35 research outputs found

    Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging

    Full text link
    The implementation challenges of cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging are discussed and work on the subject is reviewed. System architecture and sensor fusion are identified as key challenges. A partially decentralized system architecture based on step-wise inertial navigation and step-wise dead reckoning is presented. This architecture is argued to reduce the computational cost and required communication bandwidth by around two orders of magnitude while only giving negligible information loss in comparison with a naive centralized implementation. This makes a joint global state estimation feasible for up to a platoon-sized group of agents. Furthermore, robust and low-cost sensor fusion for the considered setup, based on state space transformation and marginalization, is presented. The transformation and marginalization are used to give the necessary flexibility for presented sampling based updates for the inter-agent ranging and ranging free fusion of the two feet of an individual agent. Finally, characteristics of the suggested implementation are demonstrated with simulations and a real-time system implementation.Comment: 14 page

    Localization Services for Online Common Operational Picture and Situation Awareness

    Get PDF
    Many operations, be they military, police, rescue, or other field operations, require localization services and online situation awareness to make them effective. Questions such as how many people are inside a building and their locations are essential. In this paper, an online localization and situation awareness system is presented, called Mobile Urban Situation Awareness System (MUSAS), for gathering and maintaining localization information, to form a common operational picture. The MUSAS provides multiple localization services, as well as visualization of other sensor data, in a common frame of reference. The information and common operational picture of the system is conveyed to all parties involved in the operation, the field team, and people in the command post. In this paper, a general system architecture for enabling localization based situation awareness is designed and the MUSAS system solution is presented. The developed subsystem components and forming of the common operational picture are summarized, and the future potential of the system for various scenarios is discussed. In the demonstration, the MUSAS is deployed to an unknown building, in an ad hoc fashion, to provide situation awareness in an urban indoor military operation.Peer reviewe

    Algorithms for indoor localization based on IEEE 802.15.4-2011 UWB and inertial sensors

    Get PDF
    In this thesis, extensive experiments are firstly conducted to characterize the performance of using the emerging IEEE 802.15.4-2011 ultra wideband (UWB) for indoor localization, and the results demonstrate the accuracy and precision of using time of arrival measurements for ranging applications. A multipath propagation controlling technique is synthesized which considers the relationship between transmit power, transmission range and signal-to-noise ratio. The methodology includes a novel bilateral transmitter output power control algorithm which is demonstrated to be able to stabilize the multipath channel, and enable sub 5cm instant ranging accuracy in line of sight conditions. A fully-coupled architecture is proposed for the localization system using a combination of IEEE 802.15.4-2011 UWB and inertial sensors. This architecture not only implements the position estimation of the object by fusing the UWB and inertial measurements, but enables the nodes in the localization network to mutually share positional and other useful information via the UWB channel. The hybrid system has been demonstrated to be capable of simultaneous local-positioning and remote-tracking of the mobile object. Three fusion algorithms for relative position estimation are proposed, including internal navigation system (INS), INS with UWB ranging correction, and orientation plus ranging. Experimental results show that the INS with UWB correction algorithm achieves an average position accuracy of 0.1883m, and gets 83% and 62% improvements on the accuracy of the INS (1.0994m) and the existing extended Kalman filter tracking algorithm (0.5m), respectively

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified

    Indoor positioning system for wireless sensor networks

    Get PDF
    Tese de Doutoramento - Programa Doutoral em Engenharia Electrónica e ComputadoresPositioning technologies are ubiquitous nowadays. From the implementation of the global positioning system (GPS) until now, its evolution, acceptance and spread has been unanimous, due to the underlying advantages the system brings. Currently, these systems are present in many different scenarios, from the home to the movie theatre, at work, during a walk in the park. Many applications provide useful information, based on the current position of the user, in order to provide results of interest. Positioning systems can be implemented in a wide range of contexts: in hospitals to locate equipment and guide patients to the necessary resources, or in public spaces like museums, to guide tourists during visits. They can also be used in a gymnasium to point the user to his next workout machine and, simultaneously, gather information regarding his fitness plan. In a congress or conference, the positioning system can be used to provide information to its participants about the on-going presentations. Devices can also be monitored to prevent thefts. Privacy and security issues are also important in positioning systems. A user might not want to be localized or its location to be known, permanently or during a time interval, in different locations. This information is therefore sensitive to the user and influences directly the acceptance of the system itself. Concerning outdoor systems, GPS is in fact the system of reference. However, this system cannot be used in indoor environment, due to the high attenuation of the satellite signals from non-line-of-sight conditions. Another issue related to GPS is the power consumption. The integration of these devices with wireless sensor networks becomes prohibitive, due to the low power consumption profile associated with devices in this type of networks. As such, this work proposes an indoor positioning system for wireless sensor networks, having in consideration the low energy consumption and low computational capacity profile. The proposed indoor positioning system is composed of two modules: the received signal strength positioning module and the stride and heading positioning module. For the first module, an experimental performance comparison between several received signal strength based algorithms was conducted in order to assess its performance in a predefined indoor environment. Modifications to the algorithm with higher performance were implemented and evaluated, by introducing a model of the effect of the human body in the received signal strength. In the case of the second module, a stride and heading system was proposed, which comprises two subsystems: the stride detection and stride length estimation system to detect strides and infer the travelled distance, and an attitude and heading reference system to provide the full three-dimensional orientation stride-by-stride. The stride detection enabled the identification of the gait cycle and detected strides with an error percentage between 0% and 0.9%. For the stride length estimation two methods were proposed, a simplified method, and an improved method with higher computational requirements than the former. The simplified method estimated the total distance with an error between 6.7% and 7.7% of total travelled distance. The improved method achieved an error between 1.2% and 3.7%. Both the stride detection and the improved stride length estimation methods were compared to other methods in the literature with favourable results. For the second subsystem, this work proposed a quaternion-based complementary filter. A generic formulation allows a simple parameterization of the filter, according to the amount of external influences (accelerations and magnetic interferences) that are expected, depending on the location that the device is to be attached on the human body. The generic formulation enables the inclusion/exclusion of components, thus allowing design choices according to the needs of applications in wireless sensor networks. The proposed method was compared to two other existing solutions in terms of robustness to interferences and execution time, also presenting a favourable outcome.Os sistemas de posicionamento fazem parte do quotidiano. Desde a implementação do sistema GPS (Global Positioning System) até aos dias que correm, a evolução, aceitação e disseminação destes sistemas foi unânime, derivada das vantagens subjacentes da sua utilização. Hoje em dia, eles estão presentes nos mais variados cenários, desde o lar até́ à sala de cinema, no trabalho, num passeio ao ar livre. São várias as aplicações que nos fornecem informação útil, usando como base a descrição da posição atual, de modo a produzir resultados de maior interesse para os utilizadores. Os sistemas de posicionamento podem ser implementados nos mais variados contextos, como por exemplo: nos hospitais, para localizar equipamento e guiar os pacientes aos recursos necessários, ou nas grandes superfícies públicas, como por exemplo museus, para guiar os turistas durante as visitas. Podem ser igualmente utilizados num ginásio para indicar ao utilizador qual a máquina para onde se deve dirigir durante o seu treino e, simultaneamente, obter informação acerca desta mesma máquina. Num congresso ou conferência, o sistema de localização pode ser utilizado para fornecer informação aos seus participantes sobre as apresentações que estão a decorrer no momento. Os dispositivos também podem ser monitorizados para prevenir roubos. Existem também questões de privacidade e segurança associados aos sistemas de posicionamento. Um utilizador poderá não desejar ser localizado ou que a sua localização seja conhecida, permanentemente ou num determinado intervalo de tempo, num ou em vários locais. Esta informação é por isso sensível ao utilizador e influencia diretamente a aceitação do próprio sistema. No que diz respeito aos sistemas utilizados no exterior, o GPS (ou posicionamento por satélite) é de facto o sistema mais utilizado. No entanto, em ambiente interior este sistema não pode ser usado, por causa da grande atenuação dos sinais provenientes dos satélites devido à falta de linha de vista. Um outro problema associado ao recetor GPS está relacionado com as suas características elétricas, nomeadamente os consumos energéticos. A integração destes dispositivos nas redes de sensores sem fios torna-se proibitiva, devido ao perfil de baixo consumo associado a estas redes. Este trabalho propõe um sistema de posicionamento para redes de sensores sem fio em ambiente interior, tendo em conta o perfil de baixo consumo de potência e baixa capacidade de processamento. O sistema proposto é constituído por dois módulos: o modulo de posicionamento por potência de sinal recebido e o módulo de navegação inercial pedestre. Para o primeiro módulo foi feita uma comparação experimental entre vários algoritmos que utilizam a potência do sinal recebido, de modo a avaliar a sua utilização num ambiente interior pré-definido. Ao algoritmo com melhor prestação foram implementadas e testadas modificações, utilizando um modelo do efeito do corpo na potência do sinal recebido. Para o segundo módulo foi proposto um sistema de navegação inercial pedestre. Este sistema é composto por dois subsistemas: o subsistema de deteção de passos e estimação de distância percorrida; e o subsistema de orientação que fornece a direção do movimento do utilizador, passo a passo. O sistema de deteção de passos proposto permite a identificação das fases da marcha, detetando passos com um erro entre 0% e 0.9%. Para o sistema de estimação da distância foram propostos dois métodos: um método simplificado de baixa complexidade e um método melhorado, mas com maiores requisitos computacionais quando comparado com o primeiro. O método simplificado estima a distância total com erros entre 6.7% e 7.7% da distância percorrida. O método melhorado por sua vez alcança erros entre 1.2% e 3.7%. Ambos os sistemas foram comparados com outros sistemas da literatura apresentando resultados favoráveis. Para o sistema de orientação, este trabalho propõe um filtro complementar baseado em quaterniões. É utilizada uma formulação genérica que permite uma parametrização simples do filtro, de acordo com as influências externas (acelerações e interferências magnéticas) que são expectáveis, dependendo da localização onde se pretende colocar o dispositivo no corpo humano. O algoritmo desenvolvido permite a inclusão/exclusão de componentes, permitindo por isso liberdade de escolha para melhor satisfazer as necessidades das aplicações em redes de sensores sem fios. O método proposto foi comparado com outras soluções em termos de robustez a interferências e tempo de execução, apresentando também resultados positivos

    Wearable-Based pedestrian localization through fusjon of inertial sensor measurements

    Get PDF
    Hoy en día existe una gran demanda de sistemas de navegación personales integrados en servicios como gestión de desastres para personal de rescate. También se demandan sistemas de navegación personales como guía en grandes superficies, por ejemplo, hospitales, aeropuertos o centros comerciales. En esta tesis doctoral los escenarios estudiados son interiores y urbanos. La navegación se realiza por medio de sensores inerciales y magnéticos, idóneos por su amplia difusión, tamaño y peso reducido y porque no necesitan infraestructura. Se llevarán a cabo investigaciones para mejorar los algoritmos de navegación ya existentes y cubrir determinados aspectos aún no resueltos. En primer lugar se ha llevado a cabo un extenso análisis sobre los beneficios de usar medidas magnéticas para compensar los errores sistemáticos de los sensores inerciales, así como su efecto en la estimación de la orientación. Para ello se han usado medidas de referencia con valores de error conocidos combinando diferentes distribuciones de campos magnéticos. Los resultados obtenidos quedan respaldados con medidas realizadas con sensores reales de medio coste. Se ha concluido que el uso de medidas magnéticas es beneficioso porque acota errores en la orientación. Sin embargo, los escenarios bajo estudio suelen presentar campos magnéticos perturbados, lo que provoca que el proceso de estimación de errores sea prohibitivamente largo. En esta tesis doctoral se proponen algoritmos alternativos para el cálculo del desplazamiento horizontal del usuario, que han sido comparados con respecto a los ya existentes, ofreciendo los propuestos un mejor rendimiento. Además se incluye un innovador algoritmo para calcular el desplazamiento vertical del usuario, haciendo por primera vez posible obtener trayectorias en 3D usando solamente sensores inerciales no colocados en el zapato. Por último se propone un novedoso algoritmo capaz de prevenir errores de posición provocados por errores de rumbo. El algoritmo está basado en puntos de referencia automáticamente detectados por medio de medidas inerciales. Los puntos de referencia elegidos para los escenarios cubiertos son escaleras y esquinas, que al revisitarse permiten calcular el error acumulado en la trayectoria. Este error es compensado consiguiendo así acotar el error de rumbo. Este algoritmo ha sido extensamente probado con medidas de referencia y medidas realizadas con sensores reales de medio coste. La compensación de este error se adapta a las características del sistema de navegación personal
    corecore