc
c
j , (2.23)

where ωi is the scalar projective parameter, [ui, vi]
T is the 2D image point, A is the

camera matrix, and ccj are the control points in the camera coordinate system. αij are

homogeneous barycentric coordinates.

(2.23) is rearranged to a linear system of the form

Mx = 0 (2.24)

where x = [ccT1 , ccT2 , ccT3 , ccT4 ]T is a 12-vector of the control points.

The solution is found in the null-space of M . For a complete description of the solution,

and of choosing the right weights for the control points, see Lepetit and Fua (2006).

2.3 IMAGE FEATURES

In computer vision a ‘feature’ is a region or patch in an image which is likely to be

uniquely identifiable. Features provide a way to identify common points in a scene

from images captured at different times, with different illumination conditions, or from

different camera poses (Hartley and Zisserman, 2004). Common features identified in

multiple images are used to generate point correspondences, which are the basis for

many geometric operations such as those described in Section 2.2.

Algorithms for working with features can be split roughly into three categories: de-

tection, extraction, and matching algorithms. Description schemes are affected by the
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Figure 2.7: The Bresenham circle used in the FAST algorithm with the test pixels
highlighted. Figure adapted from Rosten and Drummond (2006).

quality and type of the features found by the detector, so the detection and extrac-

tion stages are sometimes paired (Lowe, 2004, Bay et al., 2006, Rublee et al., 2011).

Description schemes may also allow for improved matching algorithms (Ortiz, 2012),

however each category is discussed separately ere. Emphasis is placed on the FAST

(Rosten and Drummond, 2006) and BRIEF (Calonder et al., 2011) algorithms used for

the experiments in Chapter 5, and ORB (Rublee et al., 2011) which adds rotation and

scale invariance to BRIEF.

2.3.1 Detection

Features are typically located at interest points where there is a maximum or minimum

in the local derivatives of the image, such as at small spots or corners (Prince, 2012).

In the general case this also includes lines or edges and sometimes large blobs, however,

geometric operations require precise point locations, so only corner and point detectors

are used. A de facto standard for feature detection is Features from Accelerated Seg-

ment Test (FAST) (Rosten and Drummond, 2006) which is used for the experiments

carried out in Chapter 5. FAST is based on the Accelerated Segment Test (AST) algo-

rithm, which is also the basis for the SUSAN (Smith and Brady, 1997) detector, and

the Adaptive Generic Accelerated Segment Test (AGAST) (Mair et al., 2010).

FAST detects features by comparing a centre pixel (the nucleus) to 16 pixels in a

Bresenham circle (Bresenham, 1977) with a radius of r = 3.4 around the nucleus.

An example of the test pixels surrounding a corner is shown in Figure 2.7. Features

are detected when 12 or more contiguous pixels on the radius differ from the nucleus

above a threshold determined by the value of the nucleus. This test is repeated at

each pixel and the sum of the absolute differences between the nucleus and the pixels

in the contiguous arc is calculated as the corner score V . A threshold is applied to

V to select potential corners, and non-maximal suppression is then performed on the
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resulting candidate features to prevent detecting the same feature multiple times. This

is achieved by only selecting corner features at pixels where a local extrema of V

occurs (Rosten and Drummond, 2006, Neubeck and Van Gool, 2006). Non-maximal

suppression is necessary because a corner or a bright spot is not necessarily a single

pixel, so the surrounding pixels are likely to have high corner scores.

(a) (b)

Figure 2.8: Features detected in a monochrome image. (a) The original image and (b)
image with some detected features overlaid. Some points were discarded by threshold-
ing the FAST score.

Figure 2.8 shows an example of feature detection using the FAST feature detection

algorithm. Many of the bright spots and corners have been detected but many have

also been excluded by thresholding the corner score V , with higher scores corresponding

to higher contrast features.

2.3.2 Extraction

Feature extraction aims to extract the unique information encoded in the image patch

and express it compactly for storing and comparison with other features. The com-

pressed representation returned by a feature extractor is called the feature descriptor

and usually consists of a vector of floating point values (Lowe, 2004, Bay et al., 2006) or

binary strings (Calonder et al., 2011, Ortiz, 2012, Leutenegger et al., 2011). In addition,

the patch orientation and scale information may also be stored in the descriptor.

The de facto standards for robust scale and rotation invariant features are SIFT (Bay

et al., 2006) and SURF (Lowe, 2004) which use the floating point representation. How-

ever, more recently binary descriptors such as FREAK (Ortiz, 2012), BRISK (Leuteneg-

ger et al., 2011), ORB (Rublee et al., 2011), and BRIEF (Calonder et al., 2011) have

become common. Binary descriptors are attractive particularly when processing data
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in real-time on hardware with limited processing power. For this reason the remainder

of this section is primarily concerned with binary descriptors, however, a list of common

descriptors is given in Section 2.3.2.1.

2.3.2.1 Commonly used feature descriptors

• Scale Invariant Feature Transform (SIFT), 2004 (Lowe, 2004) is a scale

and rotation invariant feature detection algorithm published by David Lowe in

2004.

• Speeded Up Robust Features (SURF), 2006 (Bay et al., 2006) is a detector

and descriptor with scale and rotation invariance.

• Binary Robust Independent Elementary Features (BRIEF), 2012 (Calon-

der et al., 2011) is a lightweight feature descriptor lacking scale and rotation in-

variance, although it is robust to small rotation angles. It is used as the base

feature descriptor for ORB, which adds rotation and scale invariance.

• Oriented FAST and Rotated BRIEF (ORB), 2011 (Rublee et al., 2011)

adds rotation and scale invariance to the BRIEF descriptor and uses the FAST

feature detector in its scale pyramid. The authors present it as ‘an efficient

alternative to SIFT or SURF’, which is supported by Wu et al (Wu and Lew,

2013) who found a speedup of approximately 340 over SIFT and 40 over SURF

with comparable matching performance.

• Fast Retina Keypoints (FREAK), 2012 (Ortiz, 2012) is a descriptor which

uses a sampling pattern inspired by the distribution of ganglion cells in the human

retina. FREAK is rotation and scale invariant, and the coarse-to-fine sampling

scheme allows for improved matching performance inspired by saccadic search in

biological vision.

Wu and Lew (2013) reviewed the above descriptors and determined their relative de-

tection time, descriptor extraction time, and their matching performance. Table 2.1

summarizes their relative performance.
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Detection(ms) Extraction (ms) Total (ms) Detection Accuracy (%)

SIFT 8.68 7.5 16.8 68.7%

SURF 0.424 0.96 1.384 46.3 %

ORB 0.604 0.022 0.626 58.5 %

FREAK 0.424 0.045 0.469 43.3 %

BRIEF 0.424 0.023 0.447 36.9 %

FAST 0.0064 – – –

Table 2.1: The performance of each descriptor as evaluated by Wu and Lew (2013).
Detection and extraction times are per-feature and FAST is shown for a comparison
with the ORB, SURF, and SIFT detectors. Wu et al used the SURF detector with
FREAK and BRIEF, while SIFT uses a bespoke detection algorithm and ORB uses a
modified version of FAST.

2.3.3 Binary Feature Descriptors

SIFT and SURF use large floating point vectors (n = 256 values for SIFT, n = 64

for SURF) which are compared by computing the n-dimensional Euclidean distance

between the descriptor pairs. This can cause tractability problems when attempting to

store large numbers of features or when extracting and comparing features in real-time

on low-power computing hardware. The advantage of binary descriptors is twofold;

binary descriptors consume little memory, for example BRIEF uses just 128 bits for

feature description. In 32-bit environments this is 16 bytes compared to 256 and

1024 bytes for SURF and SIFT respectively, and feature comparison is reduced to

calculating the Hamming distance, which can be calculated by taking the bitwise XOR

of two descriptors and counting the bits in the result. These advantages make binary

descriptors an attractive alternative to the more computationally expensive descriptors,

particularly since binary descriptors can offer similar robustness (Rublee et al., 2011).

Binary descriptors are based on the work by Ozuysal et al. (2010) and Lepetit and Fua

(2006) which show that robust image patch identifiers can be constructed using pair-

wise intensity comparisons. Binary descriptors are constructed using pairwise intensity

comparisons from point pairs sampled over the smoothed image patch (Calonder et al.,

2011, Ortiz, 2012, Leutenegger et al., 2011).

In this thesis the BRIEF descriptor is used as a lightweight feature descriptor where

rotation or perspective warping can be ignored. The ORB detector and descriptor is

suggested for use where where scale and rotation invariance are required.

2.3.3.1 BRIEF

The BRIEF descriptor is a binary descriptor which uses a random Gaussian sampling

pattern to construct a binary string from pairwise intensity comparisons. Calonder
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et al. (2011) demonstrate the performance of BRIEF compared with that of SURF and

U-SURF (SURF without orientation). BRIEF does not consider feature orientation

and therefore is not robust to in-plane rotations or perspective warping. Its authors

suggest computing a set of descriptors for rotated and perspective warps of each patch,

however, this would negate the some of the speed advantages of BRIEF.

2.3.3.2 ORB

ORB is presented as directly comparable with SURF or SIFT but is intended for use

in low-powered embedded environments such as onboard a small UAV. Feature scale is

considered using a global scale pyramid for the whole image rather than on a per-feature

basis. Scale invariance is achieved by filtering the Harris corner measure (Harris and

Stephens, 1988). Feature orientation is computed using the intensity centroid based on

image intensity moments (weighted averages of the intensity over the image patch)

Θ =

{

tan−1 m01
m10

if corner = bright

tan−1 m01
m10

+ 180 if corner = dark
, (2.25)

here mpq is the intensity moment of the feature patch at (x, y) = (p, q),

mpq =
∑

x,y

xpyqI(x, y). (2.26)

where I(x, y) is the intensity of the patch at (x, y), and the moment is computed over

pixels with in the feature patch size of (x, y) = (p, q). 180◦ compensation is required if

the corner is darker than the surrounding pixels to correct for the offset of the moments

between light and dark corners. The intensity centroid C is defined in terms of the

moments m01, m10, and m00,

C =

(

m10

m00
,
m01

m00

)

. (2.27)

The orientation is then used to rotate the sampling pattern of the BRIEF descriptor

(steered BRIEF). The BRIEF sampling pattern was also augmented by a learning

algorithm over a set of 300k keypoints from the PASCAL dataset PASCAL (2013) to

reduce the outlier correlation (Rublee et al., 2011).

ORB has been shown by its authors to be more robust than SIFT and SURF in some

cases while detection and extraction is an order of magnitude faster than SURF and

more than two orders of magnitude faster than SIFT. Performance was measured us-

ing the PASCAL dataset; two image sequences exhibiting in-plane rotation and affine

warping (Rublee et al., 2011). A review of descriptor extractors and descriptors for

augmented reality (AR) by Wu and Lew (2013) supports these claims.
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(a) (b)

Figure 2.9: Sampling patterns used for (a) FREAK (adapted from Ortiz (2012)) and (b)
ORB (adapted from Rublee et al. (2011)) descriptors. The ORB pattern is similar to
the random pattern used in the BRIEF descriptor but has been optimized to minimize
descriptor correlation under rotation. FREAK uses a sampling pattern where each
sample point is individually smoothed, with increased resolution near the centre pixel.

2.3.3.3 FREAK

The FREAK descriptor is based on a novel coarse-to-fine sampling pattern inspired by

the distribution of the ganglion cells over the human retina (Ortiz, 2012). A circular

sampling pattern is used with a higher density of sample points near the centre of

the patch than near the edges of the patch. In addition, the outer sample points use

larger slightly overlapping smoothed patches. Orientation is estimated by summing the

gradients of paired intensity measurements.

The sampling pattern allows a coarse-to-fine matching scheme, where the coarse half

section of the descriptor is used to discard obvious false matches, and the fine section

is used to refine the remaining potential matches to single pairs. The coarse-to-fine

approach improves matching efficiency: 1.44× over BRISK, and 22× and 40× over

SURF and SIFT respectively. Computing FREAK descriptors was also 77× faster

than SURF and 138× faster than SIFT (Ortiz, 2012).

2.3.4 Scale and Rotation Invariance

As the camera position and orientation changes the observed feature patches are scaled

and rotated. This is important for navigation where the camera pose is constantly

changing, so it is necessary to ensure robustness to rotation and scaling of feature

patches. Scale invariance is typically achieved by representing the image as a pyramid of

‘difference of Gaussians’ (DoG). The image is increasingly blurred, and the differences

between each successive blurring form the levels of the pyramid. Features are then

detected on all the layers, the descriptor is extracted from the layer which maximizes
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the feature detection score (Lowe, 1999, Rublee et al., 2011). In SIFT and SURF

this is an integral part of the descriptor, while others such as BRISK and FREAK

rely on feature detectors, such as the AGAST (Mair et al., 2010) extension to FAST,

for scale invariance (Ortiz, 2012, Leutenegger et al., 2011). In this thesis the ORB

descriptor is suggested for scale and rotation invariance because it has been shown to

have comparable repeatability to SIFT at a fraction of the computational time (Wu

and Lew, 2013, Ortiz, 2012).

2.3.5 Matching

Feature matching produces point correspondences from two sets of features extracted

from different images of the same scene or object. Point correspondences are generated

by finding similar features in both sets. The point correspondences provide the basis

for pose and homography estimation, object recognition (Lowe, 1999), and many other

operations in computer vision (Bradski and Kaeher, 2008, Brown and Lowe, 2007,

Baumberg, 2000). Matching is performed by finding the nearest matches in descriptor

space. In general, there will be incorrect matches below this threshold due to many

features being similar, so an outlier rejection stage is typically applied after matching.

For an overview of feature matching techniques see Chapter 5.

2.3.6 Outlier Rejection

Because of the difficulty in describing a feature uniquely and efficiently, the matching

process can generate false matches. And due to unavoidable uncertainties in feature

locations, pose and homography estimation may be skewed by outliers.

A popular general purpose outlier rejection scheme is the Random Sample Consensus

(RANSAC) algorithm (Fischler and Bolles, 1981). RANSAC outlier rejection, however,

has a non-deterministic run-time because the algorithm is based on selecting a random

subset of points and selecting the subset with the biggest set of inliers. Therefore, the

run-time depends on the number and quality of the features available for matching,

and there is no guarantee that RANSAC will find the correct solution. For a detailed

overview of RANSAC outlier rejection see Section 5.2.

2.4 OPTICAL FLOW

Optical flow is the apparent 2D motion of an object across the field of view resulting

from its 3D motion relative to the camera (Beauchemin and Barron, 1995, Horn and

Schunck, 1981, Horn, 1986, Adiv, 1985). Motion fields and optical flow are recognized as

a fundamental component of biological vision (Borst et al., 2010), particularly in insect

vision (Stowers, 2013). In visual navigation optical flow can be used for dominant plane

detection (Ohnishi and Imiya, 2005, 2006), collision avoidance (Green and Oh, 2008),



2.4 OPTICAL FLOW 27

odometry (Campbell et al., 2004, Nagatani et al., 2000), and altitude or speed control

(Meier et al., 2012, Hérissé et al., 2010).

Image Plane

O

p̄

p̄′

p

p′

m

f

Figure 2.10: A two-dimensional illustration of the ambiguity in the relationship be-
tween optical flow and physical motion. The optical flow f could have been caused
by observing the motion along the vector m, but it could also have been observed for
motion from p̄ to any point along the projection line from p̄′ to p′.

The optical flow constraint equation is derived from the image intensity gradients at

points in the image (Beauchemin and Barron, 1995)

∇I · v + It = 0, (2.28)

where ∇I = [Ix, Iy] is the image intensity gradient and v is the image velocity, or the

observed optical flow. It is the time-varying component of the image intensity.

Equation (2.28) defines a line in image velocity space, and solving for v without other

constraints can only yield the component of v perpendicular to the constraint line.

The problem of finding the total flow using (2.28) is called the aperture problem, the

ambiguity of the solution without additional constraints is illustrated Figure 2.11.

The aperture problem must be solved in order to find the total local optical flow.

Usually it is solved by using additional constraints derived from the wider context of

the image, or by assuming that the flow is locally continuous (Lucas et al., 1981) or

globally smooth (Horn and Schunck, 1981). Section 2.4.1 provides a list of common

methods.

2.4.1 Common Methods

Lucas-Kanade(Lucas et al., 1981) The Lucas-Kanade (LK) method solves the aper-

ture problem by assuming that the flow is constant for a small neighbourhood of pixels.

While it has good noise immunity, because it is a local method, it cannot be used to

determine the flow in large uniform areas. This is usually fixed by using a Gaussian of

pyramids to obtain increasingly more global flow fields.
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(a) (b)

(c) (d)

Figure 2.11: The aperture problem. (a) and (b) show to sequential frames from which
the flow can be calculated. (c) and (d) show two cases with different global motion
(blue arrows) which could have caused the local flow observed through the aperture
(red arrows).

Horn-Schunck (Horn and Schunck, 1981) This method uses a global smoothness con-

straint to solve the aperture problem based on the assumption that optical flow is

continuous nearly everywhere. It computes the dense optical flow, however, it is more

susceptible to noise, and the error is worse in sequences with more discontinuities.

Farneback (Farnebäck, 2003) The Farneback method is based on the assumption

that image neighbourhoods can be represented using polynomial expansion and that

estimating the shift between the polynomial expansions between two frames produces

a good estimate of the optical flow.

2.5 SUMMARY

This chapter has provided the necessary mathematical and computer vision background

for visual control and navigation. Not all of the material in this chapter is tested, how-

ever, feature based control is demonstrated in Chapter 5. Most of the low-level algo-

rithms have implementations in popular computer vision libraries (see Section 4.3), and
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so the work in this thesis is aimed at high level behaviour rather than implementation

details.



Chapter 3

UAV HARDWARE

For the purpose of experimentation a small quadrotor UAV was built. The quadro-

tor is based on control hardware from the Pixhawk (Pixhawk, 2013) project, and uses

the second generation PX4FMU flight control computer (autopilot). To facilitate vi-

sual control an ARM single board computer (SBC) and a single downward facing

monochrome camera are mounted on the quadrotor. The quadrotor has a flight time of

approximately 10minutes, and a total weight of 980 g including the onboard computer

and camera.

This chapter describes the quadrotor platform. Section 3.1 describes the actuation

hardware, chassis, and power system. Section 3.2 describes the autopilot and its some

of its application-specific peripheral boards. The onboard processing hardware is de-

scribed in Section 3.3.1, with consideration of onboard computer perfomance. The in-

tegration of each subsystem into a vision-capable quadrotor is described in Section 3.4.

A list of alternative platforms is given in Section 3.5, and a description of an alternative

research system based on the commercially available Parrot AR.Drone is presented in

Section 3.5.1. The chapter concludes with a summary of the system specifications in

Section 3.6.

3.1 FLIGHT PLATFORM

Multi-rotor UAVs are popular research platforms because of their mechanical simplicity,

their manoeuvrability, and ability to hover. An example of a four-rotor[1] configura-

tion (quadrotor) is shown in Figure 3.1. Quadrotors consist of two pairs of counter-

rotating propellers, each driven by a brushless DC (BLDC) motor mounted symmetri-

cally around the centre plate which holds the battery, control hardware, and payload.

Pitch and roll control is achieved by manipulating the balance of thrust from motors on

opposite arms, and yaw is controlled by the balance of torque from the counter-rotating

pairs. For a more complete overview of quadrotor control see (Hoffmann et al., 2007).

Typical open source quadrotors consist of two subsystems: The autopilot, and the drive

hardware. This section is concerned with the latter.

[1] Typical open source autopilots are capable of controlling UAVs with six or eight rotors, however

the four-rotor configuration is the simplest and most common
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Figure 3.1: The UAV built as part of this thesis is an example of the popular quadrotor
configuration.

3.1.1 Quadrotor Drive

Research by Pounds et al. (2006) and Hoffmann et al. (2007) has shown that con-

trol response latency is important for stable control. General purpose brushless motor

controllers are intended for relatively low-frequency human input, and are typically

designed for standard 50 Hz pulse position modulated (PPM) servo signals. The con-

troller input filter normally has its cutoff frequency under 100 Hz. Pounds et al. (2006)

showed that the latency introduced by limiting control signals to 50 Hz is, in general,

insufficient for stable control. Furthermore, the PX4FMU control loop runs at 250Hz

(Pixhawk, 2014), which is five times faster than generic controllers are designed for.

Therefore bespoke multi-rotor motors and controllers were chosen: HP2212-1000KV

motors from RCTimer (RCTimer, 2013) paired with 30 A RCTimer motor controllers.

The controllers are based on generic hobbyist hardware but are compatible with the

‘SimonK’ (SimonK, 2013) firmware patch to allow for 250Hz PPM signals. The con-

trollers are supplied with the patched firmware.

Table 3.1 shows the manufacturer specifications for the motors, motor drives, and

battery. The peak thrust is 28.8 N, which allows for a total flying weight of 2.2 kg with

a 30% thrust margin over hovering as suggested by Pounds et al. (2006). At maximum

weight, however, the estimated flight time is reduced to 5 minutes.
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3.1.2 Power supply circuit

A power control board was designed, including an arming switch which is off by default.

The arming circuit is a hysteresis circuit which uses a high-current MOSFET and a

momentary-on switch to toggle the state of the power supply to the motor drivers,

and is based on the Paparazzi booz power distribution board (Paparazzi, 2013). In

addition to manually disarming the motors, the hysteresis circuit also provides short-

circuit protection.

The autopilot, onboard computer, and avionics hardware require 5V power supply. To

minimize chance of accidental control actuation, 5V power supply is independent of

the arming circuit, allowing the control hardware to operate with the motor controllers

disabled. A 5V, 2.25A switch-mode power supply is used to provide the 5V. This was

found to be sufficient to power the autopilot, onboard computer, and the telemetry

link.

Schematics of the arming and power supply circuits are attached in Appendix B

Motors Speed Controllers Battery

Speed 1000 rpm/V Current (10 s) 40 A Voltage (nom) 14.8 V

Current (max) ≈9 A Current (cont) 30 A Current (cont) 77 A

Power (max) 130 W Power (cont) 500 W Power (cont) 1140 W

Thrust (max) 720 g Capacity 32 Wh

Weight 59 g Weight 23 g Weight 280 g

Table 3.1: Manufacturer specifications for the motors (RCTimer HP2212), motor
drivers (RCTimer SK-30A), and battery (4 cell LiPo). The quadrotor has a peak
thrust of 28.8N in total allowing a maximum flying weight of 2.2 kg (Pounds et al.,
2006). The estimated flight time with a total weight of 1 kg is 10 minutes.

A four-cell Lithium polymer (LiPo) battery is used to supply power to all onboard

systems.

3.1.3 Chassis

The Mikrokopter (Mikrokopter, 2013) chassis is a simple structure consisting of two

fibreglass centre plates bolted to four square aluminium arms radiating from the centre

plate at 90◦ intervals. The centre plate has 30mm hole spacing compatible with the

PX4FMU and with Praparazzi PCBs. The chassis is designed for 30 cm motor spacing,

giving the quadrotor an overall size of 46×46 cm including rotor radius. The chassis

weighs 218 g including the landing gear. Figure 3.2 shows the centre plates and flight

control hardware. (with no onboard computer or camera). Rubber coupling is used

between the chassis and the control boards and payloads to provide some isolation from

motor vibrations.
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(a) (b)

Figure 3.2: Mikrokopter showing the autopilot (top board), signal routing (below au-
topilot), and power distribution (below chassis) circuit boards. The bottom board has
been adapted for mounting a downward-facing camera.

3.2 AUTOPILOT

The PX4FMU (Pixhawk, 2013a) is the second generation autopilot from the Pixhawk

project. In 2012 it was still in development, however it was capable of stable flight and

supported control via the MAVLINK library. Continued development has produced a

flexible autopilot compatible with both fixed-wing and multi-rotor UAVs at the time

of writing.

The PX4FMU consists of a single board which holds the inertial measurement and

processing hardware. Motor control, serial communications, PPM input, and other IO

is exposed via a 30-pin expansion header which is compatible with the carrier boards

designed in conjunction with the PX4FMU. For this work a secondary 13-pin header

is used which exposes enough IO for quadrotor control, MAVLINK communication via

USART, and standard PPM control.

Several peripheral boards were designed as part of the Pixhawk project:

PXFlow: An optical flow camera which interfaces directly to the PX4FMU via a US-

ART and enables position hold (Honegger et al., 2013).

PXIOAR: Carrier board which interfaces the PX4FMU to the Parrot AR.Drone

quadrotor. It includes a 5V, 2.25A power supply and a XBee compatible WiFi module
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Gumstix Overo Odroid U2 PXComEx
(Pixhawk, 2012b)

CPU 700MHz 4×1.7GHz 2×1.86GHz
Memory 512MB DDR 2GB DDR2 2GB DDR2
Storage SDHC eMMC/SDHC SATA-II
USB 1×USB 1.1 2×USB 2.0 7×USB 2.0
Weight 5.6 g 20 g 235 g
Power 8W 10W 27W
FPU No Yes Yes

Table 3.2: A comparison of onboard computer specifications. The PXComEx used in
the pixhawk systen is included as a benchmark for high-performance onboard comput-
ers. Odroid and Gumstix power measurements were made at full CPU load.

headers.

PXIO: General purpose carrier board with an onboard failsafe microcontroller. This

board is intended primarily for fixed-wing craft and includes several high-current output

pins and 8 servo outputs.

3.2.1 Magnetic Sensor Interference

During initial test flights yaw interference of up to 40◦ were observed between idle and

full-throttle. This was found to be the result of magnetic interference between the high-

current motor supply circuit and the magnetometer. To avoid this, the power supply

hardware was mounted below the chassis, and the autopilot was mounted above the

chassis at the top of the board stack. A separation of 6 cm was found to be sufficient

to reduce the yaw error to less than 0.5◦ between idle and full-throttle.

3.3 COMPUTER VISION SYSTEM

Visual control is achieved using a single camera and an onboard computer. During the

course of this thesis two onboard computers were tested, and used with the Point Grey

Chameleon machine vision camera.

3.3.1 Onboard Computer

The Gumstix (Gumstix, 2012) Overo Earth is a compact SBC released in 2008. It

requires a separate carrier board to supply power and to expose USB, display, and

networking peripherals. The original device lacks the processing power for meaningful

real-time computer vision (Stowers, 2013). However, at the time of writing a second

generation of hardware has been released and is based on an updated dual-core archi-

tecture. Only the first generation hardware was available so the Gumstix was only used

during initial testing.
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(a) (b)

Figure 3.3: ARM single board computers used for onboard processing. (a) Gumstix
Overo Earth daughter board. A carrier board is required to supply power and provide
USB, networking, and other IO connectors. (b) The Odroid-U2. Power is supplied via
a single 5 V DC jack. The board includes standard USB, ethernet, HDMI, and audio
connecters.

Hardkernel (Hardkernel, 2013) developed the Odroid device family for developers using

the Android operating system. The U family of devices is the compact version of the

main line of devices. Power is provided by a single 5V input and USB, Ethernet, and

HDMI connectors are provided without the need for a carrier board.

Table 3.2 compares the specifications of each computer. The specifications of the PX-

ComEx used onboard the Pixhawk Cheetah are also shown as an example of a high

onboard computer. Clock speed, memory, and USB version are similar, however al-

gorithm performance is defined also by the architecture, software optimizations, and

other variables not shown here, so a performance comparison was carried out using

the pose estimation algorithm from Chapter 5. In the performance test the algorithm

is also drawing and displaying the matches as shown in Figure 5.2, which reduces the

frame rate from the performance measured in Chapter 5. Figure 3.4 summarizes the

performance comparison in terms of the average frame rate and the total system load.

The performance of a desktop performance with specifications similar to the PXComEx

is shown as a benchmark performance. All computers use the same algorithm param-

eters, and OpenCV version 2.4.2. From Figure 3.4, Gumstix performance is shown as

severely limited, therefore further experiments are performed exclusively on the Odroid.

Furthermore the frame rate on the Odroid, including the extra load of drawing and dis-

playing visual data, is above 10Hz which the lower bound on visual the visual control

loop rate for stable quadrotor control Stowers (2013).
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Figure 3.4: A comparison between the two onboard computers, with a desktop as a
benchmark. Performance was measured for the pose estimation algorithm presented in
Chapter 5 with a live display window of the matches.

3.3.2 Camera

The Point Grey Chameleon (Point Grey, 2013) is a bespoke machine vision cam-

era based on a Sony CCD sensor. Images are transfered to the computer using the

IEEE1394 protocol. Point Grey also provide a proprietary driver and software devel-

opment kit, however, it is not open source and unsupported by the OpenCV camera

control module.

3.4 COMPLETE SYSTEM

Figure 3.5 shows the structure of the complete system. The visual processing computer

generates high level commands in the form of attitude setpoints and sends them to

the autopilot. The autopilot compares the attitude setpoint to an estimate of the

current attitude measured by an IMU and sends control signals to the motor controllers.

The UAV has a weight of 980 g including onboard computer and camera, and has an

estimated flight time of 10 minutes.

Weight 980 g

Max payload 1.2 kg

Flight time 10min

Battery 32Wh

Table 3.3: Specifications for the complete quadrotor platform including the onboard
vision system. Flight time is calculated based on the battery capacity and assumes
that most of the time will be spent at or near hover.
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Figure 3.5: System architecture. Power is supplied by a 4-Cell LiPo battery via a
power distribution board which steps the voltage down to 5 V for the visual processing
hardware and autopilot. The autopilot uses control input from either a remote operator
or from the onboard computer and adjusts the motor speed via the speed controllers
(not pictured). Communications between the groundstation and the onboard computer
allow flight data to be viewed in real-time, and also allow the operator to take control
of the UAV.

3.5 ALTERNATIVE PLATFORMS

There are numerous open source and commercial alternatives ranging from complete

systems such as those provide by Ascending Technologies (AscTec), to flexible autopi-

lots and sensor systems such as the PX4FMU and ArduPilot systems. The following

is a short list of systems considered when designing the quadrotor.

• ArduPilot (ArduPilot, 2012) is a popular platform among hobbysists due to its

simplicity. Older versions have lacked the capabilities required by researchers,

however recent versions are compatible with MAVLINK.

• Paparazzi (Paparazzi, 2013) is the original open-source autopilot, in many ways

it is the predecessor of the Pixhawk system and the PX4FMU autopilot used in

this thesis.

• Mikrokopter (Mikrokopter, 2013) is a complete multi-rotor platform consisting

of control hardware, chassis, power supply, and motors.

• Pixhawk (Pixhawk, 2013) is the project which resulted in the PX4FMU as well

as its predecessor. The aim of this project is to develop a flexible autopilot with

visual control in mind.
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• Asctec (Ascending Technologies, 2012) design multi-rotor UAVs with Intel-based

onboard computers. The systems are targeted at researchers, but are costly.

3.5.1 The Parrot AR.Drone

The Parrot AR.Drone (Parrot, 2013a), shown in Figure 3.6, is a commercially available

quadrotor designed for control via WiFi. Its intended use is manual control using

an Android or Apple device, and it is advertised as a platform for augmented reality

(AR) games. The system consists of a quadrotor with two cameras (forward and

downward facing) and an ultrasonic altitude sensor, and has a flight time of 12minutes.

The proprietary control is capable of autonomous behaviour, as position hold and

‘flips’. Offboard control is supported by the native autopilot via a published client

API which connects to control server instance running on the native controller (Parrot,

2013b). The platform has several advantages over custom-built quadrotors and more

complicated autopilots:

• Rotor-guards for operator safety and minimizing crash damage.

• Altitude and speed limits enforced by the onboard control software.

• Automatic position and altitude hold.

• Client-side control and communications API is documented for offboard control.

• Offboard control via NodeCopter (2013), including access to the image data from

both cameras.

• Ready to fly.

Its relatively low cost (NZ$ 450-500), and the simplicity of the offboard control frame-

work make the AR.Drone an ideal choice for computer vision research. However it is

not designed to carry a payload, making it unsuitable for onboard processing.

3.6 SUMMARY

This section has described the UAV platform built for computer vision experiments.

The quadrotor is capable of 10minutes of continuous flight, and the onboard computer

is capable of running feature based pose estimation above the 10Hz threshold for stable

visual control. With the pose estimation running the Odroid onboard computer has

3/4 of its total processing power free for other tasks. The quadrotor is also small,

measuring less than 50 cm across and weighing just under 1 kg. It is therefore suitable

for indoor operation. The Parrot AR.Drone was suggested as an off-the-shelf quadrotor

suited for experimental visual control, although it is unsuitable for visual control with

onboard processing.
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Figure 3.6: The Parrot AR.Drone quadrotor is a low-cost quadrotor which is designed
for control over WiFi. A high-definition forward facing camera and a lower esolution
downward facing camera, combined with a rotor guards on the chassis make it an ideal
platform for indoor visual control experiments.
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CONTROL SOFTWARE

In Chapter 3 a quadrotor was described, consisting of actuation hardware controlled

by an autopilot, and an onboard computer for processing visual data and sending

high level commands to the autopilot. The autopilot software implements an attitude

control loop to stabilize the quadrotor and to match the craft attitude to the set point

from either the onboard computer or from remote human operator. For the purpose

of visual control the autopilot is considered a ‘black box’ which accepts attitude set

points as the control input. Both the computer vision software and the communication

framework must be robust and low-latency to facilitate stable control. A telemetry link

to the ground control computer is also required for observing and logging behaviour,

and taking control manually.

This chapter provides an overview of the control and communication software running

onboard the quadrotor. The Mavconn communications framework, which allows trans-

parent communications between the two onboard computers and the ground control

computer, is described in Section 4.1. A brief overview of the autopilot software is given

in Section 4.4, including the controller tuning procedure which must be carried out to

match the autopilots attitude controller to the UAV dynamics (Section 4.4.1). Sec-

tion 4.3 presents the computer vision component of the software system, which is based

on the OpenCV library. Some alternatives to OpenCV are also given (Section 4.3.1),

some of which are designed specifically for the ARM architecture. Section 4.5 concludes

the chapter with a description of the control loop formed by autopilot and visual pro-

cessing computer.

4.1 COMMUNICATION SOFTWARE

The Mavconn communications framework (Pixhawk, 2013b) is based on the MAVLINK

(Pixhawk, 2013c) and LCM (MIT, 2013) libraries. MAVLINK was developed as part

of the Pixhawk project (Meier et al., 2012) and released in 2009. It is now used as

the primary communications protocol in several open source autopilots including the

PX4FMU and Ardupilot (for a complete list see the MAVLINK website (Pixhawk,

2013c)). LCM is a set of libraries for low-latency interprocess communication designed

for real time applications.
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● Telemetry Display
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● Configuration
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● Low level control
● Stabilization

Communications Bridge

(Mavconn)

Figure 4.1: The functions performed by each of the three computers in the UAV system

Mavconn combines LCM and MAVLINK into a broadcast-subscribe communications

framework with two default channels: IMAGE and MAIN. MAIN transports control,

status, and telemetry data, and IMAGE transmits images acquired by the camera con-

trol module included in Mavconn. On the onboard computer efficient image transmis-

sion between acquisition and processing threads is achieved using shared memory, and

transmitting the image pointer over the IMAGE channel. Drivers for communicating

over standard protocols (USART and UDP, for example) are also provided.

The vision software is implemented as a multi-threaded program with the visual control

module subscribing to the IMAGE channel and the control output module subscribing

to the MAIN channel. Images are processed sequentially (intermediate frames are

dropped if the previous frame is still bing processed when the next frame arrives), and

the control output module is signaled after each successful frame.

Mavconn is capable of handling 5 cameras simultaneously, including a stereo imaging

head. However only one camera is used in this thesis.

4.2 COMPUTER VISION SOFTWARE

One of the goals of this thesis is to demonstrate that real-time control is achievable

using general purpose computer vision software running on a modern ARM CPU. To

that end, vision software is based entirely on the OpenCV library. OpenCV is a popular

open source computer vision library which includes implementations of most common

computer vision algorithms as well camera and file data IO handling. Version 2.42 was

used on all computers used for testing, however, it was built natively from source on

each system to enable any hardware-specific optimizations.

4.3 VISUAL CONTROL
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Figure 4.2: The architecture of the control software. The vision and communica-
tion software (the orange box) is the component which which this thesis is concerned
with. Visual control software is implemented as a subscriber to the MAIN and IMAGE
communication channels to access images and broadcast control commands. Control
commands are either state changes (e.g. grounded to airborne) or attitude setpont
packets.

4.3.1 Other Computer Vision Libraries

SimpleCV (SimpleCV, 2013) is a collection of libraries with a simplified Python in-

terface. The vision libraries include OpenCV, it is intended for simplicity over perfor-

mance.

BOOFCV (BoofCV, 2013) is a Java computer vision library which claims to outper-

form OpenCV in some areas.

UncannyCV (Uncanny Vision, 2013) is based on OpenCV with some enhancements

for the ARM architecture. UncannyCV is commercial software, however a time-limited

trial is available to students on request. The trial version imposes limits on the number

of times certain key functions can be called in one session, limiting its uses.

FastCV (Qualcomm, 2013) is an ARM-optimized vision library developed by Qual-

comm with specific optimizations for the Snapdragon line of processors.

4.4 AUTOPILOT SOFTWARE

Attitude control software runs on the autopilot with a controll loop rate of 250Hz

(Pixhawk, 2014). The quadrotor attitude is estimated from IMU measurements, and

compared to the attitude setpoint. Motor control signals are generated by an inde-

pendent PID controller for each axis of rotation, each of which consist of nested angle

and angle rate controllers. The output is then scaled by the thrust input. The PID
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controllers try to minimize the error between the setpoint attitude, received from the

onboard computer or from a human operator. This is achieved by controlling motor

speeds to balance the thrust from each motor, and the opposing torques from each

counter-rotating pair of rotors.

The PX4FMU runs the NuttX (NuttX, 2013) real-time operating system (RTOS), with

the various controllers implemented at the application layer. A hardware abstraction

layer provides a generic interface for each sensor on the board. Before flight the iner-

tial sensors must be calibrated for their position relative to the chassis, and to remove

any sensor bias. The sensor calibration process is described on Pixhawk wiki (Pix-

hawk, 2013b), and is likely to change with firmware updates. The PID control gains

must also be tuned for custom quadrotor hardware, which exhibit different dynamic

responses. The tuning process is based on observing the quadrotor response to manual

attitude perturbations, and is described below. Quadrotors are highly unstable and

under-actuated (Bouabdallah et al., 2004), and stable control depends on matching the

controller to the dynamics of a particular quadrotor configuration.

4.4.1 Controller Tuning

The following tuning process for the proportional (P) and derivative (D) gains of the

controller is summarized from the PX4FMU tuning guide (Pixhawk, 2013a):

1. Set all gains to zero.

2. Tune roll/pitch rates:

Start with small P (e.g. 0.05).

Hold quadrotor in hand with near-hovering thrust.

Manually tilt around roll or pitch axis and observe the response.

Increase P until mild oscillations are observed.

Set D=0.3×P.

Increase D until there are no oscillations.

3. Repeat #2 for yaw rate, rotating about the yaw axis instead of roll or pitch.

4. Tune roll/pitch angles.

Start with small P (e.g. 0.05)

Tilt about roll or pitch axis and let the quadrotor return to neutral attitude.

Increase P until slight oscillations in the response.

Start with D=0.3×P.

Increase until no oscillations or overshoot are observed.
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Figure 4.3: QGroundcontrol in flight plan mode. Additional functionality such as
caliration, configuration, and direct control is provided by autopilot specific widgets.

5. Repeat #4 for yaw angle, rotating about the yaw axis instead of roll or pitch.

Because of the symmetry of multi-rotor UAVs the roll and pitch controllers use common

gain values. It is also important to ensure that tuning is performed away from large

metal structures, as these can interfere with the magnetometer.

4.4.2 Ground Control

The autopilot operator interface is called the ground control station (GCS). Ground

control software displays telemetry and allows configuration and operator control from

a remote computer. QGroundcontrol (Pixhawk, 2013d) is open source ground control

software based on the original Pixhawk groundstation, and uses the MAVLINK protocol

to receive telemetry and send commands to the autopilot. The flight-mode operator

interface is shown in Figure 4.3, additional functionality such as IMU calibration and

controller tuning is provided by widgets.

4.5 THE VISUAL CONTROL LOOP

The visual control loop is illustrated in Figure 4.4. Attitude estimates are broadcast by

the autopilot and received by the subscribed message client. Mavconn stores images in

a region of shared memory and broadcasts the image pointers on the IMAGE channel.

Image clients receive the image pointers and retrieve the image from the shared memory

for processing. On image retrieval the most recent attitude estimate is used as the

current UAV attitude. The image and corresponding attitude estimate are then used

by a visual processing module to generate a control output in the form of an attitude

set point. This is then broadcast to the MAIN channel as an attitude control packet

received by all other subscribers to MAIN, including the autopilot. The autopilot then
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Figure 4.4: Visual control loop for control using pose estimation. Craft state is esti-
mated visually from visual data and attitude estimates from the autopilot.

actuates the motors to minimize the error between the attitude setpoint and the IMU

estimated attitude.

The delay between image capture and control output is important for stable control.

Figure 4.5 shows the time delay introduced by each acquisition and processing stage.

The USB transfer delay is fixed, and in (Meier et al., 2012) is measured for hardware

triggered image capture. The configuration in used in Chapter 3 does not include

external trigger hardware, and uses the camera in ‘free running’ mode, where the

camera handles continually captures images and returns the most recent frame to a

buffer.

4.6 SUMMARY

This section has presented the software libraries used to achieve control of a UAV. It

has also shown that the most significant gains performance gains can be achieved by

speeding up the visual processing software. Improvements to image acquisition and

transmission, and to the control filtering, are either minimal or impossible. For the

purpose of this thesis image acquisition and transmission are considered fixed delays.

USB Transmission Visual Processing

19 ms 50-160 ms0.5 ms

Mavconn Image Handling

Image Acquisition Control output

Figure 4.5: Delay from image acquisition to control output for one frame (not to scale).
USB transfer and Mavconn hub delay are taken from Meier et al. (2012), and image
processing time is for Chapter 5 running on the Odroid U2 onboard computer.



Chapter 5

CONTROL USING FEATURE TRACKING

Image features are used for tasks such as image registration (Zitov and Flusser, 2003,

Goshtasby, 2012), pose estimation (Chaperon et al., 2011, Hmam and Kim, 2010), 3D

reconstruction from multiple views (Liverani et al., 2010, Favalli et al., 2012, Varol

et al., 2012), and they are a key component in SLAM algorithms (Steder et al., 2008,

Artieda et al., 2009). In the context of autonomous control and navigation, image

features provide a means for finding the point correspondences used for localizing a

robot relative to known objects (Szeliski, 2011, Hartley and Zisserman, 2004).

This chapter presents a feature matching algorithm which relaxes the requirement for

outlier rejection by tracking the location of features in image space, and minimizing

the number of outliers based on a spatial constraint. The resulting set of point cor-

respondences is used for pose estimation to perform visual servoing of the quadrotor

described in Chapter 3. Section 5.1 reviews pose estimation from point correspon-

dences and gives a method method for efficiently estimating the accuracy of the pose

estimate. The RANSAC outlier rejection algorithm for pose estimation is reviewed

in Section 5.2. Feature matching is presented in Section 5.3, together with the intro-

duction of the tracking algorithm. The tracking method is intended to either replace

the RANSAC stage of the pose estimation algorithm or improve its performance, the

work in this chapter uses tracking to relax the RANSAC parameters. Performance and

accuracy results of testing both algorithms are presented in Section 5.4 with some dis-

cussion, and the pose estimation algorithm is used for visual servoing of the quadrotor

from Chapter 3. The algorithm is also used to demonstrate visual servoing using the

quadrotor from Chapter 3. The chapter concludes with a summary of the results and a

discussion of the limitations, advantages, and suggested improvements to the tracking

algorithm in Section 5.5.

5.1 POSE ESTIMATION

Pose estimation algorithms solve the perspective n-point problem (PnP) to estimate the

pose of the camera from a set of n point correspondences, where each correspondence

consists of a 3D point in the world coordinate system and its 2D projection onto the

image (Hartley and Zisserman, 2004). Point correspondences are found by extracting
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feature descriptors (the query points) from interest points in an image and finding the

nearest matching descriptor from a set of reference features (the reference points). The

reference features have known locations in the 3D world coordinate system. The pose

estimation algorithm used in this work is the OpenCV implementation of the ePnP

algorithm developed by Lepetit et al. (2009). ePnP was used because it is a non-

iterative algorithm which offers robustness and accuracy similar similar to iterative

methods, but at a reduced computational cost (Lepetit et al., 2009, Szeliski, 2011).

ePnP can also be used with an arbitrary number of point correspondences provided that

there are at least n > 4 correspondences. In contrast, many non-iterative algorithms

which either require either a small fixed number of points or scale poorly as n increases.

Compared to other non-iterative methods, ePnP is also more robust to noisy position

measurements and has linear computational complexity (O(n)) compared O(n2) for

the next fastest algorithm and O(n5) for the next best algorithm with comparable

noise-immunity (Lepetit et al., 2009).

5.1.1 Estimating the Pose Accuracy

Due to quantization noise, illumination fluctuation, and other perturbations, it is im-

possible to measure the exact positions of either the reference or query features. There-

fore, pose estimation algorithms find the best-fit pose for the given point correspon-

dences. (Hartley and Zisserman, 2004) It is desirable to estimate how accurate the pose

estimate is. The rigorous approach is to represent the reference and query points with

Gaussian random variables with mean positions p̄ and covariance matrices Rp (Voigt

et al., 2011, Hartley and Zisserman, 2004). Hartley and Zisserman (2004) show that it

is then possible to calculate an estimate of the pose accuracy using p̄ and Rp for each

feature. However, in most cases the large number of salient points makes calculating

and storing the means and covariance of each point intractable (Hartley and Zisserman,

2004). An alternative is to use the reprojection error as an approximation of the pose

accuracy (Voigt et al., 2011),

σ2 =
1

n

n
∑

i=1

‖P(pi)− p̂i‖, (5.1)

where P(pi) is the 2D projection of the 3D world point, pi, from the reference feature

set, and p̂i is its matching 2D point from the query set. n is the total number of

matches and the ‖ ‖ operator computes the Euclidean norm. This is the metric used

for outlier rejection, and is also used as an estimate of the pose estimate accuracy in

the tracking algorithm.
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5.2 RANSAC OUTLIER REJECTION

It is likely that the set of point pairs contains incorrect matches (called outliers) which

make it impossible to estimate the pose accurately. Random sample consensus (Fis-

chler and Bolles, 1981) is a general purpose outlier rejection algorithm commonly used

for robust pose estimation in the presence of many outliers. The general approach is

to repeatedly select a random subset of data points from the whole set and formu-

late a hypothesis based on the selected subset. The whole set is then compared with

the hypothesis, and the data points which agree with the hypothesis (the inliers) are

counted. This process is repeated with randomly selected subsets for a predetermined

number of iterations, after which the algorithm returns the hypothesis corresponding

to the largest group of inliers. The RANSAC algorithm for pose estimation can be

summarized as follows:

1. From the set of all matches, P, randomly select a subset PR

2. Compute pose Q from PR (the hypothesis)

3. For all matches, P:

Find the per-point reprojection error di

Compare di to threshold T

If di < T : Count as inlier

The reprojection error for each reference feature, di, is the metric used to test whether

data points agree with the hypothesis

di = ‖P(pi)− p̂i‖. (5.2)

Here P(pi) is the projection of the reference point pi using the pose estimate Q and

p̂i is its matching query point.

A common variation to improve computational efficiency is to terminate the algorithm

early when a sufficient number of inliers are found. While this approach is faster

on average, the run time is non-deterministic. This variant is used in the OpenCV

implementation of RANSAC pose estimation.

5.2.1 Minimum Iterations

The expected number of iterations for RANSAC to select a consensus set depends on

the probability of selecting a good point from the consensus set and the number of

inliers required for consensus,

E(k) = ω−N , (5.3)
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Figure 5.1: The number of iterations required for 95% confidence that at least one
subset containing no oultiers has been selected. The graph was generated using (5.4)
from Fischler and Bolles (1981) with z = 0.95 and selected values of ω = [0.5, 0.99].
(5.4) implies that there are n ≥ N

ω
matches to sample from.

where k is the number of iterations required to reach a consensus of at least N inliers,

with a probability ω of selecting a good point from the whole set P. (5.3) implies that

there are at least n ≥ N
w

data points in total. For a confidence, z, that at least one

subset of good points has been chosen, the minimum number of iterations is (Fischler

and Bolles, 1981)

k =
log(1− z)

log(1− ωN )
, (5.4)

where z is the confidence interval for finding the correct hypothesis. This equation is

illustrated by Figure 5.1 for z = 0.95. (5.4) is used to determine the maximum number

of iterations for which the RANSAC algorithm will run if a large enough consensus set

is not found.

5.3 FEATURE MATCHING

Matching is the precursor to pose estimation, object recognition, stereoscopic trian-

gulation, and most other point-based geometric operations (Szeliski, 2011). Feature

correspondences are produced by comparing the descriptors of reference and query fea-

tures and selecting the nearest pairs in descriptor space as matches (Szeliski, 2011,

Hartley and Zisserman, 2004).
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5.3.1 Match Criteria

There are several strategies for selecting positive matches and rejecting false ones. It

is assumed that the distance between features in descriptor space correlates to feature

similarity, and that the smaller the distance between descriptors the more likely they

are to represent the same real point (Szeliski, 2011). The obvious approach is to se-

lect feature pairs with distances below a predetermined threshold as positive matches.

However this raises the question of choosing the threshold, which varies between ap-

plications (Szeliski, 2011). This method can also find multiple matches for each query

or reference feature. An alternative approach is to use the ratio of the first and second

nearest neighbours in feature-space, and choose matches below a threshold. This has

the advantage of favouring unique matches over features which similar to many other

features.

The default strategy in OpenCV is just to return the nearest query descriptor to each

reference descriptor. This is the strategy used in this work.

5.3.2 Brute-force Matching

The simplest approach is to compute the descriptor-space distance between each ref-

erence feature and each query feature, choose the nearest query descriptor to each

reference descriptor. This is computationally expensive, with a computational com-

plexity of (Hajjdiab and Laganire, 2009)

O(NRNQH), (5.5)

where H is the computational cost of matching one feature, and NR and NQ are the

number of reference and query features respectively.

In this work binary descriptors are used in place of SIFT or SURF to reduce the

H factor. To further improve efficiency only the NQ and NT factors can be altered,

however it is usually undesirable to use fewer features, as this can come at a cost of

lower accuracy and less robustness. Efficient alternatives to brute-force matching can

be divided into two general categories (Szeliski, 2011): Hashing and index trees; and

tracking methods. The first category uses efficient algorithms to search feature space,

and the second uses search constraints in real world and image space.

This method can also produce incorrect matches with large reprojection errors. It can

also match several reference descriptors to one query descriptor.

5.3.3 Indexed Trees and Hashing

One alternative to brute-force matching is to use an indexing structure, or hashing, to

categorize the descriptors into bins. Query features are then compared to features in
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Figure 5.2: Point correspondences found by matching reference and query features.
Matches are found between the reference image of the book title on the left, and
features extracted in an image from the camera on the right with tracking (bottom)
and without tracking (top). In the tracking example expected feature search regions
are circled in black.
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the nearest bins, rather than the whole set (Szeliski, 2011). In OpenCV the fast linear

approximate nearest neighbour (FLANN) library is used for indexed matching (Muja

and Lowe, 2009).

While these methods are efficient, their performance is often dependent on the proper-

ties of the data set (Muja and Lowe, 2009). Typically the algorithms include a training

stage where the properties of the data set and some knowledge of feature distribution

in descriptor space is learned. Indexing is therefore most effective when used on large

datasets Szeliski (2011). For real-time computer vision a more suitable approach is to

use spatial search constraints, particularly since the feature locations are likely to be

known in both image space and world space.

This method is a faster way to perform brute-force matching, provided the same match-

ing criteria is used. Incorrect matches can still occur with large reprojection errors,

and several reference descriptors can be matched to one query descriptor.

5.3.4 Feature Tracking

Feature tracking can be used for efficient matching in image sequences provided they

meet the following assumptions (Szeliski, 2011, Shi and Tomasi, 1994):

1. Most of the reference features are present in the query image.

2. Feature translation between sequential images is relatively small.

Both of these assumptions hold for visual servoing with a stationary marker.

Feature tracking algorithms use the locations of features in previous frames to reduce

the feature search area in the current frame (Szeliski, 2011). Figure 5.3 illustrates the

projection based algorithm used for feature tracking in this thesis, which uses the FAST

and BRIEF feature detection and description algorithms respectively. Work performed

by Dorini and Goldenstein (2010), and similar work by Voigt et al. (2011), has shown

that imposing a spatial constraint on potential matches improves matching speed and

robustness. Feature tracking limits potential matches based on the proximity of query

features to the location of the reference feature in the previous frame, and is therefore

expected to improve both robustness and processing speed. Voigt et al. (2011) used

binocular vision and inertial cues to determine the region of permissible matches, and

Dorini and Goldenstein (2010) focused on robust feature tracking in the general case.

Hajjdiab and Laganire (2009) have shown that restricting the permissible matches

based on their distance from the reference feature in an image reduces the complexity

from (5.5) to

O(ρNRNRH), (5.6)
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Figure 5.3: The matching algorithm ignores training features outside of the search
radius for each feature query feature and the detection algorithm only searches within
the search radius of the projection of each training feature. This improves matching
performance by reducing ρ in (5.6). It further reduces feature search time by searching
a smaller region of the image and by reducing the total number of query features NQ.

where ρ < 1 is a factor defined by the spatial density of the query features and the size

of the search region. Furthermore, feature detection efficiency is also improved only

performing detection within the search regions.

To determine the size of the search region, the reprojection error from (5.1) is used as

a measure of pose accuracy

r = α+ σδ, (5.7)

where α is the base radius and δ is the scaling factor to apply to the reprojection error,

σ, of the pose estimate from the previous frame. r is the radius around the projected

reference feature, outside of which query features are ignored.

Based on equations (5.1) and (5.7) the tracking process is implemented as illustrated

by Figure 5.3. The algorithm uses RANSAC pose estimation to find the initial estimate

of the pose and to recover if tracking is lost. After initialization the tracking algorithm

can be summarized as follows:

1. Project reference features onto frame n + 1 using the pose estimate from frame

n.

2. Calculate the feature search and match region size using (5.7).

3. Construct an OpenCV mask of permissible matches using the location of each

feature in frame n and the search region size from step 2.

4. Match features using the mask.
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5. Update the pose and the reprojection error using (5.1).

6. Threshold σ to check if the marker is still visible:

If visible: run from step 1 with the next frame.

Else: re-initialize.

The mask for each reference feature is a Boolean vector with an entry for each query

feature. The entry is true if the query feature from frame n + 1 is within the search

radius of the reference position from frame n. In openCV the complete mask is a matrix

of Boolean values of size NR ×NT . The above process is valid if the camera motion is

slow relative to the frame rate; a valid assumption for visual servoing of a stationary

marker.

The tracking approach will not produce matches with large reprojection errors, and

introduces spatial matching criteria. In this way, similar features which are far apart

in image space will not be considered potential matches, whereas in brute force or

indexing they would be.

Table 5.1 shows the parameters used across both algorithms; note that the tracking

method does no use RANSAC with relaxed parameters, which are tightened if the

marker is lost. Tracking is also disabled if the marker is lost.

Value Description

2000 Max number of iterations for RANSAC. Determined from Figure 5.1.
7 Inlier reprojection error threshold. Determined empirically.
300 Number of query features. Determined empirically.
80 Number of reference features. Determined empirically.
35 The number of inliers required for consensus. Determined empirically

to match the proportion of inliers in Figure 5.4 for 80 matches.
30 Initial threshold for the FAST algorithm. The threshold is adaptive,

but this was chosen as the threshold which found approximately 80
features in the reference features.

4.0 Reprojection error threshold for a lost marker
1000 cm Z-translation jump for an incorrect pose estimate

Table 5.1: Parameters chosen for a RANSAC confidence of z=0.95, assuming approxi-
matly 60% inliers determined empirically from Figure 5.4.

5.4 TESTING RESULTS

For visual quadrotor control the general consensus is that stable control is possible

with a minimum visual control loop rate of 10Hz (Stowers, 2013, Achtelik et al., 2011).

A 10Hz rate allows 100ms to process each frame. During testing the processing time

was measured from from image acquisition to pose estimate output, Figure 5.4 shows
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Figure 5.4: A comparison between RANSAC and tracking pose estimation. (a) and
(c) show the percentage of inliers found during pose estimation stage, and (b) and (d)
show the processing time per frame. The outlier groups in (c) and (d) are caused when
the tracking algorithm resorts to RANSAC after loosing the marker or computing an
inaccurate pose estimate.

a histogram of the frame processing times and inlier percentages for the RANSAC and

tracking algorithms for a sequence of 10,000 images.

5.4.1 Processing Time

The mean processing time for the tracking algorithm is 46.7ms, compared to the

RANSAC algorithm with a mean time of 52.4ms. The worst case times are similar

(86ms and 82ms for RANSAC and tracking respectively), however approximately 5%

of the tracking frames required longer than 50ms, while 47% of the RANSAC frames

did. This translates approximately to 95% confidence that any tracking frame will be

processed in under 50ms, while the 95% confidence processing time for RANSAC is

73ms While the processing time was never more than the 100ms limit, it is desirable to

allow time for other tasks which might be performed for more complex control strate-
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gies. This extra time is required to avoid dropping frames and further increasing the

delay between image acquisition and control output. Tracking fulfills this requirement

by consistently using only half of the available time to perform some computationally

intensive processing. RANSAC can only guarantee with 95% confidence that it will

not use more than 73ms, for a given frame, offering about half as much time for other

tasks when compared with the tracking algorithm.

Figure 5.4 also shows the inlier percentage for RANSAC and tracking algorithms. There

is a clear improvement when tracking is enabled, however it was noted that the number

of inliers remained the same (on average ≈60 inliers) but the number of matches was

reduced due to tracking excluding most obvious false matches. The percentage of inliers

was improved without reducing the total number of query features, which remained

at 300. For RANSAC, on average, 47% of the matches were inliers, while tracking

increased the inlier percentage to 84% and, ignoring outliers caused by returning to

RANSAC, the minimum inlier percentage was 60% when feature tracking was used.

From Figure 5.1 this improves required iterations for a 0.95% confidence interval from

about O(1014) for about 47% to O(103) for ≈60%.

5.4.2 Pose Jitter

The pose jitter was measured for the same sequence of images, Figure 5.5 shows a

histogram of the Z-axis component (the distance along the focal axis) of the pose

estimate. The Z-axis component is used because for planar markers such as the one

used for these tests, the Z-axis is the most variable component of the pose estimate.

The data was recorded using the same image sequence and algorithm parameters as the

performance data, however a second test where the algorithm was run 10,000 times on

a static image from the sequence was also run. The second test was used to compare

the jitter introduced by image noise to the jitter introduced by RANSAC.

The ground-truth pose has a Z-axis translation of 42 cm. For the image sequence

the tracking average is rounded to 42.0 cm with a standard deviation of 0.2 cm while

RANSAC gives an average of 42.4 cm with a standard deviation of 2.4 cm. For the

static image the averages are the same, however tracking gives a standard deviation of

0 cm, while RANSAC has a standard deviation of 0.8 cm/ cm, RANSAC increases the

standard deviation by a=1.6 cm. Furthermore the The jitter introduced by RANSAC

is approximately four times the contribution from image noise (assuming standard

deviation as a measure of jitter). Furthermore, noise and RANSAC jitter do not com-

bine linearly because neither RANSAC or pose estimation are linear operations. The

combined jitter of RANSAC and image noise is larger still.
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5.4.3 System Load

In addition to processing speed and jitter the system load (for the Odroid SBC) was

also measured using the Linux top utility. Both RANSAC and tracking consumed a

maximum of approximately 25% of available CPU time, including a running instance of

Mavconn. This suggests that the Odroid has sufficient overhead to run similar computer

vision algorithms simultaneously, and to provide more more complex behaviour in more

cluttered environments.

5.4.4 Visual Servoing

Finally, the algorithm was run onboard the quadrotor and used to perform visual

servoing after manual takeoff. Landing was also performed manually. Stable hovering

was observed, however, external perturbations resulted in unstable behaviour which

required manual intervention to correct.

The poor response perturbations is likely due to a combination of suboptimal visual

controller parameters and variable delay due to acquiring images in ‘free running’ mode

rather than using triggering. Free running was used for hardware simplicity, however

this means that rather than an accurately timestamped image with a corresponding

attitude estimate, the algorithm operates on the most recent image and attitude esti-

mate. Therefore the attitude estimate might differ from the actual attitude at which

the image was captured.

5.5 LIMITATIONS AND FUTURE WORK

The tracking algorithm relies on the pose estimate from the previous frame to com-

pute the matching constraint. This imposes a constraint on the maximum translation

between frames, and therefore the maximum camera speed. This is an undesirable

constraint for UAV navigation where the camera is in motion. In its original form

the algorithm handles small camera movements by simply increasing the search region,

however for large movements, the search region would need to be so large that the

advantage of the tracking algorithm would be lost.

An alternative strategy is to measure the feature velocity in image space between the

previous two frames, and use the velocity to translate the search region.

¯̂pi = P(pi)i−1 − P(pi)i−2, (5.8)

where P()i−1 and P()i−2 are the projection operations using the pose from the previ-

ous frame and the frame before it respectively. The new search region is around ¯̂pi.

This approach is based on the assumption that camera motion, including rotation, is

continuous and therefore feature velocity in the image space must also be continuous.
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Figure 5.5: Histogram of the Z-translation of the pose estimate for a fixed camera pose
at z=42 cm. (a) and (b) were recorded from the pose computed over a sequence of
104 images for RANSAC and tracking pose estimation respecticely. (c) and (d) were
generated using data recorded by estimating the pose 104 times from a static reference
image, also for RANSAC and tracking. The difference between the top and bottom
histograms is jitter due to noise present in the image and in the feature locations, while
the difference between left and right histograms is the jitter introduced by RANSAC
selecting different subsets to compute the hypothesis from.
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A more complicated model could be derived from the dynamics of quadrotor motion,

however this simple approach may be sufficient.

Camera motion also alters the scale and rotation of the query features, whereas with

a stationary camera these are approximately constant. To handle this aspect of cam-

era motion two improvements are suggested: Use of descriptor with scale and rota-

tion invariance, and periodically updating the reference feature descriptors as the pose

changes. ORB is a scale and rotation invariant feature descriptor and detector which

is based on BRIEF, and uses Gaussian pyramids for scale invariance. This is an ideal

replacement for BRIEF with the current tracking algorithm. The FREAK descriptor

is also a potential replacement, however its particular advantage is in the coarse-to-fine

saccadic matching which may diminish if used in conjunction with tracking.

Another improvement is be to use RANSAC after coarse outlier exclusion by feature

tracking. This would improve robustness, and due to the high percentage of inliers

after tracking, come at minimal extra computational cost.

Finally there is no temporal filtering of the pose estimate, aside from checking for

impossibly large discontinuities. The addition of Kalman filtering, or some similar

filtering strategy, is expected to improve the robustness of the visual control algorithm.

5.6 SUMMARY

This chapter has presented a pose estimation algorithm which runs in real-time on

a small onboard computer. This has served as a proof-of-concept for small ARM

onboard computers for real-time processing of general purpose computer vision algo-

rithms. However, the system is limited to situations where the camera is approximately

stationary relative to the marker. Several suggestions were made to extend the pose

estimation algorithm to allow for camera motion.

Suggestions were also made as to improving the robustness of the visual controller to

external perturbations of the quadrotor pose and attitude.

A feature tracking algorithm as used in place of RANSAC outlier rejection to reduce

the variability in both the pose estimate and the processing frame rate. However, the

tracking approach imposes some limitations on the movement allowed between frames.

Two improvements were suggested to better handle large camera displacements between

frames, and feature scaling due to camera movement.



Chapter 6

CONCLUSION

The aim of this thesis was determine the suitability of small, lightweight ARM com-

puters for real-time visual control of a quadrotor. To demonstrate this a quadrotor was

built using the PX4FMU autopilot from the Pixhawk project with generic multi-rotor

hardware. This was paired with the Odroid-U2 single board computer for onboard

processing, and a single downwards facing camera. A bespoke power supply PCB was

designed based on the Paparazzi quadrotor power distribution board. The power con-

trol circuit required manual arming of the motor drivers for safety reasons, and to allow

testing of the avionics hardware without risking accidental motor actuation.

An efficient feature tracking algorithm was developed and used to demonstrate the real-

time capability of the Odroid. The performance of the tracking algorithm was compared

to that of a RANSAC algorithm, with both used for pose estimation. Tracking was

found to produce less variable results with consistently shorter processing times per

frame than the RANSAC approach. However RANSAC was used to compute the

initial pose for the tracking algorithm, and to re-initialize tracking if the marker was

lost. Tracking was used as the basis for pose estimation, which was demonstrated by

performing visual servoing of the quadrotor.

The quadrotor, onboard computer, and the tracking algorithm have served as a proof

of concept that it is possible to process visual data in real time using small ARM single

board computers. However some improvements are suggested for both the tracking

algorithm and the quadrotor platform, and further testing is required in more cluttered

environments with more complex control strategies.

6.1 RECOMMENDATIONS

Based on the author’s experience, a much more attractive path for experiments in

visual control is to use a ready-to-fly quadrotor rather than spending several months

building one. Furthermore onboard processing is not necessary in a research context,

as most experiments will be carried out indoors, within range of high-speed wireless

network connections.

An ideal base platform for such work is the Parrot AR.Drone, which solves most of
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the quadrotor hardware problems and supports external control over WiFi via the

nodecopter library. The native controller provides autonomous behaviour such as po-

sition and altitude hold, speed and altitude limits, and can even perform ‘flips’. The

AR.Drone is also a low-cost platform, with a retail price of NZ$450-500 at the time of

writing.

The recommended approach for the general case of experiments in visual control of

multi-rotor UAVs is to perform initial testing and validation using offboard processing

with a robust platform such as the AR.Drone.



Appendix A

PROJECTIVE GEOMETRY

Projective geometry is fundamental the projective operations common in computer

vision. It is an extension of Euclidean geometry where an extra coordinate is added,

and used to normalize the point

p = [x, y, 1]T (A.1)

where x and y are the components of the Euclidean point [x, y]T and are scaled so

that the third component[1] is always equal to 1. This expression of coordinates (called

homogeneous coordinates) allows the expressing of points ‘at infinity’ by setting the

last coordinate to zero

p∞ = [x, y, 0]T , (A.2)

which allows parallel lines to meet in projective space. For example, parallel lines in

3D space (e.g. train tracks) appear to meet when projected onto 2D space (e.g. the

point on the horizon where train tracks appear to converge).

[1] The examples here are for 2D geometry, however these are easily generalized to higher dimensions
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BoofCV. BoofCV computer vision library. www.boofcv.org, Jul 2013.
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Hardkernel. Hardkernel android development hardware. www.hardkernel.org, Aug

2013.
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NodeCopter. Nodecopter control library for the parrot AR.Drone. www.nodecopter.

com, Dec 2013.
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Oxford Datasets. Oxford wall dataset. http://www.robots.ox.ac.uk/˜vgg/

data/data-aff.html, Jun 2013.

Paparazzi. Papparazziuav. www.paparazzi.enac.fr, Feb 2013.

Parrot. Parrot AR.Drone. ardrone2.parrot.com, Dec 2013a.

Parrot. Parrot AR.Drone software development kit. ardrone2.parrot.com/

developer-zone, Dec 2013b.
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