3,163 research outputs found

    Building automation routing requirements in low-power and lossy networks

    Get PDF
    The Routing Over Low-Power and Lossy (ROLL) networks Working Group has been chartered to work on routing solutions for Low-Power and Lossy Networks (LLNs) in various markets: industrial, commercial (building), home, and urban networks. Pursuant to this effort, this document defines the IPv6 routing requirements for building automation

    Industrial Routing Requirements in Low-Power and Lossy Networks

    Full text link

    Copyright Notice

    Get PDF
    The Routing Over Low-Power and Lossy (ROLL) networks Working Group has been chartered to work on routing solutions for Low-Power and Lossy Networks (LLNs) in various markets: industrial, commercial (building), home, and urban networks. Pursuant to this effort, this document defines the IPv6 routing requirements for building automation. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained a

    A Distributed Management Scheme for supporting energy-harvested I/O devices

    Get PDF
    Current wireless technologies for industrial application, such as WirelessHART and ISA100.11a, are not designed to support harvester-powered input/output (I/O) devices, where energy availability varies in a non-deterministic manner. The centralized management approach of these standards makes it difficult and costly for harvester-powered I/O devices (sensor/actuators) to re-join in the network in case of power failure. The communication overhead and delay to cope with the dynamic environment of a large-scale industrial network are also very high for an I/O device. In this paper, we therefore propose a Distributed Management scheme for Hybrid networks to provide Real-time communication (D-MHR) based on the IEEE 802.15.4e and Routing Protocol for Low power and Lossy Networks (RPL) standards, which can address the requirements of energy constrained I/O devices. In D-MHR, the routers can dynamically reserve communication resources and manage the I/O devices in the local star sub-networks. We demonstrate that D-MHR achieves higher network management efficiency compared to IS100.11a standard, without compromising the latency and reliability requirements of industrial wireless networks

    Surfing the Internet-of-Things: lightweight access and control of wireless sensor networks using industrial low power protocols

    Get PDF
    Internet-of-Things (IoT) is emerging to play an important role in the continued advancement of information and communication technologies. To accelerate industrial application developments, the use of web services for networking applications is seen as important in IoT communications. In this paper, we present a RESTful web service architecture for energy-constrained wireless sensor networks (WSNs) to enable remote data collection from sensor devices in WSN nodes. Specifically, we consider both IPv6 protocol support in WSN nodes as well as an integrated gateway solution to allow any Internet clients to access these nodes.We describe the implementation of a prototype system, which demonstrates the proposed RESTful approach to collect sensing data from a WSN. A performance evaluation is presented to illustrate the simplicity and efficiency of our proposed scheme

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Information Centric Networking in the IoT: Experiments with NDN in the Wild

    Get PDF
    This paper explores the feasibility, advantages, and challenges of an ICN-based approach in the Internet of Things. We report on the first NDN experiments in a life-size IoT deployment, spread over tens of rooms on several floors of a building. Based on the insights gained with these experiments, the paper analyses the shortcomings of CCN applied to IoT. Several interoperable CCN enhancements are then proposed and evaluated. We significantly decreased control traffic (i.e., interest messages) and leverage data path and caching to match IoT requirements in terms of energy and bandwidth constraints. Our optimizations increase content availability in case of IoT nodes with intermittent activity. This paper also provides the first experimental comparison of CCN with the common IoT standards 6LoWPAN/RPL/UDP.Comment: 10 pages, 10 figures and tables, ACM ICN-2014 conferenc

    Leveraging upon standards to build the Internet of things

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there were many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. Long time, most efforts were focusing on the networking layer. More recently, the IETF CoRE working group started working on an embedded counterpart of HTTP, allowing the integration of constrained devices into existing service networks. In this paper, we will briefly review the history of integrating constrained devices into the Internet, with a prime focus on the IETF standardization work in the ROLL and CoRE working groups. This is further complemented with some research results that illustrate how these novel technologies can be extended or used to tackle other problems.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2 007-2013) under grant agreement n°258885 (SPITFIRE project), from the iMinds ICON projects GreenWeCan and O’CareCloudS, and a VLI R PhD scholarship to Isam Ishaq
    • …
    corecore