355 research outputs found

    On Completeness of Cost Metrics and Meta-Search Algorithms in \$-Calculus

    Full text link
    In the paper we define three new complexity classes for Turing Machine undecidable problems inspired by the famous Cook/Levin's NP-complete complexity class for intractable problems. These are U-complete (Universal complete), D-complete (Diagonalization complete) and H-complete (Hypercomputation complete) classes. We started the population process of these new classes. We justify that some super-Turing models of computation, i.e., models going beyond Turing machines, are tremendously expressive and they allow to accept arbitrary languages over a given alphabet including those undecidable ones. We prove also that one of such super-Turing models of computation -- the \$-Calculus, designed as a tool for automatic problem solving and automatic programming, has also such tremendous expressiveness. We investigate also completeness of cost metrics and meta-search algorithms in \$-calculus

    A Review on Machine Learning and Deep Learning Techniques Applied to Liquid Biopsy

    Get PDF
    For more than a decade, machine learning (ML) and deep learning (DL) techniques have been a mainstay in the toolset for the analysis of large amounts of weakly correlated or high-dimensional data. As new technologies for detecting and measuring biochemical markers from bodily fluid samples (e.g., microfluidics and labs-on-a-chip) revolutionise the industry of diagnostics and precision medicine, the heterogeneity and complexity of the acquired data present a growing challenge to their interpretation and usage. In this chapter, we attempt to review the state of ML and DL fields as applied to the analysis of liquid biopsy data and summarise the available corpus of techniques and methodologies

    Static dependency analysis of recursive structures for parallelisation

    Get PDF

    Acta Cybernetica : Tomus 6. Fasciculus 4.

    Get PDF

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    The Emergence of Consciousness

    Get PDF
    According to the mainstream view in philosophy today, the world is a purely physical system, in which consciousness emerged as a product of increasing biological complexity, from non-conscious precursors composed of non-conscious components. The mainstream view is a beautiful, grand vision of the universe. However, it leaves no real place for consciousness. This paper explains why
    • …
    corecore