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The reliability of a phylogenetic inference method from genomic sequence data is ensured by its sta-
tistical consistency. Bayesian inference methods produce a sample of phylogenetic trees from the pos-
terior distribution given sequence data. Hence the question of statistical consistency of such methods is
equivalent to the consistency of the summary of the sample. More generally, statistical consistency is
ensured by the tree space used to analyse the sample.

In this paper, we consider two standard parameterisations of phylogenetic time-trees used in evo-
lutionary models: inter-coalescent interval lengths and absolute times of divergence events. For each of
these parameterisations we introduce a natural metric space on ultrametric phylogenetic trees. We
compare the introduced spaces with existing models of tree space and formulate several formal re-
quirements that a metric space on phylogenetic trees must possess in order to be a satisfactory space for
statistical analysis, and justify them. We show that only a few known constructions of the space of
phylogenetic trees satisfy these requirements. However, our results suggest that these basic require-
ments are not enough to distinguish between the two metric spaces we introduce and that the choice
between metric spaces requires additional properties to be considered. Particularly, that the summary
tree minimising the square distance to the trees from the sample might be different for different para-
meterisations. This suggests that further fundamental insight is needed into the problem of statistical
consistency of phylogenetic inference methods.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

structure of a manifold as well as the combinatorially complicated
discrete structure of trees (Semple and Steel, 2003). This mix of a

This paper lies in the broad scope of research on the following
two phylogenetic problems, which are also of more general in-
terest, as we demonstrate in this work. First is the problem of
introducing a satisfactory parameterisation of phylogenetic trees
for statistical analysis of tree space. As pointed out by Feragen
et al. (2013), the uniqueness of shortest paths in the space is a
desirable property for various types of statistical analysis, while
the vast majority of known tree parameterisations do not have this
property. The space of phylogenetic trees encapsulates the
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continuous and a discrete component is what makes statistical
analysis of the space complicated. The second problem is the
problem of summarising a finite set of phylogenetic trees (Heled
and Bouckaert, 2013; Hillis et al., 2005; Huggins et al., 2011). This
problem arises in different settings of phylogenetic analysis, e.g.
for computing a statistically consistent summary of a sample from
the posterior probability distribution over trees (Drummond and
Rambaut, 2007; Bouckaert et al., 2014).

An extensive amount of research has been done on the space of
phylogenetic trees in the general setting when the phylogenetic
distance between taxa is given by arbitrary lengths of the edges of
the tree (Billera et al, 2001; Semple and Steel, 2003). As we
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demonstrate in this paper, this general setting sometimes leads to
computationally intractable models when applied to the space of
ultrametric trees (a special case of time-trees). Ultrametric trees
are the only satisfactory model for a great body of research in
phylogenetics and epidemiology, especially when divergence time
dating is the objective, and the taxa are all contemporaneous. In
this case the time-tree is ultrametric, and is considered separately
to the rates of evolution across lineages, which may vary from one
branch to the next.

The aim of this paper is to introduce a mathematically sa-
tisfactory model of the space of ultrametric phylogenetic trees. The
notion of a ‘mathematically satisfactory model’ will be clarified
and made exact later in the paper with an eye towards the two
general problems described above. Our work is inspired by that of
Billera et al. (2001), and is similar to it in the sense that we use
polyhedral complexes to define a metric space. The investigation
of the tree space from a geometric point of view was initiated by
the work (Billera et al., 2001) with the introduction of a para-
meterisation that later became known as BHV. Due to several nice
geometric and algorithmic (Owen and Provan, 2011) properties, it
was recently suggested (Benner et al., 2014) that BHV is the space
for statistical, and particularly MCMC, analysis of phylogenetic
trees. Our results presented in this paper show how crucial the
way a tree is parameterised can be for geometric, algorithmic, and
statistical properties of the space. Particularly, we demonstrate
that the summary tree that is suggested (Benner et al., 2014) will
be different for different parameterisations of the tree space. The
question of which parameterisation should be chosen remains
open.

Unless otherwise explicit, by a tree we mean an ultrametric
phylogenetic tree, that is, a binary rooted tree with distinguished
tips and branch lengths such that the distance from the root is the
same to every tip.

We note that although we exclusively consider ultrametric
trees in this paper, one of the parameterisations we introduce
(t-space) can be generalised to the class of all time-trees as well as
to the even more general class of all sampled ancestor trees
(Gavryushkina et al., 2013, 2014). This generalisation is a subject
for the future work.

We follow books (Semple and Steel, 2003) for phylogenetics
and (Bridson and Haefliger, 1999; Thomas, 2006) for geometric
combinatorics terminology.

2. Preliminaries

It is a standard practice in evolutionary biology to model real
biological processes by mathematical abstractions (Semple and
Steel, 2003). Particularly, as the goal is often to compare different
hypotheses about an evolutionary process modelled by phyloge-
netic trees, it is natural to work within the space of such trees. It is
also a common practice to introduce different types of measures
on the space of trees as a formal way of comparing them. One of
the most general and commonly used ways of measuring the si-
milarity between two trees is given by the notion of a distance, or
metric as it is widely known in mathematics. In order to measure
the distance between trees, the tree space has to be parameterised,
that is, some real-valued parameters have to be assigned to trees.

Formally, this scenario can be described as follows. Let 7~ be the
space of phylogenetic trees on n taxa.! A parameterisation of the
space 7~ is an embedding p: 7 — M of the tree space 7~ to a metric
space M, which we call a model metric space. By embedding here,
we mean a function that maps different trees to different points of

1 We use n to denote the number of taxa throughout the paper.

the metric space M. The embedding p plays the role of the as-
signment of parameters (points of the space M, which could be
tuples of real numbers, for example) and the space M is the
parameter space. The existence of such an embedding makes
space 7 itself a metric space. Indeed, the distance between two
trees T and R is given by the distance between their images under
the embedding p, that is, ds (T, R) is defined to be d (p(T), p(R)).
We say in this case that the metric d, is induced by para-
meterisation p.

As is known (Heled and Bouckaert, 2013; Hillis et al., 2005;
Huggins et al., 2011), the existence of a parameterisation alone is
already a fruitful property of the tree space, as it allows to test
hypotheses such as how far are two trees from each other? How
far is an estimate from the true tree? Given two algorithms, which
one produces trees that are closer to the true tree? Sometimes it is
even possible to extract an objective function minimisation that
leads to a practical way of summarising posteriors (Heled and
Bouckaert, 2013). We will present some of these parameterisations
later in this section.

Often phylogenetic analysis requires more subtle properties of
the space of trees to be considered, such as what tree is in the
middle between two given trees? What is the path from one tree
to another?? What is the mean and the variance of a set of
(sampled) trees? The last question is of prominent importance, as
this is the very basic question for statistical analysis of data that
produces a set of phylogenetic trees. Furthermore, this question is
important in testing whether two probability distributions on tree
space are the same, a task common in statistical model selection.
More sophisticated questions include, for example, how standard
phylogenetic models such as coalescent and birth-death can be
described under a given parameterisation? Can more efficient
proposal mechanisms, such as Hamiltonian Monte Carlo, be em-
ployed in Bayesian analysis of phylogenetic data?

A more detailed mathematical analysis is needed in order to
approach questions such as these. In what follows, we summarise
several basic properties of parameterisations, which we suggest
are desirable to advance research on the problems mentioned.

It is often the case that the metric space M, that is used to
parameterise tree space 7, is greatly different from the metric
space 7~ with the induced metric ds. The key reason for this is the
nature of the parameterisation p. As we will see later in the paper,
some parameterisations p induce metrics that share almost no
geometric properties in common with the original metric space M
that was used in the parameterisation p. Particularly, those para-
meterisations are far from being bijective, that is, being able to
recover a tree given an arbitrary point from the space M. The lack
of this property can lead to situations where, for example, there
are infinitely many trees all of which minimise the total square
distance to a given set of trees (Heled and Bouckaert, 2013).

Although the parameterisations we introduce in Sections 4
and 5 of this paper are bijective, the requirement of being bijective
is somewhat strong in the sense that many desirable properties
can be achieved without the parameterisation being bijective. We
continue with introducing formal requirements that allow to carry
the analysis of the space M over to the space of trees 7.

For the statistical analysis of a space, one needs to define
probability distributions over the space, e.g. for Bayesian analysis
the first step is to define a prior distribution. A continuous prob-
ability distribution defined on the metric space M has to remain
the same® continuous distribution when pulled back to the space
of trees 7 under the parameterisation p. In order to achieve this,

2 Since we are aimed at a metric space that mirrors the prior or the posterior
and preferably both, these two questions are important for us.
3 In the sense that all statistics, e.g. k-th moments, are preserved.
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one has to be able to continuously move from one tree to another
by a path that stays within the tree space. In other words, any two
trees have to be connected by a path.

Formally, a metric space X is called path-connected if for each
pair of points x, y in the space, there exists a continuous map y
(with respect to the standard topologies generated by balls) from
the unit real segment [0, 1] to the space X such that y(0) = x and
r(=y.

Thus, the first property a satisfactory parameterisation of the
tree space must satisfy is:

Image(p) is path—connected in M. (P1)

Our next property ensures that (shortest) paths in model me-
tric space M remain (shortest) paths when pulled back to tree
space 7 . A subspace X of a space Y is called convex if for every pair
of points x,y € X, every shortest path y between x and y, and
every real number s € [0, 1], it follows that y(s) € X.

Image(p) is convex in M. (P2)

The next requirement is necessary to specify a probability
distribution over trees by defining a probability distribution over
the model metric space. For this method to work, the Image(p) has
to be a non-trivial part of M:

Image(p) has the same dimension as M. (P3)

Requirements (P1)-(P3) guarantee that desirable geometric
properties of space M will be inherited by the induced metric
space on trees 7, but none of the requirements causes those
properties to exist. They have to be postulated. Hence, we now go
on to the properties of the space M. It is important to note that the
following properties only make sense if the requirements
(P1)—(P3) are fulfilled.

Our next requirement has to do with the uniqueness of shortest
paths, which is a necessary property for statistical analysis (Fera-
gen et al., 2013). The uniqueness of shortest paths implies the
uniqueness of several types of means, the soundness of the notion
of a variance, and the existence and uniqueness of summary trees
obtained by minimising an objective function of square distance.

We say that a metric space possesses unique geodesics if there
exists a unique shortest path between every two points in the
space. This shortest path is called a geodesic*

Metric space M possesses unique geodesics. P4)

This requirement can in practice be relaxed to hold almost
surely. Intuitively this means that with probability one the shortest
path is unique between two points drawn at random. Formally, we
assume that the metric space M is equipped with a probability
measure ¢ and say that a property P(-) is satisfied almost surely if
w¥{x € M|P(x)} = 1, where x* is the product measure if property P
is defined on tuples. The relaxed requirement is:

Metric space M possesses unique geodesics almost surely. (P4

A sphere with the standard spherical distance and uniform
measure gives an example distinguishing properties (P4) and (P4").

Since geodesics can be incomputable for some metric spaces,’
our next property of model space M is:

4 It is worth noting here that our notion of geodesic is somewhat different from
the one that is commonly used in differential geometry. We call a path geodesic
only if the path is globally shortest. For example, the great circle of a sphere with a
small interval removed is not a geodesic in our sense.

5 It is not hard to see that the halting problem for Turing machines can be
reduced to the problem of computing shortest paths in graphs. More precisely,
there exists a computable graph G such that any algorithm that computes shortest
paths between vertices in G, solves the halting problem.

Geodesics in metric space M are computable. (P5)

A natural strengthening of Property (P5) that is necessary to
make the parameterisation potentially useful in practice is:

Geodesics in metric space M are efficiently computable. (P5")

The computational complexity of geodesics is fundamental for
applications, as the algorithms for computing various character-
istics of a data set such as the mean, variance, diversity, confidence
regions, and so on rely on computing geodesics as a subroutine
(Bacak, 2012; Owen and Provan, 2011).

Our work is motivated by the lack of parameterisations in the
literature that enjoy all properties (P1)~(P5). Indeed, all known
summary tree estimators operate in spaces larger than the space of
ultrametric rooted binary trees, hence breaking requirement (P3). For
instance, Heled and Bouckaert (2013) and Huggins et al. (2011) use
the so-called Rooted Branch Score (RBS) metric space for producing a
summary tree given a sample of trees from the posterior distribution.
The idea of the RBS space is to encode a tree on n taxa by a
(2" — 1)-dimensional real vector, find an optimum in the
(2" — 1)-dimensional Euclidean space, and find the nearest point in
the Euclidean space that can be pulled back to the tree space. Al-
though this approach proved to be fruitful in several applied scenarios
(Heled and Bouckaert, 2013), it lacks properties (P1)~(P3). Moreover, a
tree that minimises the RBS distance to a (finite) set of trees is not
unique—indeed there could be infinitely many such trees. This opti-
misation problem is computationally intractable even for moderate
values of n. In implementations of this method, the inefficiency is
overcome by restricting the search only to tree topologies that are
present in the posterior sample, that is, in the given set of trees.
Furthermore, the tree topologies and the branch lengths have to be
summarised separately in order to make the method computationally
tractable (Heled and Bouckaert, 2013).

Other metrics used by Huggins et al. (2011) employ projections
to smaller dimension spaces to overcome the absence of proper-
ties (P1)-(P3). Those metrics share the same pathologies as RBS.
Moreover, the use of projections for estimating means can lead to
unbounded errors as witnessed by the following proposition that
claims that the projection of the mean can be as far from the mean
of the projections as possible.

Proposition 1. Let N be a (arbitrarily large) real number, E a Eu-
clidean space of dimension k > 1, and x, ..., xs a set of points in E.
Then there exists a subspace D of E such that

de (pip(meang (xy, ..., Xs)), Meanp(Pip(1), ..., Pip(Xs))) = N,

where dg is the Euclidean distance, pr,(x) is the projection of the point
x € E onto D, and meany (X, ..., X) is the Fréchet mean of xi, ..., X5 in
the space X.

Proof. We prove the proposition for k = s = 2. An arbitrary case is
analogous. Let # be the line through x; and x, in E and #4 be a line
parallel to # at a distance M from ¢#. Consider a parabola D which has its
vertex on the line #, and crosses the line # at some points a and b both
of which are between x; and x,. It is not hard to see that for large en-
ough M, we get dg (prp(meang(x, X)), meanp (P, (%), Pip(X2))) = N. ©

It might appear that the construction used in the proof is ar-
tificial, but this is actually very similar to what is happening in
such parameterisations as RBS and dissimilarity map distance
(Huggins et al., 2011), where the conditions on the set of points
that correspond to trees are non-trivial (Cardona et al., 2010). The
dissimilarity map distance (Huggins et al., 2011) between two
trees is defined as the distance between the distance matrices of
the trees, in the space of square matrices. That is, the para-
meterisation p maps a tree to its distance matrix, and the model
metric space M is the space of n x n matrices with the pointwise
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distance. This space is geometrically similar to RBS in the way that
none of properties (P1)-(P3) are satisfied. Cardona et al. (2010)
characterised Image(p) for the case when the trees are not ne-
cessarily ultrametric. This characterisation fulfils the requirements
(P1)-(P3). An attempt to carry this characterisation over to the
space of ultrametric trees has the same complication as BHV space,
which we discuss below.

The most geometrically attractive parameterisation of the
(non-ultrametric) tree space is the BHV space (Billera et al., 2001).
This is the only parameterisation we are aware of that fulfils all the
properties (P1)-(P5) (Billera et al., 2001; Owen and Provan, 2011).
This parameterisation employs a (2n — 2)-dimensional cubical
complex with unique geodesics as the model metric space M,
then a bijective correspondence between the space of all phylo-
genetic trees and the complex M is established. Trees of a fixed
topology are parameterised by a (2n — 2)-dimensional vector given
by the lengths of the branches, and correspond to a cube. The
adjacent cubes of the complex correspond to NNI-adjacent trees.
Although it took ten years to establish property (P5’) for the
parameterisation, the polynomial algorithm designed by Owen
and Provan (2011) appears to be quite practical.

As we demonstrate in the next section, it is somewhat involved
to apply the BHV model, as well as other BHV-like models (Feragen
et al.,, 2013; Miller et al., 2015), to the space of ultrametric trees.

3. Preliminary attempt

A possible (naive) approach could be to simply restrict the BHV
space to the set of ultrametric trees. Unfortunately, this simple
adaptation lacks all properties (P1)-(P3), so the algorithms de-
veloped by Owen and Provan (2011) become inapplicable.

Another (less naive) approach is to parameterise a tree by the
lengths of all internal edges and the shortest external edge. In this
case, the lengths of the rest of external edges are computed so that
the resulting tree is ultrametric. This ‘less naive adaptation’ of BHV
space is similar to the ‘bounded BHV’ adaptation, which we con-
sider later in this section.

A fundamental characteristic of all BHV-like spaces is that the
subspaces corresponding to different ranked tree topologies have
different volumes. This property results in complications for in-
troducing a (prior) probability distribution over the space.

In the rest of this section, we model the space of trees by a set
of bounded polyhedral complexes indexed by the set of positive
reals. We assume here that the reader is familiar with BHV space
(Billera et al., 2001). Otherwise, the rest of this section (excluding
the next paragraph) can be skipped, as the following sections of
the paper are self-containing.

Since the complexity of presentations is not the matter of this
paper, we shall make no distinction between the tree space 7~ and
the model metric space M used in the parameterisation p of 7, in
the case when p is a bijection. For instance, when M has unique
geodesics and p is a bijection, we shall simply say that 7 has
unique geodesics (under this parameterisation). A parameterisa-
tion p is called strict if p is a bijection.

Consider the space BHV°, which is the BHV space where ex-
ternal branches are ignored, that is, the projection of BHV to the
coordinates corresponding to internal branches. We restrict each
orthant of space BHV° to the set { T IT has height at most H},
where H is a fixed real number, and denote thus obtained space by
BHV°}H. Space BHV°[H can be seen as the space of trees of height
H because every tree from BHV°}H can be extended in a unique
way to a tree of height H by attaching the external edges of ap-
propriate lengths to the places where they were in the original
BHV space. Thus, the polyhedral complex BHV°|H is a strict
parameterisation of the space of ultrametric trees of height H. By

varying H over the set of positive reals, we get a strict para-
meterisation of the tree space as a set of bounded polyhedral
complexes indexed by positive reals. We call this space bounded
BHV space.

Although the space BHV°IH is not a cubical complex, it is
geometrically and algorithmically similar to the BHV space. In-
deed, since in a neighbourhood of the origin the space BHV°|H is a
cubical complex, it possesses efficiently computable unique geo-
desics in the same way as BHV does. This can be seen by noticing
the following. Suppose C is a cubical complex with unique geo-
desics such that each cube is given by inequalities x; < K. Let S be
a polyhedral complex obtained from C by replacing the inequal-
ities x; < K by X;jx; < K. Then S has unique geodesics. Furthermore,
if geodesics in C are efficiently® computable then so are geodesics
in S. Both of the statements are not hard to prove, but this goes
beyond the scope of this paper.

The first and most obvious complication of this parameterisa-
tion is the lack of independence between coordinates. The last
coordinate, the height of the tree, cannot be smaller than the sum
of coordinates corresponding to the internal edges. This results in
non-trivial boundary conditions that has to be taken into account
in the study of the geometry of the space, and more problems with
implementing algorithms. Another feature of this space is that a
change of the length of only one internal branch causes a change
of the length of all external edges. Hence, if the edge length is
interpreted as time, which is the case for many phylogenetic ap-
plications, then a change of an older divergence time impacts the
times of most recent divergence events for each taxon.

More fundamental issues with this parameterisation are the
following. If (some of) the branch lengths are given by confidence
intervals then computing the confidence region in the space be-
comes a non-trivial exercise. We already mentioned above that the
non-uniform distribution of the volume among different ranked
tree topologies in the space makes it difficult to introduce (prior)
probability distributions used in (Bayesian) inference of time-
trees.

To overcome these and similar issues is the goal of this paper.

4. t-space

In this section, we model the space of ultrametric trees by a
cubical complex, which we call z-space, with efficiently compu-
table unique geodesics and establish several geometric and algo-
rithmic properties of the space.

4.1. Construction of space

We begin with a formal construction of the space illustrated in
Figs. 1 and 2. We will be using terms ‘height of a node’ and ‘time of
a node’ interchangeably to refer to the distance from a taxon to the
node.

Let T be an ultrametric tree on n taxa with times assigned to its
nodes. Assuming that the times of all internal nodes are pairwise
distinct, we denote the set of such trees by 7;,. We parameterise
tree T by a pair that consists of the ranked topology of the tree and
the differences between the times of the tree's consecutive nodes.
We proceed by defining this parameterisation in detail. Let us
order the internal nodes of T according to their times: v,, ..., V,.
Note that the node v, must be the root in this case. Denote the
difference between the time of node v;,; and the time of node v; by
t;forallie {2, ..., n — 1}. We call 7; the coordinate of node v;. Since

6 By ‘efficiently computable’ here and in the rest of the paper we mean com-
putable in (low degree) polynomial (in the number n of taxa) time.
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Fig. 1. Parameterisation of tree from 5-dimensional z-space 7s.

Fig. 2. Three-dimensional projection of one third of 4-dimensional z-space 73.
Each orthant is projected onto the subspace with the first coordinate z; fixed. Al-
though the projected space cannot be embedded into 3-dimensional Euclidean
space, it can be visualised by imagining the other two thirds of the space. Triangles
are thin in the space due to the Cartan-Alexandrov-Toponogov axiom (for k=0),
see Definition 4.

the tree is ultrametric, the differences between the time of v, and
the times of external nodes are all the same. Denote this difference
by 7;. The coordinates of tree T are given by the n-tuple (rt(T), %),
where rt(T) is the ranked topology of tree T and 7 is the tuple
(t1, ..., To—1) from RJ~! that consists of the coordinates of the nodes
of T. By R3~! we denote the (n — 1)-dimensional non-negative
orthant {(r, ..., ;1) | i € R &r; > 0}, where R is the set of reals.
Fig. 1 depicts an example of 7-parameterisation of a tree from 7.

Consider now the set of all ranked topologies on n taxa such
that all internal nodes have different ranks. We recall that there

are @=D'"' many such topologies (Semple and Steel, 2003), and

n—1
we derzlote this number by m throughout the paper.

Thus, we have constructed a disjoint union of m (n - 1)-di-
mensional polyhedra S = { (rt(T), f) | TeTnte R5‘1}. Specifi-
cally, the polyhedra are orthants indexed by tree topologies. It is
clear that the set 7, is in a bijective correspondence with the in-
terior of S. It is also obvious how to establish a bijection between
the faces of the polyhedra in S and the set of ranked (multi-
furcating) tree topologies on n taxa which have at least two in-
ternal nodes of the same rank. Indeed, if we consider such a tree,
the coordinates 7; that are between two nodes of the same rank
have to be 0, and the faces of the polyhedra in S are precisely the
tuples (rt(T), 7) where some of the coordinates z; are 0.

We now want to create a polyhedral complex in the obvious
way, that is, by gluing the faces that correspond to same ranked
(not necessarily completely resolved) tree topologies together. We

proceed formally as follows. Let us define an equivalence relation
~ on the set of faces of polyhedra in S. We say that two faces F and
G are equivalent, written F ~ G, if they correspond to the same
ranked tree topology. Now, consider the set S’ that consists of the
union of the set S and the set of all faces of elements from S. The
polyhedral complex is then the quotient set S’/ ~ .

Since trees are in a bijective correspondence with this complex,
the parameterisation is strict and from now on we shall identify
the space of trees 7, with this polyhedral complex, slightly
abusing the notation.”

We shall assume that all dimensions of the orthants 7; are
bounded from above by a (large enough) constant. This boundary
makes the polyhedral complex 77, a cubical complex, which is a
standard and well-studied object of geometric combinatorics
(Bridson and Haefliger, 1999; Thomas, 2006). This restriction is
inessential for this paper as all the results remain true in the un-
bounded case.

An interesting example where asymptotic properties of tree
space at infinity are treated differently is so-called ‘orange geo-
metry’ (Kim, 2000), where polyhedra are ‘glued’ together at in-
finity. That geometric framework encodes not only phylogenies
but also data sets, evolution models, and estimation methods.

From now on tree space 7 is a cubical complex. We assume
Euclidean distance within cubes. This assumption implies that
space 7, is a metric space with geodesics. Indeed, since 7, is a
finite connected cubical complex, every path is 7, can be parti-
tioned into a finite number of subpaths each of which is a Eu-
clidean path. The length of a path in 73, is then the sum of the
lengths of those subpaths. The distance between two points in 7,
is given by the length of a shortest path between the points. Every
shortest path between two points is called a geodesic. We prove
later in this paper that geodesics are (globally) unique in 7.
Hence, 7, is a metric space with unique geodesics. We call this
space z-space.

4.2. Geometric properties

Let us start with consider geometric properties of the space and
compare them with those of BHV space. It is convenient to think of
7-space as a set of points (trees) that freely move within cubes
without leaving them as long as all the coordinates 7; are strictly
positive. This movement results in changes in branch lengths
(waiting time between divergence events) but the ranked tree
topology remains the same. When one of the 7; becomes 0, the
point (tree) is on the boundary of the cube of one smaller di-
mension. The point now can either move along the boundary by
varying the other 7;, or it can leave the boundary by increasing the
7; that became 0. The boundary corresponds to a facet® F and there
could be several cubes that share this facet F. It is not hard to
understand that the possible numbers of cubes which share a
common facet are one, two, and three. Indeed, setting 7, = 0 gives
an example of a cube and its facet that is not a face of any other
cube. If a facet does not correspond to a multifurcation (see the
facet between cubes corresponding to trees T and E in Fig. 2), there
are precisely two cubes that share the facet. If it does (as the other
facet of the cube corresponding to tree T in Fig. 2), then the
number is three.

At first glance it might seem that the BHV and z-space are very

7 We note that we abuse the notation here not only because we make no
distinction between the space of trees and the polyhedral complex, but also be-
cause the multifurcating trees are present in the complex and absent from the tree
space 7, we initially considered.

8 By a facet of a polyhedron here and throughout the paper, we mean a face the
dimension of which is one smaller than the dimension of the polyhedron, that is, a
face of codimension one.
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Fig. 3. Link of origin of 74.

similar.” The graph in Fig. 3 depicts the link of the origin of space
T34. The link is similar to that of BHV space on four taxa indeed, but
it already suggests several differences that we would like to
investigate.

In this subsection, we establish several geometric properties of
the two spaces to better understand the differences and similarities
between them in order to answer the question of whether the al-
gorithms developed for BHV space (Owen and Provan, 2011) are
applicable in 7-space. The first property we want to point out is the
following. For every tree topology, the dimensions of corresponding
orthants in BHV, and 75, are different. This is because external edges
add n to the dimension of the BHV-orthant and add 1 to the di-
mension of the z-orthant. One might suggest that the spaces BHV,,
and 7-,,, which are the corresponding spaces where all external edges
are omitted, are geometrically similar. They are indeed, they share a
number of geometric properties. However, some dissimilarities be-
tween them become clear if one attempts to uniformly map one
distance to the other. If such a mapping existed, all geometric and
algorithmic results for BHV could be directly applied to z-space. We
formalise this assertion in the following two propositions.

Proposition 2. Spaces BHV,, and 7, are not isometric.

Proof. This follows from the fact that isometries preserve angles.
Indeed, let us fix a non-caterpillar tree topology and consider the
corresponding orthants in BHV;, and 7. We may notice that there
are several orthants corresponding to the tree topology in 7, and
only one orthant in BHV, space. One can use an appropriate
number of hyperplanes to partition the BHV, -orthant in a way that
every member of the partition corresponds to the trees in pre-
cisely one 7 ,-orthant. Clearly, no embedding between these
subspaces preserves angles. O

The proof above can intuitively be understood by trying to
establish an isometry between the orthants that correspond to the
trees T and E in Fig. 2. The corresponding 7- and BHV-subspaces
can be drawn as Fig. 4 (note that the objects depicted are flat).

Another seemingly plausible hypothesis could be that the
BHV-distance majorates the 7-distance, that is, d.(T,R) <
dpnv (T, R) for all trees T and R. Although it is obvious that the

9 This subsection can be skipped by those who are not familiar with BHV space,
as the rest of the paper does not depend on this subsection.

T BHV

Fig. 4. BHV and z-space are not isometric.

BHV- and the 7-coordinates are easily computable from each
other,'” the following proposition is true.

Proposition 3. None of the BHV- and t-metrics majorates the other.

It is important to note that since the dimensions of BHV, and 7,
are different, we are ignoring the external branches here and
considering BHV; and 77,

Proof. Consider trees T, R, and E depicted in Fig. 2. We finish the
proof of the lemma by setting

(1) All sigmas, mus, and taus to 1. In this
d-(T, R) =2 < /5 = dauy (T, R) d.(T, E) = 2 > V2 = dguy (T, E.

One might hypothesise that an inequality of the second type
can only be obtained in the quadrants that present in z-space but
not in BHV space. Although it is not necessary for the proof, we
demonstrate that this hypothesis can be refuted by setting

(2) =1, 3=2, =3, uz;=4. In this
d.(T, R) = V40 > 6 = dguy (T, R). O

case:

case:

4.3. Uniqueness and efficiency of geodesics

The geometric property of main interest to us in this paper is
the (global) uniqueness of geodesics, as this property is crucial for
such geometric characteristics as the Fréchet mean, standard de-
viation, convex hulls, etc.

We recall that a metric space X is called geodesic if every pair of
points from X is connected by a shortest path. A geodesic metric
space is said to have unique geodesics if the geodesic is unique
between every two points from X.

Definition 4. A geodesic metric space X is said to satisfy Cartan-
Alexandrov-Toponogov axiom, or be CAT(0), if the following prop-
erty holds.

For all triples x;, x,, X3 € X and all points y on a geodesic from x;
to x,, the inequality dx(xs, y) < de (x5, y’) holds, where xj, x5, X3
are three points on the Euclidean plane such that
de (x{, Xj) = dx (x;, x;) for all 1 <i<j<3, y is the point on the
segment [x], x5] such that dg(xj, y) = dx(x, y), and dg is the
Euclidean distance.

In other words, a metric space X is CAT(0) if no triangle A in X is
thicker than a Euclidean triangle Ag of the same size as A.

It follows from the definition of a CAT(0) metric space that the
space has unique geodesics. Indeed, let X be a CAT(0) space and
a, b two points from X. Consider a point x on a geodesic y from a to
b and consider a degenerate Euclidean triangle a, x’, b’ where x’
lies on the segment [a’, b’] at the same distance from @’ as x is from
a in X. The axiom CAT(0) implies then that dy(x, y) < dg(X, X),
where y is a point on any geodesic from a to b at the same distance
from a as x. Since dp(x, x) =0, dx(x,y) =0 and every geodesic
from a to b coincides with y because we have chosen x arbitrarily.

We derive the fact that 7-space has unique geodesics from the

10 1t is important to note that this claim is about coordinates rather than dis-
tances. Computing the 7-distance given the BHV-distance, or vice versa, can be
somewhat involved in general.
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following theorem. Note that a cubical complex is said to have the
intrinsic Euclidean metric if the complex is metrised in the same
way as we metrised z-space.

Theorem 5 (Gromov, 1987). A cubical complex C with the intrinsic
Euclidean metric is CAT(0) if and only if C is connected, simply
connected, and for all natural numbers k, if three (k + 2)-cubes of C
share a common k-cube and pairwise share common different
(k + 1)-cubes, then they are contained in a (k + 3)-cube of C.

Clearly z-space is a cubical complex which is connected and
simply connected (see also Lemma 7 below). For the last re-
quirement of the theorem we note that the (k + 2)-cubes cannot
be of the highest possible dimension, otherwise the (k + 1)-cubes
would result in a cycle of length 3 in the link of the origin'' of
7-space. The impossibility of such a cycle follows from the fact that
the NNI graph does not have 3-cycles and also can be shown in the
same way as we consider longer cycles in the proof of Theorem 8.
Hence, we can assume that there exists a unique'? z; such that the
first (k + 2)-cube C; has 7; = 0 and has the rest of 7-coordinates
strictly positive. Similarly, the second (k + 2)-cube C, has a unique
7j=0and C; has 7, = 0.

Case 0. i = j = r. This case results in a cycle of length 3 in the
link of the origin of z-space, which is impossible.

Case 1.i # j = r. Since C, and C; share a (k + 1)-cube, they both
must have a coordinate 7, such that z > 0 and if we set z, =0 in
both C; and C; then the resulting cubes coincide. We note that
s # i because the (k + 1)-cubes must be pairwise different. Then
the only way for C; and G, to share a (k + 1)-cube is via setting
both 7; and 7; to zero (this is because i # j). Hence z; is resolved in
the same way in C; and C,. By the same reason, 7 is resolved in the
same way in C; and Cs. This implies that C, and C; coincide, so this
case is impossible.

Case 2. All i, j, and r are pairwise distinct. Since C; and C; share
a (k + 1)-cube, 7, is resolved in the same way in both of these
cubes. By a similar reason, 7; is resolved in the same way in C, and
G; and 7; in C; and Gs. In this case we construct a (k + 3)-cube that
contains all Cy, C,, and Cs by taking cube C; and resolving z; in the
way it is resolved in C, and Cs.

Thus, we have established the following result.

Theorem 6. 7-space has unique geodesics.

This property is fundamental for summarising sets of trees,
because the uniqueness of geodesics implies that several geo-
metric centres are unique. For example, such objects as Fréchet
mean (Karcher, 1977), standard deviation, convex hull, and many
other, are well-defined. Furthermore, since the notions of a mean
and a variance are well-defined, fundamental theorems of prob-
ability theory, such as the Central Limit Theorem, can be studied
in tree space (Barden et al,, 2013; Miller et al., 2015; Nye, 2011,
2015).

The next question we would like to study is the question of
effectiveness. Can different types of means, centroids, and hulls be
efficiently computed? The answer to this question depends on
whether or not geodesics are efficiently computable. Indeed, in
most cases the non-existence of a polynomial algorithm for com-
puting geodesics implies the non-existence of such algorithms for
computing various versions of means.

A careful consideration of the algorithm in (Owen and Provan,
2011) shows that the same algorithm works in 7-space and hence

' The link of a vertex v of a polyhedral complex is defined as a graph with
nodes being the facets that contain v, where two nodes x, y are adjacent in the
graph if there exists a polyhedron in the complex with facets x and y.

12 The uniqueness is assumed for the sake of clarity. The proof can straight-
forwardly be modified to the case when there are several non-resolved 7-
coordinates.

implies that geodesics are computable in polynomial time in z-
space. Indeed, geodesics in z-space satisfy the Characterisation
Theorem (2.3-2.5 in (Owen and Provan, 2011)), so once two z-trees
are converted into an incompatibility graph, (Owen and Provan,
2011) gives a polynomial algorithm to find the splits of the set of
vertices of the graph corresponding to the geodesic. However, the
data structures for the algorithm in z-space should be different.
Indeed, the notion of compatibility is given in t-space by the no-
tion of refinement (see Section 5.2), which encodes ranks in the
incompatibility graph. We have implemented the algorithm in Java
and the implementation can be accessed at (Gavryushkin and
Drummond, 2015) under the GNU General Public Licence. The
novel data structures necessary for this implementation are for-
mally introduced later in this paper. The running time of the im-
plementation is similar to that of (Owen and Provan, 2011).

Thus, we suggest that 7-space serves as a tool for statistical
analysis of stochastic processes over ultrametric phylogenetic
trees. Particularly, for computing the summary tree of a posterior
sample obtained using, for example, MCMC.

5. t-space

As absolute divergence times are often the object of interest, the
parameterisation of trees using the times of their nodes is natural
for several phylogenetic modes, e.g. birth-death models (Kendall,
1948). Furthermore, birth-death priors are one of the main classes
of priors used in Bayesian inference. The purpose of this section is
twofold. First, we would like to study geometric and efficiency
properties of one of the prominent parameterisations in evolu-
tionary biology. Second, we demonstrate how radically these
properties can change after a seemingly negligible change in para-
meterisation. Namely, converting z-coordinates to their initial sums,
that is, to the absolute times of divergence events, makes funda-
mental results from combinatorial geometry such as Gromov's
theorem used to prove Theorem 6 inapplicable, along with the al-
gorithmic results from (Owen and Provan, 2011) and (Owen, 2011).

We note that Ardila and Klivans (2006) considered branch
lengths and a tree height to parameterise the space of ultrametric
trees and prove that ultrametric trees are in one-to-one corre-
spondence with the Bergman fans of complete graphs (for details
see (Ardila and Klivans, 2006). As explained in Section 3, this
parameterisation is not convenient for our purposes. However, the
results in Ardila and Klivans (2006) imply that t-space is in one-to-
one correspondence with the Bergman fans of complete graphs, so
our results on t-space are applicable to the corresponding fans.

5.1. Construction of space and uniqueness of geodesics

Let us consider a completely resolved ultrametric tree T with
ranked topology rt(T) with no pair of nodes of the same rank. For
each node v; from T, let t; be the distance from v; to the nearest
taxon. In this way, we assign times to all nodes of T, with all taxa
being of time 0. Let us order all internal vertices of T according to
their times: vj, ..., v,_1 (the ordering is the same as the ordering
according to their ranks in rt(T)). Then the coordinates of tree T in
t-space is the tuple (rt(T), t, ..., th_1).

We note that if we vary the times of the nodes of T while
keeping the ranked topology preserved, we get a simplex
{(t, ..., ti-1) 10 < 1 < ... < t,_1 < H}, where H is an (artificial, suf-
ficiently large) upper bound on the height of the tree'®. Fig. 5
depicts one such simplex.

13 Again, all in this paper remain true in the unbounded case with no H.
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1234

Fig. 5. One simplex of t-space.

We create a simplicial complex out of % such simplices

corresponding to different ranked topologies on n taxa in a similar
way the complex is created in 7-space, namely, we identify faces of
simplices corresponding to the same tree topology. The metric is
defined in the same way as in 7-space to be the standard piecewise
Euclidean distance. The first substantial difference is that the edge
of the complex that is shared by all simplices is not an axes but
rather the line t; = ... = t,_;. Furthermore, the faces are defined by
some of the coordinates being equal, t; = t;, rather than some of
the coordinates being 0. We call the space so defined a t-space and
denote the t-space on n taxa by T,. Fig. 6 depicts space Ts in full
and Fig. 7—a part of Ty.

The following lemma is an important property that connects
BHV space, 7-space, and t-space. This lemma has (implicitly) been
used to prove that z-space is CAT(0).

Lemma 7. BHV space,
homeomorphic.

T-space, and t-space are pairwise

Proof. The homeomorphisms are induced by parameterisations
Penv» P,» and p, used to construct the corresponding spaces. 0

In particular, this lemma implies that both z-space and t-space
are connected and simply connected.

Our next step is naturally to ask whether t-space has unique
geodesics. This question cannot be answered in the same way as it
is done for BHV and 7-space using Gromov's characterisation of
CAT(0) cubical complexes because t-space is not a cubical complex.
Several sufficient conditions are known for simplicial complexes to
be CAT(0) (Januszkiewicz and Swiatkowski, 2006; Zimmer et al.,
2011), however t-space does not satisfy those conditions and
hence they cannot be used to prove that t-space is CAT(0). Below
we prove that t-space satisfies the CAT(0) axiom thus giving a new
and important example of a CAT(0) simplicial complex.

Theorem 8. t-space has unique geodesics.

Proof. We call a facet shared if the facet belongs to at least two
different simplices in t-space.

Lemma 9. Let S be a simplex in T,, and « be an angle between a pair

Fig. 6. Space Ts. Three triangles of the simplicial complex correspond to the three
depicted topologies. The triangles share a line that corresponds to the unresolved
tree on three taxa. The upper bound of the triangles is the artificial bound H.

of shared facets in S. Then « > /3.

Proof. First, scale the simplex S so that the height of the trees
corresponding to S is bounded by 1. Then the set of vertices V of
simplex S is

0,..,0,1,..,1)|igsn-1
N—— ——

n-1-i i

The set of facets of simplex S is then given by the set of all
(n — 1)-element subsets of V. Note that there are exactly two facets
of S which are not shared by any other simplex in T,. Indeed, the
facet given by the set V\{(0, ..., 0)} corresponds to a completely
resolved topology and belongs to exactly one simplex—the one
that corresponds to that topology. The facet given by the set
V\{Q, ..., 1)} corresponds to a topology where a pair of taxa a, b
are unresolved at present and the rest of the nodes of the topology
are resolved. Since there is only one possibility to resolve the de-
generate cherry (a, b), this facet belongs to exactly one simplex as
well. Hence the shared facets of S are precisely those that contain
both (0, ...,0) and (1, ..., 1). For example, the grey and the red
facets of the simplex in Fig. 5 are not shared by any other simplex,
while the blue and the invisible facets are shared with other
simplices.

For every pair of shared facets of S, we now find the angle
between them. To do so we first need to find the normal vectors of
all shared facets. Every shared facet F;, 1 <i<n -2, of S can be
represented as an (n — 1) x (n — 1) matrix the j-th row of which is

o, ..., 0 ifj=0,
,..,0,1,..,1) ifl<j<i,
—— ——

n-1-j J
0,..,0,1,...,1) ifi<j<n-2,
—— ——
n-1-G+1) Jj+1

a, .1 ifj=n-2.

In other words, facet F; is defined by removing the row
O, ...,0, 1, ..., 1) from the set V. Normal vectors f; of facets F; are
—— ——

n-1-i i
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Fig. 7. One-sixth of 4D t-space T4 corresponding to the depicted topologies. Unlike
in Fig. 2, the simplices are not projected onto a 2-dimensional subspace and drawn
as 3-dimensional pyramids. Three such pyramids are depicted in white, blue, and
grey. The white pyramid shares a facet with both grey and blue pyramids. The grey
and blue pyramids share the edge t; = t, = t3 of the complex only.

then given by the null space of these matrices. For every i such
that 1<i<n-2, we fix one such vector f; to be
0, ...,0, (= D%, (- 1% 0,...,0), where s;e {0, 1} is chosen
—2-i i-1
denpending on from what side of F; the simplex is located.
Since the inner product of pairs of these vectors is —1, 0, or 1,
the smallest possible angle between the facets is z/3, which proves
the lemma. ©

We now note the following property. For every positive real
number &, the e-neighbourhood of the origin'* of T,—point
@, ..., 0) in terms of the proof of previous lemma—contains a
simplicial complex similar to T,. This property follows by scaling T,
with small enough scaling factor. Hence, to establish the claim of
the theorem it is enough to show that the space is locally CAT(0).
To prove this, we apply the following characterisation of locally
CAT(0) simplicial complexes:

Theorem 10 (Gromov (1987), see Bridson and Haefliger (1999,
5.2 on p. 206)). A finite simplicial complex is locally CAT(0) if and
only if the link of every vertex of the complex is a CAT(1) space.

Hence, to finish the proof of Theorem 8, we need to show that
the link of every vertex of T, is a CAT(1) complex. By Theorem 5.4
(7) in (Bridson and Haefliger, 1999, p. 206), it is enough to show
that T, contains no isometrically embedded circles of length less
than 2z. That means the following. Let C be a geodesic curve in
(the link of a vertex of) T, of length # which is isometric to a
Euclidean circle Cg. If we scale the space so that Cg is a unit circle
then ¢ > 2x.

This last property follows from Lemma 9 for space T,. Let
T, ..., T, be completely resolved pairwise different ranked tree
topologies with the property that if C intersects a simplex corre-
sponding to tree topology T then there is an i such that T=T.
Furthermore, we assume that the topologies T, ..., T, are ordered
as they are traversed by C. Since the length ¢ of C satisfies # > k-«
where « is the smallest angle between facets of the simplex cor-
responding to a T; the cases when k > 6 follow from Lemma 9
directly.

To finish the proof, we consider the cases when k < 5. Since the
shortest possible cycle is of length 4, it remains to consider only
two cases:

4 This is true not only for the origin but for every e-neighbourhood of every
star-tree.

k= 4. Let F;, F;, Fy, Fi, be the facets represented in the form of
matrices” as above in the order they are crossed by the
geodesic circle C. That is, F;, is the facet shared by T; and T,
Fy,—by T, and Ts, F;—by T3 and Ty, and F;,—by T4 and T;.
Recall that indices iy, i, i3, and i4 correspond to t-coordinates
on which the corresponding topology (rank) move is per-
formed.

First, assume that li; — i1 > 1. In this case, i3 = i; and i4 = iy, or
i3 = ip and i4 = i. The latter case is not possible as in that case
F;; = F;, and hence T, = T,. Since Ii; — i1 > 1, the scalar product
of normal vectors corresponding to Fj and F;, is 0 and the
angle between them is z/2. Hence, all four angles are z/2
each and hence 7 = 2z.

Now assume lij — i;| = 1. In this case the cycle cannot exist.
Indeed, one has to consider all possible combinations of tree
topology changes (moves) corresponding to F;; and F,: both
are rank changes (RR), the first is an NNI move and the
second is a rank change (NR), similarly RN and NN. In all the
four cases the circle has to cross both F;; and F;, twice and
hence T, has to coincide with T,. We consider the NN case
and the other cases follow similarly. If both F; and F;,
correspond to different NNI moves (as in NN), then tree Ts is
at NNI distance 2 from T;. In this case, the only NNI path from
Ts to T; of length 2 has to follow the moves corresponding to
Fi2 and Fil'

k =5. Let F, F,, Fy, Fi,, Fi; be facets as above. We show that the

cycle cannot exist. Let us consider the types of tree topology
moves corresponding to Fy, Fy, and F;,. First, consider the
case when all three moves are rank moves, RRR. In this case,
three nodes have changed their ranks and at least three rank
changes are necessary to return to the original tree Ty, hence
the cycle of length 5 is not possible. Second, consider the case
when exactly one of the tree moves is an NNI move. In this
case, the tree obtained after the three steps is at NNI distance
1 plus two nodes have changes their ranks. Again, at least
three steps are necessary to return to tree T;. Third, consider
the case when exactly two of the tree moves are NNI. In this
case, the tree obtained is at NNI distance two from T; and one
node changes its rank. Again, at least two NNI's and one extra
move are necessary to return to Tj.
Finally, let us assume that all facets F;, F;,, and F;, correspond
to NNI moves, NNN. Note that if after the three NNI moves we
obtain a tree at NNI distance 3 from the original tree Ty, then
the cycle of length 5 cannot exist. Hence we assume that the
NNI distance between T, and T, is 2. In this case, all the five
facets correspond to NNI moves, and that is not possible as at
least one rank move is necessary. Indeed, after the NNI move
corresponding to F;, there must be a node that changes its
rank in the following sense: there exist taxa A and B such
that the difference of ranks of their most recent common
ancestors mrca(A, B) in Ty and Ty is 1. In order for the cycle to
return to T; without intersecting F;, twice, there must exist a
rank move on the way back to T;. ©

Fiz-
15

The change in the parameterisation of trees results not only in
the question of uniqueness becoming more complicated. What is
also important is that the algorithms used for computing geodesics
in BHV and z-space cannot directly be applied in t-space. More-
over, their existence has to be questioned. Hence we propose the
following problem, on which we make some progress below but
do not obtain a complete answer.

'3 It is important to note that i=j does not imply F;=F; as these could corre-
spond to different tree topologies. However, this notation is convenient and does
not result in ambiguities in this proof.
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Fig. 8. BHV- and z-geodesics are cone-paths while t-geodesic is not.

Problem 11. What is the complexity of computing geodesics in
t-space?

5.2. Geometry and data structures

One of the key properties that make z-space and t-space so
different is that the cone-path is rarely a geodesic in t-space. In-
deed, in both BHV and z-space the position of two cubes can result
in the cone-path being the geodesic between every pair of trees
from those cubes. For example, if two trees T and R have topologies
with no compatible splits then the geodesic between T and R is a
cone-path (Billera et al., 2001). t-space does not have this prop-
erty. Let us illustrate this effect with the following example. Con-
sider trees T and R depicted in Fig. 8. Since the trees do not have
compatible splits, the geodesic is a cone-path in both BHV and 7-
space. However, the shortest cone-path in t-space passes through
the star-tree of height 6 and has length 238 > 12.3, while the
path that goes through ((1, 2): 4, 3,4): 8, ((1, 3, 2): 6,4): 8, and
((1, 3): 4, 2, 4): 7 (the numbers following the colon are heights of
the corresponding clades) has length +10 + V8 +v/6 ++/14 < 12.2
and is hence shorter than every cone path.'®

This example demonstrates another important property that
distinguishes t-space from z-space. Every tree on the geodesic
between two trees in 7-space contains only splits that present in
the origin tree or in the destination tree (or both). Not so in
t-space. Split (123]4) does not present in either tree in Fig. 8 but
present in an intermediate tree on the t-geodesic.

We now develop a formalism that is convenient for the study of
the computational content of t-space. This formalism can be used
for 7-space as well and is actually the data structure that we use in
our implementation of geodesic algorithms for z-space (Gav-
ryushkin and Drummond, 2015). The formalism is motived by and
consistent with the treatment of ranked tree topologies in (Semple
and Steel, 2003).

By a partition with attached time coordinate, we mean an object
of the form (Nil...INy): t, where Njl...IN; is a partition of taxa that
can be obtained by cutting the tree along the line obtained by
fixing the time coordinate, and t is the least value of the time
coordinate that produces this partition. For example, the left-hand
side tree in Fig. 8 is defined by the set of partitions

{(121314): 1, (12134): 8, (1234): 9},

while the right-hand side tree—by
{(131214): 1, (13124): 8, (1234): 9}.

Removing one or more partitions from a set of partitions that defines
a completely resolved tree gives rise to a non-resolved tree or a tree
with two or more internal nodes of the same rank. For example, if we
remove partition (121314) from the left-hand side tree in Fig. 8 then
we get the tree ((1, 2), (3, 4)) of height 9 with both internal nodes

16 However, this path is not a geodesic either. To find the actual geodesic be-
tween these two trees is a simple but interesting exercise.

being of height 8. Alternatively, if we remove partition (12134) from
that tree then we get the unresolved tree ((1, 2), 3, 4) of height
9 with a common ancestor of (1, 2) at height 1.

We note here that as we consider only trees with all taxa being
at time O, the partition (112I...In): 0 is assumed to be (invisibly)
present everywhere.!” Clearly, a tree is unambiguously defined by
its set of partitions with attached time coordinates, and a set of
partitions defines a tree if and only if one member of every pair of
partitions from the set refines the other and the time coordinates
of the partitions are monotonic under those refinements.

The fact that the restriction of a geodesic to a simplex is a
straight line justifies the following definition.

We assume that trees T and R are completely resolved and have
all internal nodes of different ranks, that is, neither of them has
t-coordinates t; and t;, such that t; = t;, ;. We say that the geodesic
y between trees T and R is computable (in polynomial time) if (a
polynomial and) an algorithm exists that given the sets of parti-
tions with attached time coordinates Ar and Ag that define T and R
respectively, outputs (after a number of steps bounded by the
polynomial of n) a sequence of sets of partitions Ao, ..., A, with
time coordinates attached to every partition such that the fol-
lowing two properties are satisfied:

® Ar =Ag and Ag = Ay

® For every i < k, the pair of sets A;, Ai,1 along with the attached
time coordinates defines the trees where geodesic y enters and
exits simplex S;, respectively. Here, Sy, ..., Sx_1 are all the sim-
plices geodesic y traverses in the order they are traversed.
Particularly, So contains T and S,_; contains R.

Since tree T (R) is completely resolved, the number of elements
of Ag (Ax) is n — 1. In terms of simplices, the number n — 1 — IA;l,
where |4;| is the number of elements in A;, is the codimension of
the face of simplex S; where y enters S;. In terms of trees, this
number is the number of multifurcations plus the number of non-
resolved ranks of internal nodes of the tree corresponding to S;.

Note that the properties above imply that all sets A; are pair-
wise different, all time coordinates attached to the partitions from
the same set are pairwise different, and the time coordinates at-
tached to the same partition in different sets may or may not be
different. Clearly, every geodesic is unambiguously defined by a
sequence of sets of partitions with attached time coordinates sa-
tisfying these properties.

We now give an example of calculating a geodesic in t-space.

Example 12. What is the geodesic between trees E and S depicted
in Fig. 9?
Direct computations show that the geodesic between the two

trees is a cone-path if and only if y > % in which case the geo-

desic passes through the star-tree of height %3” Ify< ij then
the geodesic passes through the tree { (ACIBID):y, (ABCD): "zi}
that is, node v does not move along the geodesic. Since geodesics
restricted to a simplex are straight lines, this provides a complete
characterisation of t-geodesics between pairs of trees having the
topologies of E and S.

The (inefficient) brute-force algorithm for computing these
geodesics would be to consider all possible (not necessarily
shortest) paths in the NNI graph that lead from one tree to the
other and solve the minimisation problem to obtain the t-co-
ordinates of the nodes of unresolved trees, that is, the coordinates
of the intersection points on faces.

17 This assumption cannot be made in the general setting of time-trees or even
more general setting of sampled ancestor trees (Gavryushkina et al., 2013, 2014).
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w

AB ¢ D A C BD

Fig. 9. The geodesic between trees E and S is or is not a cone-path depending on
the height of the root. A, B, C, and D are some trees and not necessarily taxa.

This example is an illustration of the following fundamental
property of t-space. Recall that in both BHV and z-space there exist
pairs of tree topologies such that the geodesic between trees
having those topologies is a cone-path no matter what the branch
lengths are. We now show that t-space does not have this
property.

Theorem 13. For every pair of ranked tree topologies 1ty and rty,
there exist trees T and R such that rt(T) =rt;, rt(R) = rty, and the
geodesic y between T and R is not a cone-path.

Proof. Assume first that for every pair of taxa s, k at least one of
the nodes mrcay(s, k), mrca,(s, k) is a root node. This can only
happen when the number of taxa is three or the number of taxa is
four and the topologies of the trees are of the form ((1, 2), (3, 4))
and ((1, 3), (2, 4). In the first of these cases, the theorem is trivi-
ally true. Consider the second case. Between every pair of com-
pletely resolved trees with topologies ((1,2), (3,4)) and
((1, 3), (2, 4)) there exists a path that crosses exactly 3 facets. Since
the angle between those facets is z/3, the trees T and R can be
chosen so that the angle between them is less than . Hence thus
chosen trees T and R can be connected by a straight line, which is
the shortest path possible.

Assume now that there exists a pair of taxa s, k such that both
mrcar(s, k) and mrcag(s, k) are not root nodes. Let T and R be an
arbitrary pair of trees such that rt(T) = rt; and rt(R) = rt,. We prove
the following stronger version of the theorem:

Let Ts be the tree obtained from T by increasing the root height
by 6. Then there exists a number H such that a path where
mrcas(s, k) is not a root node for all trees S on the path is shorter
than every cone-path from Ts to R,, where 6§, ¢ > H. Hence the
geodesic between T and R, cannot be a cone-path. Furthermore,
the number H is computable in polynomial time from T and R.

Let {t;} and {r;} be the time coordinates of T and R respectively.
Then the shortest cone-path from T to R passes through the star-
tree of height h obtained from the following minimisation:

n-1 n-1
th-t? + (h = )2 - min
Iz [Za-s

i=1 j=1 (*)

Hence, the height of the star-tree can be made arbitrarily high
by increasing the heights t,_; and r,_ of trees T and R.

Fix a large enough number H (the exact value will be de-
termined later) obtained from minimisation (*) and consider the
following path between Ts and R,, where 6, ¢ > H. Fist, the path
follows the straight line from T to the tree S’ that has two internal
nodes: mrcag (s, k) and the root, the time coordinate of mrcag (s, k)
equals to the time coordinate of mrcar(s, k) and the time co-
ordinate of the root equals to H. Then, the path follows the straight
line from S’ to S”, where the only difference between S’ and S” is
that the time coordinate of mrcag (s, k) equals to the time co-
ordinate of mrcag(s, k). Finally, the path follows the straight line

from S’ to R. Let ig be the number of the time coordinate of
mrcar(s, k) and ji—of mrcag(s, k) Then the length of this path is
equal to

JZ H-t;? + JZ (H=r12 +1rj, — ti

i#ls J#ik (**)

Note that the value of this function (**) is smaller than the
value of the objective function in minimisation (*) for all large
enough values of H. This is our first requirement on the number H.
The second requirement is that the path described in (**) exists.
Since both these requirements can be checked in polynomial time,
the stronger version of the theorem is proved. ©

It follows from the proof of this theorem that for every pair of
simplices in t-space, a non-trivial part of them consists of trees
between which the geodesic is not a cone-path. Hence, the volume
of pairs of trees between which the geodesic is not a cone-path is
positive for every pair of simplices, unlike in BHV or z-space. This
is because geodesics in t-space often follow NNI-paths. However,
they do not necessarily follow shortest NNI-paths. Consider
two caterpillar trees  (((((((((1,2),3),4),5),6),7),8),9),10) and
((0(€((((1,2),5),6),7),8),9),3),4),10). It is not hard to see that no tree,
apart from these two, is a caterpillar tree on an NNI-geodesic
between them, however every tree on the geodesic between trees
with these tree topologies is a caterpillar tree in t-space. A more
detailed investigation of this phenomenon is the subject of our
future work.

6. Conclusion and further directions

We have considered two standard parameterisations of the
space of ultrametric phylogenetic trees: (1) using lengths of coa-
lescent intervals and (2) using times of divergence events. By
considering suitable polyhedral complexes, we have found two
possible representations of the space of trees called z-space and
t-space respectively. Despite their similarity, the two para-
meterisations have significantly different geometric and algo-
rithmic properties. For example, we showed that geodesics, and
hence Fréchet means, are different in the two spaces. Although it
required quite different geometric approaches, we proved that
shortest paths are unique in both 7z- and t-space. We also proved
that shortest paths are efficiently computable in 7-space. We have
implemented the algorithm for computing exact shortest paths in
Java. We also implemented the algorithms for efficiently approx-
imating Fréchet means, standard variances, and some other geo-
metric and statistical characteristics of finite samples of trees. Al-
though the algorithmic complexity of t-space remains unknown,
the space has several properties that are desirable for statistical
analysis of tree space. For instance, we proved that the paths that
traverse a star-tree are often shortest in z-space and are rarely
shortest in t-space. This feature of t-space is a desirable property
for phylogenetic applications, and particularly for summarising
posterior samples by a point estimate. Indeed, one of the un-
pleasant features of BHV space is that parts of the summary tree
are often the star-tree, when incompatible subtrees are supported
by the posterior (Hotz et al., 2013). This feature is a consequence of
a fundamental geometric property of the space—for some pairs of
trees the shortest path traverses a star-tree no matter what the
branch lengths of the trees are. Both BHV and z-space suffer from
this feature, while t-space is free from it. Thus we expect summary
trees produced using t-space to be more informative and realistic.

Although all results about t-space in this paper are presented
for ultrametric trees, they can be extended to the set of all time-
trees, as well as to the set of all sampled ancestor trees. In the light
of the work of Sturm (2002) on statistics over CAT(0) spaces, this
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makes t-space a very promising candidate for the role of the
parameterisation of phylogenetic time-trees and sampled ancestor
trees. However, the details of the extension as well as the question
of efficiency remain for the future work.

An obvious direction of further research is to test our algo-
rithms on simulated and real data sets, compare them with known
algorithms, and suggest what extra formal properties of a para-
meterisation of the tree space are desirable. As is suggested in our
work, there are other possible ways that ultrametric tree space can
be parameterised. We have considered two obvious para-
meterisations and established that they are already quite different.
One can certainly come up with many other ways to parameterise
the space. The question arises:

Problem 14. Is there, in some sense, a single optimal para-
meterisation of the tree space? If not, what is the class of accep-
table parameterisations?

Our paper suggests a number of directions for further theore-
tical investigations. An important statistical question is

Problem 15. What parameterisation should be used for coalescent
models? Birth-death models? Must the parameterisations used for
these two types of models be different?

This problem is especially intriguing in the light of work of
Stadler et al. (2015). The first step towards an answer for this
question is obviously to consider the coalescent and the birth-
death priors in 7- and t-spaces. Are these priors continuous in
these spaces? Can the distance between two trees be made a
(simple) function of their prior probabilities?

Although much work has been done to investigate CAT(0)
simplicial complexes, no satisfactory characterisation of the com-
plexes is known (Zimmer et al., 2011). Further research is needed
with an eye towards effectiveness properties. The problem in
general is expected to be hard because even constructing non-
trivial examples of CAT(0) simplicial complexes requires significant
effort and only a few such examples are known (Zimmer et al.,
2011). In this paper, we have provided such an example—the
t-space. Hence the following question, which we ask for t-space, is
also important for CAT(0) simplicial complexes in general.

Problem 16. Is there an efficient (in any sense) algorithm for
computing shortest paths between trees in t-space?

As we have established in this paper, the measure (volume) of
the set of pairs of trees between which the shortest path traverses
a star-tree is positive in 7-space and t-space. This measure is po-
sitive in BHV space (Billera et al., 2001) as well. Hence the obvious
question to understand the geometry of the space is to find this
measure. More precisely:

Problem 17. Let u, be the uniform measure on the set of pairs of
trees on n taxa between which the geodesic is a cone path.'® What
is the value of y, for BHV space? For z-space? For t-space? Is the
sequence {u, e, convergent? If so, what is the limit limpu,? What
is the meaning of this limit?

Clearly, y; = 11in all BHV, 7- and t-space. To find 4 is an en-
tertaining exercise.
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