418 research outputs found

    APPLICATION OF THE CONE BEAM COMPUTED TOMOGRAPHY (CBCT) MODALITY WITH WEIGHT BEARING TECHNIQUE TO IDENTIFY OSTEOARTHRITIS (OA) IN THE KNEE JOINT

    Get PDF
    ABSTRACTBackground : Osteoarthritis (OA) is a degenerative joint disease that causes inflammation of the cartilage due to the load that is often received by the joints. The knee joint is a part that is often affected by OA. Radiographic and CT examinations can be used to check for OA of the knee. Radiographic examination has the advantage of optimally displaying OA because the examination is carried out under weight bearing conditions, and CT is superior in displaying anatomical details due to cross sectional and 3D reconstruction. Technological developments present Cone Beam CT (CBCT) weight bearings that combine the advantages of radiographic and CT examinations. The purpose of this study is to determine the role and benefits of CBCT weight bearing on knee joint image information in cases of OA.Method : This type of research is literature review research with a narrative review approach. The databases used in the review articles include Science Direct, ProQuest, PubMed, DOAJ, Google Scholar, Wiley Online Library, ISI Web of Knowledge, and the Oxford Journal. The articles that have been obtained will be processed in tabulated form for later extraction.Result : The results of this study indicate that weight bearing is able to assess degeneration causing internal rotation in the range of +/- 2.8-3.1o, lateral patellar shift up to +/- 0.4 mm, joint space width (JSW) up to +/- 0.5 mm, meniscal extrusion (ME) up to +/- 10.2 mm. Conclusion : CBCT is used to obtain volumetric and cross sectional 3D knee images, in order to obtain images with high spatial resolution with low doses, detailed bone structure images, short scan times, visualization of narrowing and progression of OA in JSW clearly, visualization of OA in the menisci, as well as visualizing the complexity of the joint and soft tissue images so that OA is easily identified

    A gradient-based approach to fast and accurate head motion compensation in cone-beam CT

    Full text link
    Cone-beam computed tomography (CBCT) systems, with their portability, present a promising avenue for direct point-of-care medical imaging, particularly in critical scenarios such as acute stroke assessment. However, the integration of CBCT into clinical workflows faces challenges, primarily linked to long scan duration resulting in patient motion during scanning and leading to image quality degradation in the reconstructed volumes. This paper introduces a novel approach to CBCT motion estimation using a gradient-based optimization algorithm, which leverages generalized derivatives of the backprojection operator for cone-beam CT geometries. Building on that, a fully differentiable target function is formulated which grades the quality of the current motion estimate in reconstruction space. We drastically accelerate motion estimation yielding a 19-fold speed-up compared to existing methods. Additionally, we investigate the architecture of networks used for quality metric regression and propose predicting voxel-wise quality maps, favoring autoencoder-like architectures over contracting ones. This modification improves gradient flow, leading to more accurate motion estimation. The presented method is evaluated through realistic experiments on head anatomy. It achieves a reduction in reprojection error from an initial average of 3mm to 0.61mm after motion compensation and consistently demonstrates superior performance compared to existing approaches. The analytic Jacobian for the backprojection operation, which is at the core of the proposed method, is made publicly available. In summary, this paper contributes to the advancement of CBCT integration into clinical workflows by proposing a robust motion estimation approach that enhances efficiency and accuracy, addressing critical challenges in time-sensitive scenarios.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    The inertial properties of the German Shepherd

    Get PDF
    Previously held under moratorium from 30th November 2016 until 30th November 2021The police service dog has a long history stretching as far back as the 1400’s. One of the most popular dog breeds deployed by both the police and military has been the German Shepherd yet little is known about the morphology or body segment parameters of this breed. Knowledge of these measures is essential for developing biomechanical models that can guide clinicians in developing surgical interventions, injury treatment and prevention procedures. The aim of this thesis was to provide a complete set of body segment parameters and inertial properties for the German Shepherd. In addition, a canine motion capture suit and marker model was proposed for use with this dog population. Morphometric measures and 3-dimensional inertial properties, including mass, centre of mass, moment of inertia and volume, were measured from 17 segments from each of 6 German Shepherd police service dog cadavers. Measurements were performed with frozen segments similar to the procedure on primates described by Reynolds (1974), on humans by Chandler et al. (1975) and on horses by Buchner et al. (1997). Using whole body mass and geometric modelling, multiple linear regression equations were developed from the collected data so that they may be used to estimate segment masses and inertial tensors in living dogs. Using a custom Lycra suit and 44-marker full-body marker set, kinematic data were collected to assess the practicality of the model, to observe the dogs’ acceptance of the motion capture suit and to ensure fore and hind limb flexion/extension angles were comparable to those of other canine studies. Using frozen cadavers, tissue loss was minimal at an average loss of 0.49% of total body mass. Hind limbs, at 6.8% of body mass, were 2.3% heavier than the forelimbs. Of the over 100 morphometric measures analysed, 33 were kept for inclusion in the linear regression equations and joint centre estimations. Analyses of body mass alone, found that, except for the abdominal segment (r = .845, p≤.05), body mass did not correlate well with segmental masses. Similarly for moments of inertia, only the manus and pes produced predictive results using body mass alone. 11 regression equations were developed for predicting segment masses, and 33 equations were developed for predicting moments of inertia about the three primary axes of each segment. Regression correlation analyses were summarized for each segment and a table of normalised average segment masses, centres of mass, radii of gyration and segment densities was produced. Five police service dogs took part in the evaluation of the motion capture suit. Overall the marker set and suit performed well and was well-received by dog/handler teams. The markers took very little time to apply, remained in place for the majority of trials and the suit itself did not visibly affect the dog’s natural movement. An analysis of the kinematic data produced outputs showing characteristic patterns of flexion/extension similar to those found in other canine research. With the development of regression equations for predicting segment mass and moments of inertia combined with the proposed marker model and novel method of marker attachment, inverse dynamic analyses may be applied in future investigations of canine mechanics, potentially guiding surgical procedures, rehabilitation and training for the German Shepherd breed. Key Words: Canine, German Shepherd, morphometry, kinematics, kinetics, inertial properties, body segment parameter, segment model, moment of inertia, mass distribution.The police service dog has a long history stretching as far back as the 1400’s. One of the most popular dog breeds deployed by both the police and military has been the German Shepherd yet little is known about the morphology or body segment parameters of this breed. Knowledge of these measures is essential for developing biomechanical models that can guide clinicians in developing surgical interventions, injury treatment and prevention procedures. The aim of this thesis was to provide a complete set of body segment parameters and inertial properties for the German Shepherd. In addition, a canine motion capture suit and marker model was proposed for use with this dog population. Morphometric measures and 3-dimensional inertial properties, including mass, centre of mass, moment of inertia and volume, were measured from 17 segments from each of 6 German Shepherd police service dog cadavers. Measurements were performed with frozen segments similar to the procedure on primates described by Reynolds (1974), on humans by Chandler et al. (1975) and on horses by Buchner et al. (1997). Using whole body mass and geometric modelling, multiple linear regression equations were developed from the collected data so that they may be used to estimate segment masses and inertial tensors in living dogs. Using a custom Lycra suit and 44-marker full-body marker set, kinematic data were collected to assess the practicality of the model, to observe the dogs’ acceptance of the motion capture suit and to ensure fore and hind limb flexion/extension angles were comparable to those of other canine studies. Using frozen cadavers, tissue loss was minimal at an average loss of 0.49% of total body mass. Hind limbs, at 6.8% of body mass, were 2.3% heavier than the forelimbs. Of the over 100 morphometric measures analysed, 33 were kept for inclusion in the linear regression equations and joint centre estimations. Analyses of body mass alone, found that, except for the abdominal segment (r = .845, p≤.05), body mass did not correlate well with segmental masses. Similarly for moments of inertia, only the manus and pes produced predictive results using body mass alone. 11 regression equations were developed for predicting segment masses, and 33 equations were developed for predicting moments of inertia about the three primary axes of each segment. Regression correlation analyses were summarized for each segment and a table of normalised average segment masses, centres of mass, radii of gyration and segment densities was produced. Five police service dogs took part in the evaluation of the motion capture suit. Overall the marker set and suit performed well and was well-received by dog/handler teams. The markers took very little time to apply, remained in place for the majority of trials and the suit itself did not visibly affect the dog’s natural movement. An analysis of the kinematic data produced outputs showing characteristic patterns of flexion/extension similar to those found in other canine research. With the development of regression equations for predicting segment mass and moments of inertia combined with the proposed marker model and novel method of marker attachment, inverse dynamic analyses may be applied in future investigations of canine mechanics, potentially guiding surgical procedures, rehabilitation and training for the German Shepherd breed. Key Words: Canine, German Shepherd, morphometry, kinematics, kinetics, inertial properties, body segment parameter, segment model, moment of inertia, mass distribution

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    ITAP: Clinical outcomes and implant design optimisation using numerical modelling

    Get PDF
    Redistribution of the flow of forces through the body, such as that after amputation and/or implantation of a skeletally anchored amputation prostheses, leads to bone remodelling. Periprosthetic bone resorption can destabilise skeletally anchored amputation prostheses. Therefore, implants that minimise bone resorption will achieve a more successful long term bone fixation. Bone remodelling outcome measures rely on implant design using mechanoregulatory bone remodelling theory. Mechanoregulation is implemented by functions that link a local mechanical stimulus to a local change in the structure or properties of bone material. This thesis uses the strain adaptive remodelling theory at the time of implantation with periprosthetic strain energy density as the outcome parameter. Clinical trial data was collected from a patient with a skeletally anchored amputation prostheses; The Intraosseous Transcutaneous Amputation Prosthesis (ITAP). The clinical trial ran from 2008 – 2019, the data was investigated for patterns between implant design and fixation success. This thesis reports trends in fixation success and bone change using a developed fixation success score. There was an ideal implant length to bone length ratio range and a straight, tapered stem with a flared bone collar growth shape were beneficial to fixation success. Conversely, one or more parameters associated with pressfit fixation were detrimental to fixation success. Results between the clinical and numerical data compared favourably; clinically, regions of periprosthetic bone growth were also observed by regions of high strain energy density in the finite element analysis and vice versa at the implant tip and osteotomy face. This thesis provides skeletally anchored amputation prostheses design guidelines that will minimise bone resorption when measured with strain energy density. Moreover, that future skeletally anchored amputation prostheses parameterised design can and should be used as a tool to assess bone fixation outcome in pre-clinical assessments

    Development and Assessment of a Micro-CT Based System for Quantifying Loaded Knee Joint Kinematics and Tissue Mechanics

    Get PDF
    Although anterior cruciate ligament (ACL) reconstruction is a highly developed surgical procedure, sub-optimal treatment outcomes persist. This can be partially attributed to an incomplete understanding of knee joint kinematics and regional tissue mechanic properties. A system for minimally-invasive investigation of knee joint kinematics and tissue mechanics under clinically relevant joint loads was developed to address this gap in understanding. A five degree-of-freedom knee joint motion simulator capable of dynamically loading intact human cadaveric knee joints to within 1% of user defined multi-axial target loads was developed. This simulator was uniquely designed to apply joint loads to a joint centered within the field of view of a micro-CT scanner. The use of micro-CT imaging and tissue-embedded radiopaque beads demonstrated high-resolution strain measurement, distinguishing differences in inter-bead distances as low as 0.007 mm. Inter-bead strain measurement was highly accurate and repeatable, with no significant error introduced from cyclic joint loading. Finally, regional strain was repeatably measured using radiopaque markers in four intact, human cadaveric knees to within 0.003 strain in response to multi-directional joint loads. This novel combination of dynamic knee joint motion simulation, tissue-embedded radiopaque markers, and micro-CT imaging provides the opportunity to increase our understanding of the kinematics and tissue mechanics of the knee, with the potential to improve ACL reconstruction outcomes

    The 12th Aerospace Mechanisms Symposium

    Get PDF
    Mechanisms developed for various aerospace applications are discussed. Specific topics covered include: boom release mechanisms, separation on space shuttle orbiter/Boeing 747 aircraft, payload handling, spaceborne platform support, and deployment of spaceborne antennas and telescopes

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    • …
    corecore