114 research outputs found

    Generalization of the Apollonius theorem for simplices and related problems

    Full text link
    The Apollonius theorem gives the length of a median of a triangle in terms of the lengths of its sides. The straightforward generalization of this theorem obtained for m-simplices in the n-dimensional Euclidean space for n greater than or equal to m is given. Based on this, generalizations of properties related to the medians of a triangle are presented. In addition, applications of the generalized Apollonius' theorem and the related to the medians results, are given for obtaining: (a) the minimal spherical surface that encloses a given simplex or a given bounded set, (b) the thickness of a simplex that it provides a measure for the quality or how well shaped a simplex is, and (c) the convergence and error estimates of the root-finding bisection method applied on simplices

    The hamburger theorem

    Full text link
    We generalize the ham sandwich theorem to d+1d+1 measures in Rd\mathbb{R}^d as follows. Let μ1,μ2,,μd+1\mu_1,\mu_2, \dots, \mu_{d+1} be absolutely continuous finite Borel measures on Rd\mathbb{R}^d. Let ωi=μi(Rd)\omega_i=\mu_i(\mathbb{R}^d) for i[d+1]i\in [d+1], ω=min{ωi;i[d+1]}\omega=\min\{\omega_i; i\in [d+1]\} and assume that j=1d+1ωj=1\sum_{j=1}^{d+1} \omega_j=1. Assume that ωi1/d\omega_i \le 1/d for every i[d+1]i\in[d+1]. Then there exists a hyperplane hh such that each open halfspace HH defined by hh satisfies μi(H)(j=1d+1μj(H))/d\mu_i(H) \le (\sum_{j=1}^{d+1} \mu_j(H))/d for every i[d+1]i \in [d+1] and j=1d+1μj(H)min(1/2,1dω)1/(d+1)\sum_{j=1}^{d+1} \mu_j(H) \ge \min(1/2, 1-d\omega) \ge 1/(d+1). As a consequence we obtain that every (d+1)(d+1)-colored set of ndnd points in Rd\mathbb{R}^d such that no color is used for more than nn points can be partitioned into nn disjoint rainbow (d1)(d-1)-dimensional simplices.Comment: 11 pages, 2 figures; a new proof of Theorem 8, extended concluding remark

    Jensen's inequality for the Tukey median

    Get PDF
    --Shape analysis,spherical harmonic descriptors,optimal designs,mean square error,3D-image data,minimax optimal designs,robust designs,dependent data

    The space of ultrametric phylogenetic trees

    Get PDF
    The reliability of a phylogenetic inference method from genomic sequence data is ensured by its statistical consistency. Bayesian inference methods produce a sample of phylogenetic trees from the posterior distribution given sequence data. Hence the question of statistical consistency of such methods is equivalent to the consistency of the summary of the sample. More generally, statistical consistency is ensured by the tree space used to analyse the sample. In this paper, we consider two standard parameterisations of phylogenetic time-trees used in evolutionary models: inter-coalescent interval lengths and absolute times of divergence events. For each of these parameterisations we introduce a natural metric space on ultrametric phylogenetic trees. We compare the introduced spaces with existing models of tree space and formulate several formal requirements that a metric space on phylogenetic trees must possess in order to be a satisfactory space for statistical analysis, and justify them. We show that only a few known constructions of the space of phylogenetic trees satisfy these requirements. However, our results suggest that these basic requirements are not enough to distinguish between the two metric spaces we introduce and that the choice between metric spaces requires additional properties to be considered. Particularly, that the summary tree minimising the square distance to the trees from the sample might be different for different parameterisations. This suggests that further fundamental insight is needed into the problem of statistical consistency of phylogenetic inference methods.Comment: Minor changes. This version has been published in JTB. 27 pages, 9 figure

    Quasiconvex Programming

    Full text link
    We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization technique in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics.Comment: 33 pages, 14 figure

    Jensen's inequality for the Tukey median

    Get PDF
    Jensen's inequality states for a random variable X with values in Rd and existing expectation and for any convex function f : R^d -> R, that f(E(X)) <= E(f(X)). We prove an analogous inequality, where the expectation operator is replaced by the halfspace-median-operator (or Tukey-median-operator)
    corecore