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KALMAN LISSAK 
(1908—1982) 

Professor Lissdk, the doyen of Hungarian physiologists and member of the 
Academy of Sciences died on 22 June 1982. He started his scientific career in 1933 
at the Institute of Physiology of the Medical School in Debrecen, in 1943 became 
the director of the Institute of Physiology in Pecs and kept this post until his retire-
ment in 1978. The establishment of the highest standards in the education of physio-
logy and the introduction of modern neuro- and electrophysiological research 
methods in his country belonged to his dearest endeavours which he accomplished 
with much success. As a coworker of W. Cannon in 1938—39 Dr. Liss&k was 
fortunate to become a witness of the historical discussions among Rosenblueth, 
Wiener and Bigelow which finally led to the foundation of cybernetics. Dr. Liss&k 
became an early and arduous supporter of cybernetics in Hungary and faithfully 
served its cause until his death. 

1 Acta Cybernetics VI/4 





On certain partitions of finite directed graphs 
and of finite automata 

By A. A D AM 

I. Introduction and basic terminology 

8 1 . 

The main aim of this paper is to study the partitions n of the vertex set of 
a finite directed graph G such that n satisfies the following condition: if the vertices 
a, b are in a common class modulo n and the edges ac, bd exist in G, then 
c, d are also in a common class. These partitions will be called partitions having 
property P in the paper. 

My attention was called to studying these partitions by the automaton-theoreti-
cal articles [7], [9], [10]. The majority of the present paper is written, however, 
from a graph-theoretical point of view. 

Sections 3—5 are devoted to introducing the notions which are basic for the 
paper, and to exposing a few simple consequences of the definitions. 

In Chapter II a description of the P-partitions of functional graphs will be 
given. The results of Chapter II will be generalized in Chapter III into an overview 
of the P-partitions of all (finite, directed) connected graphs in which no vertices 
with out-degree zero occur. 

Chapter IV contains comments of several types. The extension of the former 
results to non-connected graphs is sketched, their extension to graphs with sinks 
is questioned and examples answering some arising questions will be given. § 12 
is an appendix to the paper; it starts with lemmas on a sequence of partitions of the 
state set of a Moore automaton, later these facts lead to a proof solving a problem1 

on the complexity and state number of Moore automata. 

1 Conjecture 1 in [4]. 
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§ 2 . 

The idea of studying the P-partitions by graph-theoretic methods was suggested 
by the articles [7], [9], [10] of Gill, Flexer and Hwang. They have dealt with questions 
concerning automata. The mentioned partition type is the same as the "partitions 
with substitution property" in their papers.2 

Gill, Flexer and Hwang discussed mainly the partitions of the state set of an 
automaton such that the factor automaton (modulo the partition in question) 
exists and is a cycle. It turns out from their articles that the overview of these parti-
tions has a certain technological significance.3 

Yoeli and Ginzburg [14] introduced the P-partitions under the name "admissible 
partitions". They investigated chiefly the atoms4 in the lattice of these partitions. 

Dvorak, Gerbrich and Novotny deal in their most recent paper [5], essentially, 
with connected directed graphs in which no out-degree exceeds one. They describe 
all the possible homomorphisms (if there exists any) of a graph onto another. 

The question, to whose solution Chapter II of the present paper is devoted, 
is the same (apart from terminological differences) as the problem of describing 
the congruences of connected finite unary algebras with one operation. The papers 
[11], [15], [16], [17] of Kopecek, Egorova and Skornjakov deal with somewhat 
related questions. 

The. autonomus semiautomata (possibly infinite ones) which are investigated 
by Machner and Strassner in [12] are essentially the same as the functional graphs 
in. our terminology. Theorem 3 and Corollary 6' in [12] concern to finite functional 
graphs, these results correspond to certain considerations in our Chapter II. The 
mentioned results are derived by Machner and Strassner as consequences of their 
investigations dealing with the infinite case. 

§3. 

By a graph, we mean a connected directed finite graph. Parallel edges with the 
same orientation are not permitted. We allow, however, loops and oppositely 
oriented parallel edges. Sometimes we regard a graph G as a relational structure, 
this means that we say "the relation aG(a, b) holds" instead of saying "the edge 
from the vertex a to the vertex b exists in G".5 

: ; The most familiar notions of the theory of directed graphs are supposed to be 
known; especially, the notions, of path and cycle. These are understood always 
in directed; sense, and with pairwise different vertices. (Of course, the first vertex 
of a cycle and the last; one are the same.) 

The notion of circuit originates from the notion of cycle by the modification 
that the edges are considered as non-directed ones. 

2 In [7], [9], [10] automata without output signs are considered. Actually, the graph of an 
automaton is studied rather than the graph itself. 

» See the middle of Section 1 in [7] and Section VII of [9]. 
• n is called an atom if nzio holds and n~3.it'z>o implies n=n' (where n, n' are 

P-partitions). 
6 The subscript G is possibly dropped in <xG if its absence cannot cause a misunderstanding. 

Similar notational simplifications may occur in other cases, too. 
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A vertex with in-degree zero is called a source. A vertex with out-degree zero 
is called a sink. 

The lattice of all partitions of the vertex set V of a graph G is denoted by 
L(V); as usual, tz,gn2 means that % ( € L ( V ) ) is a (proper or non-proper) refine-
ment of 7 T 2 ( € J L ( F ) ) . I is the partition having one class only, and o is the partition 
each class of which consists of a single element. 

Consider a partition n(^L(V)). We say that n possesses the property P (or-, 
simply, that n is a P-partition) if 

(a = b (mod 7t)&a(a, c ) & a ( b , d))=>c = d(modn) 

holds universally (i.e., for every choice of the vertices a, b,c,d). 
Denote by [a]^ (or simply by [a]) the class (modulo n) containing á vertex a. 

The factor graph G*=G/n is defined in the following manner : 
the vertices of G* are the classes of V modulo n, 
a*([a], [6]) holds6 if and only if there exist two vertices a'(EV), b'(£V) such 

that a'£[a], b'd[b] and a {a', b'). 
It is clear that Gjn can have loops even if G is loop-free. 
We end this § by asserting two obvious statements concerning the above notion 

of the factor graph. The first of them is an analogon of one of the general isomorphism 
theorems of universal algebras. 

Lemma 1. Let nu n2 be two partitions of the vertex set V of a graph G. 
Suppose 7r1£7r2; denote by n^ the following partition of the vértex set of Gjn1: 
M»,=[&]«i ( m o d n'2) if and only if a=b ( m o d n2). Then G/7t2 and (G/n^/n^ are 
isomorphic. 

Lemma 2. Let n be a partition of the vertex set of a graph G. If there is no 
source (or no sink) in G, then there is no source (or no sink, resp.) in Gjn, too. . 

§ 4. 

A graph G is called a functional graph if the out-degree of each vertex of G is 
one. A simple structural description of the finite functional graphs is due to Ore (see 
[13], § 4.4; [1], Chapter I); his theorem states that a connected graph G is functional 
if and only if 

G has precisely one circuit, 
the circuit in G is a cycle, and 
each other edge of G is directed towards the cycle. 
By its definition, a functional graph G does not contain a sink: G contains 

at least one source unless G is a cycle. 
The vertices and edges of the cycle of a functional graph G are called cyclic. 

Each other vertex and edge of G is said acyclic. (A source is always acyclic:) 
If a is a vertex of a functional graph G, then we denote by cpG (a) the (uniquely 

determined) vertex b for which aG(a,b) is true. We define (p'(a) by (p'(a)= 
= (p((pi~1(a)) recursively; we agree that cp°(a)=a. 

6 We write a* instead of a. 
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Let a, b be two vertices of a functional graph. If there is a number i(feO) 
such that q>'(a)=b, then we denote by x(a, b) the smallest of these numbers. 

Let a path in a functional graph G be considered whose vertices are 

Oi, at, ..., a„ (sl=r 2). (4.1) 

If flj, a2, ..., a , - ! are acyclic vertices and as is cyclic, then we call (4.1) a principal 
path. To each acyclic vertex alt there is exactly one principal path starting from at. 

Let B be a subset of V such that every element of B is an acyclic vertex. 
B is called a basic set if, to each b(£B), the principal path starting with b contains 
no other element of B than b. The empty set is regarded to be basic, too. (Thus 
each functional graph — even a cycle — has at least one basic set.) The set of all 
sources of a functional graph is always basic. For any basic set B, a principal 
path may contain at most one element of B. 

Consider a basic set B of a functional graph. A vertex a is called outer with 
respect to B if a is acyclic and the principal path starting with a contains an 
element of B. The remaining vertices are called inner (with respect to B). The 
following lemma is obvious: 

Lemma 3. Let B be a basic set in a functional graph. Then 
(i) each element of B is outer with respect to B, 

(ii) each cyclic vertex of the graph is inner with respect to B, and 
(iii) if a is inner with respect to B, then (p{a) is also inner. 

In the last assertion of this § we state a connection between the P-partitions 
and a slight extension of the class of functional graphs. 

Proposition 1. Let G be a graph and n be a partition of its vertex set. n has 
the property P if and only if each out-degree in the factor graph G/n is either zero 
or one. 

Proof. The out-degree of a vertex [a] of Gin is at least two if and only if 
there exist four vertices bi,b2,c,d in G such that ¿>i€[a], b2^[a], a(61; c), a(62, d) 
and c ^ d (mod n). This condition is precisely the negation of the property P. 

§ 5 . 

In this last section of Chapter I, a few concepts of the theory of automata will 
be recalled or introduced. These notions are referred to in § 2 and § 12 only. 

The notion of the Moore automaton is well-known, we denote such an auto-
maton by A=(A , X, Y, 6, A). 

Let a, b be two states; the length of a shortest (input) word p such that A (<5 (a, p)) 
X(5(b,p)) is denoted by m(a,b). The maximum of co (a, fa) (taken for pairs 

of different states) is called the complexity of A. 
Let us define the partitions7 t]k in its state set A in such a manner that a=b 

' It follows from Proposition 16 of [2] that each r/k is really a partition. In [2], I have written 
Rk instead of rjk. 
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(mod »7*) holds exactly when a>(a,b)^k. It is obvious that 

fo i m i I2 i »73 i ••• (5.1) 

and tj0 equals the maximal partition of A. 
If we consider an automaton A such that the output set Y and the output 

function A are not taken into account, then we speak of an automaton without 
output signs. 

Let A be an automaton. Let us construct a directed graph G in the following 
way: 

the states of A are the vertices of G, and 
aG(a, b) holds if and only if there is at least one x(£.X) satisfying 5(a, x)=b. 
Then G is called the graph of the automaton A. (It is clear that we have re-

garded A as an automaton without output signs in this definition.) 

Construction I. Let G be a functional graph, B a basic set in G and d 
a divisor of the length of the cycle of G. 

We form an augmenting sequence 

of induced subgraphs of G such that 
(a) the vertex set V1 of G1 equals the set of inner vertices (with respect to B), 
(f}) the vertex set Vt of Gt consists of the vertices a which satisfy (p(a)£Vi^1 

(K(_i is the vertex set of G ^ ; 2 ^ i s t ) , 
(y) the sequence (6.1) terminates when we reach G (in the form of G,).8 

Let us construct a sequence 

(C) Suppose that the partition (of V{~i) has already been defined (where 
2 ^ i ^ t ) . Denote by rt the following partition of Vt: a=b (mod t ;) precisely if 

either a=b, 
or a£Vi~Vi-X, beVi-Vi-! and q>{a)=<p(b) ( m o d ^ - i ) . 

G I , G 2 , . . . , G, (6.1) 

7TJ, JT2> .••» = JT 

(of partitions) according to the following rules (A)—(F): 
(A) n{ is a partition of Vi (where l ^ i ' S i ) -

(B) (Initial step) Choose a cyclic vertex c of G. Let 

a = b (mod Jtx) 

hold for a(€Fx) and b(€Vi) exactly when 

X(a, c) = x(b, c) (mod d). 

(6.2) 

8 It is clear that V,=BU V1. 
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(D) Assume that the partition (of V t-j) has already been defined (where 
2==/==/). Denote by n't the subsequent partition of a=b (mod 7T-) exactly if 

either a=b, 
or b€Vi~i and a=b (mod n^J. 
(E) (Ordinary step) Choose an arbitrary partition n* of Vt such that 

Form the union n*Uni and denote it by n t. 
(F) The construction of the sequence (6.2) contains an initial step and t—1 

ordinary steps. 

Remarks. If aZVj-! and b^Vi—Vi_1, then a^b modulo any of the parti-
tions iii, n i + 1 , ..., n,(—n). — If a£V{ and ¿6F,-, then either the congruence a=b 
is true for all of the partitions, n^ n i + l , ..., n, or it is false for all of them. — The 
following three assertions are equivalent (for a performance of Construction I): 

(1) B is empty, 
(2) every vertex is inner and the construction collapses to the initial step, 
(3) Ojn is a cycle.. , 

If G is a cycle, then the assertions (1), (2), (3) are true. — If B is empty and d= 1, 
then n equals the maximal partition i of V. — If B is chosen as the set of all 
acyclic vertices a fulfilling the statement that <p(a) is cyclic, the number d is 
chosen as the cycle length of G and each n* is the minimal partition of Viy then 
7t equals the minimal partition o of V. 

Lemma 4. The initial step of Construction I is independent of the choice of the 
cyclic vertex c. 

Proof. Apply the initial step with c(1) and c(2), resp. (instead of c). Denote 
X(c(1), c(2)) by q. Let the originating partitions be 7t|1) and 7r{2). 

Suppose a=b (modrt^). Denote. 

X(a, cM)-x(b, c ( 1 ) ) 
d 

by k and pld by m where p is the length of the cycle of G. It is easy to see that 
X(a, c(2)) equals either y(a, c(iy) + q or y(a, cw)—(p — q) and a similar assertion 
holds with b (instead of a). A discussion shows that /(a, c(2))—x(b, c(2)) is equal 
to one of kd,(k+m)d, (k—m)d. Hence' x(a, ci2))=x(b, e(2)) (mod d) and a=b 
(mod Tri2>). 

An analogous inference shows that a=b (mod 7ti2)) implies a s f t (mod itj1'). 

Proposition 2. Consider two performances of Construction I for a graph G; 
suppose that we start with the pairs (B(1>, dm) and (fi(2), dm), respectively. Denote 
the obtained partitions by nw and n(2). If 71(1> = tc(2), then dm=dm 

and the 'two 'performances are stepwise'coinciding. 

Proof. We verify the statement indirectly. 
If Bm7iB(i), then there is a vertex a which is inner with respect to one of 
B(2) (e.g. to Bm) and outer with respect to the other one. Thus a=b (mod 7t(1)) 

is satisfiable with at least one cyclic vertex b, but a=b (mod 7T ( 2 ) ) is not satisfiable 
by any cyclic b. 
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Let da), d(2) be different, we can suppose d{1)<di2). Choose a cyclic vertex a. 
a and (pdU (a) are congruent modulo 7T (1) but they are incongruent modulo 7R (2). 

Finally, we consider the case when Bw—Bi2), dm=d(2} and the two perfor-
mances of Construction I differ from each other. The first difference between them 
will appear in the following manner: in two ordinary steps (corresponding to each 
other in the performances), n*(1), n?(2) act differently on the set Vi~Vi-l. It is 
evident (by the second sentence of the remarks above) that the partitions n m 

acton Fj—Fj-x in the same manner as n*m and n*(2), respectively. 
We have got it ( 1 )^n i 2 ) when the two performances do not agree with each 

other completely. 

Theorem 1. The following three assertions are equivalent for a partition n of 
the vertex set V of a functional graph G: 

(I) Gin is a functional graph, 
(II) n has the property P, 

(III) 7i can be obtained by Construction I. 

Proof. The equivalence of (I) and (II) follows immediately from Proposition 1 
and Lemma 2. In what follows, we strive to show the equivalence of (II) and (III). 

(II)=>(III). Let us start with a P-partition n of V. Our aim is to determine 
a performance of Construction I such that n is obtained by this performance. 
In details the determination of the performance will consist of the following phases 

(a) we determine a basic set B, 
(P) we determine a divisor d of the length of the cycle of G, 
(y) we prove that if we choose two vertices a l 5 a2 and two elements bt, b2 

of B such that the numbers yfa^, bx) and x(a2> b2) are defined and they do not 
coincide, then at ^ a2 (mod ri), 

(<5) we determine the partitions nl, 713,714,..., 
(E) we show that each n* is a refinement of r ( . 
We turn to elaborate the parts of the proof (of (II)=>(III)) exposed above, 
(a) Denote by C the set of all vertices a of G such that [a]„ contains at 

least one cyclic vertex. Denote by B the set of vertices b such that b$C and 
q>{b)iC are valid. It is clear that B consists of acyclic vertices. We are going to 
show that to any b(£B) no positive i can satisfy b = (p'(b) (mod 7t). Suppose 
the contrary. It is easy to see (by the property P) that b, <p (b), (p2i(b), <p3i(b),... 
belong to a common class modulo n, this is impossible since [£>]„ cannot contain 
a cyclic vertex. 

(/?) Let a be an element of C, denote by r\{a) the smallest positive integer 
i such that a=(p{(a) (mod 71). 

Consider a vertex a(£C), let i be the (minimal) number occurring in the de-
finition of t](a). Then 

§ 7 . 

( « M e ) : 

hence 
<p(a) = <p((p'(a)) = (p'((p(a)) (mod n), 

t](a) is ri((p(a)). (7.1) 
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If (7.1) is applied for the vertices of the cycle of the graph, we get easily that 
rj(a) is common for the cyclic vertices. Denote this common value by d and the 
cycle length by p. 

Our next aim is to verify that d is a divisor of p. Let k be the smallest integer 
such that kd>p. Since the deduction 

c = (p"(c) = <pM(c) = <pM(c) = . . . = <pw(c) = <pki~p(c) (mod n) 

holds for an arbitrary cyclic vertex c, we have kd—p^t](c)(—d) by the minimality 
condition in the definition of tj. On the other hand, the minimality condition in 
the definition of k implies kd—p^d. Consequently kd—p=d, thus (k — l)d=p 
and d\p. 

Consider now an acyclic vertex a(£C), let c be a cyclic vertex such that 
a=c{modri). We have (p'(a)=<pl(c) (mod it) for every i, this fact implies 
t]{a) = n{c)=d. 

(y) We can suppose x{aL, ¿¡)< b2) without an essential restriction of 
the generality. Denote x(ai> b,) by j. It is clear that <pj+1(a1)£C and (pJ+1(a2)$C, 
hence ax ̂  a2 (mod it). 

(8) Denote by Vt (where * = 1) the set of vertices a satisfying (p'~1(a)£C. 
(It is clear that if Let n* be a partition of Vt defined by what 
follows: a=b (mod n*) (where a£ Vt, b£V:) if and only if 

either a = b 

or a ^ V i - x , b^.V i_1 a n d a = fc(mod7t). 

(e) is obviously true with the above definition of the partitions nf. 
We have completed the determination of the "parameters" B, d and 7t|, ... 

occurring in Construction I. A routine inference shows (together with (y)) that 
we obtain just n if we perform the construction with these "parameters". 

(III)=>(II). Consider a partition n which has been obtained by Construction I. 
Similarly to the preceding part of the proof, we denote by C the set of those vertices 
a for which [a]n contains a cyclic vertex. 

Suppose a=6(mod7t) where a ^ b . 
If a£C, then clearly b£C. Let us choose an arbitrary cyclic vertex c. Either 

X{(p(a),c) = x(a, c ) - l 
or 

x(<p(a), c) = p - l = - l = x(a, c ) - l (modd) 

(according as aj^c or a=c), and the analogous statement holds for b (instead 
of a). Therefore we have 

x((p(a), c) = x(a, c ) - l = x(b, c ) - l = x(v(b), c) (mod d), 

thus cp(a) = (p(b) (mod n). 
If a and b do not belong to C, then they are necessarily contained in the 

same difference set Vi — Vi-1. a=b is valid modulo each of n=nt, n,_1,7r(_2, ..., 
...,n,,nf and Tf (by the construction). We get (p(a) = q>(b) (mod rc^) by the 
rule (C), hence the elements <p(a) and <p(b) of Vi-1 are congruent modulo each 
of n t , n i + 1 , ..., n ,=n, too. 
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The fulfilment of the property P is proved. 

The next assertion is an easy consequence of the procedure described in Con-
struction I and of the notion of factor graph: 

Proposition 3. Let G be a functional graph and n be a partition (in G) pro-
duced by Construction /. The cycle length of the factor graph G/n equals d. Gin 
is a cycle if and only if B is empty. 

HI. Partitions having the property P in arbitrary sink-free graphs 

§ 8 . 

Let G be a directed graph. We introduce a quaternary relation x and some 
binary relations in the set V of vertices of G. 

Let x(a,b,c,d) hold for the (not necessarily different) vertices a,b,c,d 
if there is a positive integer k and there exist 2k vertices / i , / 2 , ...,fk, glf g2,..., gk 
such that the equalities 

a =fi, b =fk, c = g l5 d — gk (8.1) 

and the 2k—2 relations 

« ( / i , / 2 ) , « ( / 2 , / 3 ) , . . . , « ( / * - „ / » ) , (8.2) 

<*(gi> g2>» a(ga, gs). •••, a(g*-i, gk) (8.3) 

are true. x(a, a, c, c) is regarded to be always valid (with the choice k— 1) both 
when a=c and when a^c. It is clear that x(a,b,c,d) and x(c,d,a,b) are 
equivalent. 

Let e(a,b) be true if there is a c(£V) such that x(c,a, c,b). Denote the 
transitive extension of q by e. 

In Chapter III, our aim is to characterize the P-partitions of the sink-free graphs 
by use of the partition s. 

Remark. If G is a functional graph, then e = o. 

§9. 

Lemma 5. If nx and n2 are partitions with property P, then 7rin7r2 is a 
P-partition, too. 

Proof. If a~b (mod n^n^), ct(a, c) and a(b, d) are true, then both of 
c = d ( m o d n j , c=d(mod 7T2) hold. 

Proposition 4. There is a (uniquely determined) P-partition n* such that n* Q n 
for each P-partition. 

Proof. G is a finite graph, hence the intersection n* of all P-partitions possesses 
property P by a successive application of Lemma 5. 
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Proposition 5. We have 

Proof. Let a, b be two vertices such that g(a, b). There is a vertex c such that 
x(c, a, c, b). Consider the 2k vertices occurring in (8.2), (8.3). (These vertices 
fulfil now c=fi=g1, a=fk, b=gk instead of (8.1).) Since n* has property P, 
fi=gt (mod n*) follows inductively; especially, 

a — fk — Sk = Hmod n*). 

We have shown that g(a,b) implies a=b (mod n*). Consequently, a=b (mod e) 
implies a=b (mod ti*) (because i is the transitive extension of q). 

Lemma 6. If G has no sink, then e is a P-partition. 

Proof. Assume q(a, b), a,(a, c) and a(b, d) for some vertices a, b, c, d. Then 
there is a vertex h such that x(h,a,h,b), hence x(h,c,h,d), thus e(c,d). 

Suppose a=b (mod s), a(a, c), u(b, u) for an arbitrary quadruple a,b,c,d. 
There exist vertices alf a2, ..., ak such that g(ai-1,ai) for each i and 
ax=a,ak—b. We can choose k—2 vertices c2, c3, ..., ck_x such that a(a i5 c;) 
holds (2^i^k—1). By the beginning sentences of the proof, o(ci^1, ct) if 
3^/sA:—1; furthermore, q(c, C2) and g(ck-1,d). Therefore e(c,d). 

Proposition 6. If the directed graph G has no sink, then n*=e. 

Proof. Tt*2e was stated in Proposition 5. nMQe is an immediate consequence 
of Proposition 4 and Lemma 6. 

Propositions 1, 6 and Lemma 2 imply 

Corollary 1. If G has no sink, then G/e is a functional graph. 

Construction II. Let G be a graph without sinks. Denote the factor graph 
G/e by G*. Choose a partition n' of the vertex set of G* such that n' is obtained 
by Construction I. Define a partition n in the vertex set V of G in the following 
manner: a=b (mod ri) holds for a(£V), b(£V) exactly when [a]£=[6]£ (mod n'). 

Theorem 2. Let G be a directed graph without sinks. The following three 
assertions are equivalent for a partition n of the vertex set of G : 

(i) G/n is a functional graph, 
(ii) n has the property P, 

(iii) 7r can be obtained by Construction II. 
Proof. The theorem becomes clear by comparing the following earlier results: 

Theorem 1, Propositions 1,4,6, Corollary 1, Lemmas 1 and 2. (Now Lemma 1 is 
applied for £ and n instead of 7z1 and n2, resp.) 

Proposition 7. Let G be a graph without sinks. The length p of the cycle of the 
functional graph G/e divides the greatest common divisor p* of all cycle lengths 
of G. 

Sketch of the proof. Choose an arbitrary cycle Z ' in G, denote the length 
of Z' by p'. Let us start with a vertex of Z' and pass through all the vertices of 
Z ' ; consider the corresponding vertices of G/e. We have passed through the 
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cycle Z of G/e either one or more times; in any case, the number of surround-
ings of Z is an integer. Thus p\p'. 

Since the same assertion holds for each choice of Z ' , we have p\p*. 

Corollary 2. Let G be a graph without sinks. Then the following two numbers 
are equal: 

(a) the number of partitions n such that Gjn is a cycle, 
(b) the number of divisors of the cycle length p of G/e (including 1 and p). 

Proof. Recall Construction II, Theorem 2 and Proposition 3. It is clear 
that Gin is a cycle if and only if n' is constructed (in G/e) by such a performance 
of Construction I that B is empty. This means that we have (precisely) the 
freedom of choosing a divisor of the cycle length of G/e arbitrarily. 

IV. Remarks, examples; an appendix 

§ 10. 

1. In the previous sections, a complete description of the partitions having 
property P of connected finite directed graphs without sinks was obtained. In 
the present remark, we shall outline how this description can be extended to non-
connected graphs. 

Let G be a non-connected directed graph containing no sink. Then G can be 
represented (in at least one manner) as the disjoint union of two graphs9 Gj, G2. 

" "Consider a partition n of the vertex set; V of G; denote by 7r; (where i can be 
1 or 2) the restriction of n to the vertex set Vt of Gt. Let [a]K be an arbitrary 
7r-class; evidently, either [a\n=[a]ni or [a]K=[a]„2 (where necessarily a(iV1 or 
a£V2, resp.) or = U [ ¿ > 2 ] r e 2 with suitable vertices b^V,) and b2(£V2). 
It is easy to see the validity of the following assertion : 

Proposition 8. A partition n of V has property P if and only if 
n1, 7t2 are P-partitions, and 
whenever a (a, b) holds in G and [a]„is the union of a nx-class and a n2-class, 

then the same statement holds for [b]K, too. 

The above idea can be utilized in such a way that first we form G/e (which is 
clearly the disjoint union of GJb and GJE), we apply the proposition for G/e,GJe 
and G2/e (instead of G, G1, G2, resp.), and we form the P-partitions of G by 
using the P-partitions of G/e (analogously to Construction II). 

2. The exposed theory admits a dualization with respect to reversing the orienta-
tion of edges. (The dual of a functional graph is a graph in which all in-degrees 
are one. Sources and sinks are dual to each other. The duals of the P-partitions 
are the partitions satisfying 

(c = ¿(mod n) & a (a, c) & a(b, d))=>a = b (mod n). 

9 Each connected component of G is either a connected component of or a connected 
component of Gt. 
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The dual of g(a, b) is true exactly if there is a c such that x(a, c, b, c) holds. 
And so on.) 

3. It can be shown that the P-partitions of a sink-free graph form a lattice. 
The maximal element of this lattice is i, its minimal element is e. 

4. In [7], [9], [10] also "input-independent partitions" have been studied. This 
notion is a slight modification of the concept of "partition with substitution prop-
erty" (i.e., with property P). In our terminology, a partition n is called input-
independent when 

(a (a, c) & a (a, d)) => c = d (mod n) 
is universally true. 

It is easy to see that this property is satisfied exactly when 7r j2e* holds where 
£* is the transitive extension of the following relation q* : g*(a, b) is valid if either 
a=b or there exists a c such that a (c, a) & a (c, b). 

5. We finish the section with exposing two open questions. 

Problem 1. Let an overview of the P-partitions of the finite directed graphs 
containing sinks be given. 

Problem 2. When does p=p* hold in Proposition 7? 

§ 1 L 

In this section, we shall see some examples. The first example is used for 
illustrating how Constructions I, II are performed. This example and the two 
subsequent ones will serve for deciding the following questions: 

(A) Is the relation g always transitive, or is it really needed that it should be 
extended transitively? (Cf. § 8.) 

(B) Can it happen that 7tz>e for a sink-free graph, but n does not possess 
property P? (Cf. Propositions 4, 6.) 

(C) Is the condition that sinks are not allowed indispensable in Proposition 6? 
(D) Is p<p* possible in Proposition 7? 
First, let us consider the graph Gx seen on Fig. la. Since g{c,f) and g(f,g) 

are valid but q(c, g) does not hold, the transitive extension is a proper step when 
e is formed. The classes modulo e are: 

{a}, {b, d), {c,f, g}, {e}. 

(a) (b) 
Fig. 1. 
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Fig. lb shows the factor graph GJe. (We write e.g. a instead of [a]„.) In GJe, 
there is only one choice for d, namely d= 1. We have six possibilities for choosing 
B, and Construction I can be performed in eight manners, the resulting partitions 
are seen on Table 1. (If \B\=2, then we have two possibilities for the choice of 
7IA, because T2 is the maximal partition of B.) The vertex set of GJe has fifteen 
partitions; the remaining seven ones — among these, 

<{5,c} , {&}, {e}) (11.1) 

— do not have property P. 

Table 1. 

The elements 
of B 

The classes modulo 
n 

— (a, b, c, e) 

ä {b, c, e) 

b {a}, {b}, {c- e) 

e {ä, b, c}, {e) 

{d}, {e}, {b, c) 
ä, e 

{ä, e), {b, c} 

b, e 
{d}, {b), <e), {c} 

b, e 
{ä}, {b, e), {c} 

Let us apply Construction II (with the partitions % of GJe in the role of n'), 
we get that <?i has eight P-partitions (from among the 15 partitions n fulfilling 
n^e) . E.g., 

<{«}, {b, C, d,f, g}, {e}> 

is a P-partition of G1 (obtained from the fifth row of Table 1), but 

({a, c,f, g}, {b, d}, M> (11.2) 

(got from (11.1)) is not a P-partition; in fact, a(a,b) , a(c, c) hold and a=c but 
b ^ c modulo the partition (11.2). 

The relation e for the graph G2 in Fig. 2 (containing three sinks) has the 
following equivalence classes: 

{a}, {b}, {c,d,e}, {/}, {g}. 

e does not possess property P because c=e but f ^ g (mod e). Therefore e^n* 
in G2. 
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Consider the graph G3 in Fig. 3a. s has (on G3) the equivalence classes 

{a}, {b, c, d, e , f , g}. 

G3/e is seen in Fig. 3b. We can observe that p = l < 6 = p * (with the notations of 
Proposition 7). 

(a) 
Fig. 3. 

o 
(b) 

Summarizing, the examples show that the answers to the questions (A), (B), 
(C), (D) are: "the transitive extension is really needed", "yes"/ "yes", "yes", 
respectively. 

Each counter-example given above contains a source. 

Problem 3. Do the above answers to the questions (A)—(D) remain unchanged 
when we restrict ourselves to graphs without sources? 

§ 12. (Appendix) 

In this section our aim is to give a simple proof10 for Conjecture 1 posed in [4]. 

Lemma 7. Consider the sequence r]0, r}1,t]2, ... of partitions of the state set 
A of a finite Moore automaton A = (A, X, Y, ô, A). If rji_1=rii for some positive 
i, then Ti—Tji+i. 

10 It should be noted that the idea of the present considerations is similar to a thought occurring 
in [8], p. 14. 
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Proof. Suppose t]iZ)t]i+1, we are going to show . , i) | .pi) j . . The .supposition 
means that there are two states a, b such that at (a, b)=i. We have : 

(o(ô(.a,x), Ô(b,x))^i-l (12.1) 

for each choice of x(£X) andthere isan x*(£X) for which equality holds in (12.1) 
The state pair S (a, x*), S(b, x*) is congruent modulo iji-i but incongruent 
modulo ijt. ' , " ' 

The next assertion is an easy conséquence of Lemma 7. 

Lemïna 8 . Let A be as in the preceding lemma, denote \A\ by v. Lèt m 
be the smallest number such that t]m—t]m+1. Then mSv—1. 

Lemma 9. Let A, v,m be as in Lemmas 7, 8. If two states a,b satisfy 
<o(a,b)^v—1, then co(a,b)=°°. 

Proof. Assume that a,b are congruent modulo They are congruent 
modulo r\m by Lemma 8 and (5.1); consequently, by the definition of m and 
Lemma 7, they are congruent modulo each of rjm+1, rim+2, >/m+3,... (ad infinitum). 

Proposition 9 ([4], Conjecture 1). Let A be a finite Moore automaton such 
that the number v of its states satisfies v^2. Denote the complexity of A by k. 
If k is finite, then k^v—2. 

Proof. By the finiteness of k, a>(a, b) is infinite (if and) only if a=b. Lemma 9 
assures a>(a,b)^v—2 whenever a^b. 

Corollary 3 of [3] shows that Proposition 9 cannot be sharpened. 
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On injective attributed characterization of 2-way deterministic finite 
state transducers 

B y M . BARTHA 

Definitions and notation 

A 2DFT starting from the left (right) is a 7-tuple T = ( Q , X , L , R , Y,5,q0), 
where 

(i) Q is a finite, nonempty set of states; 
(ii) X is a finite, nonempty input alphabet; . . . 

(iii) L (left endmarker) and R (right endmarker) are distinguished symbols 
not in X\ 

(iv) Y is a finite output alphabet; 
(v) 5\ QX(XiJ {L, R})-~QXYX {left, right} is a partial function; 

(vi) q0£Q is the initial state. 

informally T functions as follows. The input word is surrounded by the two 
endmarkers, and T starts from state qa with its tape head reading the left (right) 
endmarker. The moves of T are described by the transition function <5 in the usual 
way (cf. [1]). The transduction terminates successfully when T moves right of 
R or left of L. It is obvious that the left or right start of T is only a technical 
question. T is called an 1DFT if S allows it moving in only one direction. 

Let A be a finite, nonempty set such that A=ASUAT and A^HAI—0. The 
elements of AS and A{ are called synthesized attributes (s-attributes) and inherited 
attributes (i-attributes), respectively. Define the monoid M (A, Y) (Y is a finite 
alphabet) as follows. M(A,Y) consists of all partial functions of A into AXY*. 
Disjoining ££M(A, Y) into four parts we can represent it by the following diagram, 

AS ASXY* 

A;XY* ^-R-AI . .... . it • 

where f ^ » U & U ^ U f i and ^ have pairwise disjoint domains. To make 
this kind of diagrams composable we rather consider £ as a partial function 
$':AXY*^AXY*, where (a, H>) (a£A, w£Y*) can be obtained from i(a) 

2» 
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by prefixing its second component with w. For simplicity we use the abusing 
notation £'—£, and do not indicate the factor Y* in the diagrams. For a£A, 
the first and the second component of 11(a) will be denoted by attr (£, a) and 
out(^, a), respectively, attr (£) will denote the partial function {(a, attr (£, a))\a£A}. 
If Y—&, then we identify £ with attr (£). £ is called injective if such is attr (£). 
Now if £,rj^M(A,Y), then £ot]—£ can be constructed as follows. 

As As - • As 

: {' îi 
—s 

Cs= U o % o Qn o fj,j; £ = ¿1) ( U ( I ° ( f j i 0 Q" o m o Q). 
" S O ~ S I 0 _ _ 

C, = U ( v , o ( « . o ^ - o f , ) ; . , 4 = V i U : ( U . O l , ° ( t . ° f r d ' ° { . ° f i J ) . 
~ N S O ~ ~ — — - N S Q — — -

£ is well defined, since in each case those partial mappings, the union of which must 
be taken have pairwise disjoint domains. It is easy to verify that this composition 
is associative, preserves injectivity, and thé unit element of M (A, Y) corresponds 
to the identity map of AXY*. For ad A, path (£0 rj,a) will denote the sequence 
of attributes reached in the above composite diagram during the computation of 
£011(a). 

Definition. A simple deterministic attributed string transducer (SDAST) starting 
from the left (right) is a 7-tuple A = ( A , X, L, R, Y, h,.a0), where 

(i) A=AsUAi is the finite, nonempty set of attributes, As(lAi=0; 
(ii) X, L, R and Y are as in the case of a 2DFT; 

! (ni) h isa:mapping of X(L, R)=XU{L,R} into M (A, V); 
(iv)• if A starts from the left, then a0£As, else 
Denote the extension of h to a homomorphism of X(L, R)* into Y) 

also by /i. Then the transform of w£X* by A is out(h(LwR), a0). A is called 
injective if h(x) is injective for every x£X(L, R). • 

Lemma 1. 2 DFT and SDAST are equivalent, i.e. they define the same class 
of mappings.. 

Proof. Let T=(Q,X,L,R;Y,6,q0) be a 2DFT, and define the SDAST 
A=(2<2, X, L, R, Y, h, a0) as follows. As and At are two (disjoint) isomorphic 
copies of Q. Let qs and qt denote the corresponding s-attribute and i-attribute 
of a state q£Q, respectively. Then for x£X(L, R) and q£Q, h(x)(qs) and h(x)(qt) 
are defined iff ô(q, x) is defined, and in this case 

h(x)(qs) = h(x)(qd = w) if ô(q, x) = [q\ w, . 

a0=(qo)s if T starts from the left, otherwise a0=(q0)i. It is easy to see that T and 
A are equivalent. . . . 
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Let A=(A,X,LiR;Y,h,a0) be an SDAST and define the 2DFT T = 
—(A,X,L,R,Y,S,a0) as follows. For x£X(L, R) and a€A,S(a,x) is defined 
iff/i(x)(a) is defined, and in this case 

¿(a, x) = (b, w, if H(x) (a) = (b, w) with j . 

The equivalence of T and A is again evident. Now we prove a lemma similar 
to Lemma 1 in [2]. 

Lemma 2. Every SDAST mapping is the Composition of two 1DFT mappings 
and an injective SDAST mapping. . . . ; . . . . . . . . • 

Proof. Let A=(A,X,L,R,Y,h,a0) be an SDAST starting- from the left, 
w£X*, and suppose that LwR=w1xw2 for some x£X(L, R), wt£X(L, R)* (/=1,2). 
The triple a.=(w1, x, vv2) indicates an x-labelled node in LwR. Let ^ a t t r (/i(w1)), 
t]=attr (h(xw2j), called the left and right dependency graphs of. a, respectively, 
and define the subsets A^u) and A[u) of A as: 

(i) if h(LwR)(a0) is undefined, then 'A^=A[u)=0; 
(ii) else 

nSO . . . . . . . . ,. . 

A\u) = U (Lo(rjioOnorji(ao)). 
nmo . 

Ai"\Aiu)) is the set of useful s-attributes (i-attributes) at node a, i.e. only these 
attributes of a take part in the transduction of w. Our goal is to mark each node 
of LwR with a set AUQA which consists of the useful.s-attributes of the node and 
the useful i-attributes of its right neighbour. (Take. A-u)=0 at the "right neighbour 
of (Lw, R,X)".) This can be achieved by the successive application of two 1DFT 
as follows. The first 1DFT T r starts from the right and marks each node with 
a pair consisting of the right dependency graph of the node and that of its right 
neighbour. The set of possible right dependency graphs is finite, so it can be used 
as the set of states for Tx. The second 1DFT T2 starts from the left, and at each 
node first computes the left dependency graph of the node and that of its right 
neighbour, then from the mark put by Tx it is able to compute Au and write.it 
out. as a new mark. , . . ...... 

Let X'QX(L, R)XP(A). denote the alphabet of those marked, symbols that 
can be achieved by the above marking process, and let A'=(A, X'-, L, R, Y, h', a0) 
be the following SDAST (starting from the left). • . 

(i) h'(L) and h'(R) are equal to the unit element of M(A, F); 
(ii) if (x,Au)£X', then h'((x,Au)) is the restriction of h(x) to Au. 

A' is injective, because any duplication would imply a circular dependence among 
the useful attributes, which is impossible.' (Note that^-'if (x, AU)^X', then there 
exist wl5 w2£X(L, R)* such' that wxxw2=LwR • for some w£X*,' and the set 
of useful attributes at the node (wj, x, w2) and its right neighbour is Au .) It is 
also clear that the composite application of Tj , T2 and A' defines the same mapping 
as A. The case of a right start can be treated symmetrically. , . • . 
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Simulation of ÎDFT by injective SDAST 

Let T = ( Q , X, L, R, Y, ô, q) be an 1DFT starting e.g. from the left, Q= 
= {qi, ..., qn). It can be supposed without loss of generality that <5 is completely 
defined on; QXX. We shall use the following attributes to simulate T. 

A n ) = {s(/,y)|l S i V y S «}U{s(/)|/€[«]} 

as synthesized attributes, and 

as inherited ones. 
For An=A(

s
n)UA^ let HQM(A„, 0) be defined as follows. ÇÇH iff it 

satisfies the following three conditions. 
(i) for every l ^ k ^ n {Ç(i(j, k)), Ç(\(k, j ) ) } = { s ( j , k), s(k,j)}-

there exists an /£ r^i such that 
V";/ a) ^is'(l))=s(i'), and 

b) £(i(i, _/))== s(min ( i j ) , max (i,j)) for every yV; ; 
(iii) for every l ^ y V & S n and /7^1, &)) and <^(s(/)) are undefined. 
It is easy to check that the elements of H are injective. We can define an equi-

valence relation on H as follows. Ç=T] iff £(s(l))=rç(s(l)).,[Let ^ (/'€[«]) be an 
arbitrary représentant of the equivalence class characterized by jj i(s(l))=s(i). 

Lemma 3. For any mapping / : Q-*Q there exists an injective Çj-ÇM(A„, 0) 
such that 

f(Çi) = 9/0, j^M) implies nio^f = r\j. (1) 

Proof. We follow an induction on n to construct £,f. The case « = 1 is 
trivial. Let n=p+1 for some p^ 1, and suppose first that / is injective. Then take 

= S(J) if f(qd = qj, 

= if {f(qd, f(qji) = (<?„ qr), 

t f ( K i J ) ) = i(i'J') if (9i, çj) = (f(9r), f(qj-)). 

It is clear that (1) is satisfied this way. If / is not injective, then interchange the 
subscripts of the states so that f~1(qp+1)=0 should hold. Let g= / | ô \{<7 P +i} , 
and construct t;g£M(Ap, 0) to satisfy (1). This goes together with a reordering 
of Q\{qP+i} that we fix from now on. Let f(qp+1) = qm and g~1(qm)= {qmi, ..., qmJ, 
where w,<w7- if 1 j^k. We construct in two steps. 

Step 1. (i) for each y € [A;] 
a) Çf(s(mj))=i(mj,p+l),Ç/(s(mj,p+l))=Çg(s(mJ)), 
b) Çf(s(p+l, trijj) is undefined; 

(ii) Çf(s(p + l)) = if k = 0 then s(m) else i(p + l,mk); 
(iii) for each jÇ[k-\], Çf(s(mk, w7))=i( />+l, w7); 

; (iv) for any other a€ {s(i ) |i€[/>]}U{s(i, and f(qd=f(qj)}, 

It is easy to see that (iii) is in fact not a real modification of Ç0, because 
Çg(s(mk, mj)) is undefined. (i)/b assures the same situation for It is also clear 
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that the segment of defined so far is injective. After describing the first step 
of the construction we can prove that if / (9 , )=? / , then : - ._. • ... 

{ / ( * ( } ) ) = s ( j ) . (2) 

If ; V m , then we only have to observe that path (ft o , s (1))=path ( ^ o , s(l)). 
The abusing notation ft can be Used on both sides of this equation provided 
rji£M(Ap,0) on the right hand side is the restriction of tit£M.(A^+1,0) on the 
left hand side. Let j=m, qfcg^iq^), path o£g, s(l))=s(/)Xa,. , where a is an 
appropriate sequence of attributes ending with s(m'). Then, using (i)/a, (2) follows 
from the equality 

path (»jjOiJy, s(l)) = (s(i), i(i, p+1), s(/, p + l ) ) X a ; . 

Finally, if i=p+1, then for the first sight it seems possible that the last attribute 
of p a t h f o o ^ , s(l)) is s(/) + l, r), where q ^ g ^ i q j . (By (i)/b ^ is undefined 
on these attributes.) However, this would imply that the tail of this path should 
be (s(r), i(r, p + \), s(/» + l, rj), which is impossible. Thus, the last attribute of the 
path, must be s(m), which is the only, way out of the circle it has entered (i.e. of 
the set {s(r), s(r, s), i(r, s ) s , {qT, ^ ¿ / ^ f a m ) } ) -

Step 2. (i) for each /€[/>] 

; p+i)), t f ( i ( p + i , 0 ) ) = (s ( i , p+1), s(p+h 0 ) ; 

(ii) if f~l(qi)—& for some ./€[/7+1], then 

" " " 0). £/(i('\ m))) — (s(min (m-, /), max (m, /)), s(max (m, i), min (m, /)))• 

(iii) if /£[/>], ¡Vm and f~1(qi)={qil, • for some / ^ 1 , then 
a) £f (i(m, i))=i(h,p+l), 
b) ^(sO' i , />+l))=i 9 ( i (»M)) , 
c) 1 ,4 - , ) if 
d) £f(s(p + l,ik))=i(ik+1,p+l) if 
e) gf(s(p + lJi))-s(mm (m, z), max (m, *))* , ;

 f 

f) ¿/(^"'(simin (m, i), max (w, z'))))-i(/H-1, /,); 
(iv) for any other a£ {i(z, j)\\si ^j^p}U {s(/, y)|lrv p and' f(qd ^ 

Again, let z', /€[.P + l],/(9i)=<7j. We prove that , ..< 
a) for every l S r ^ j S p + l (3) 

,. r i i s ) , i(s, >")}) = {s(r, s), s(s, r)}, and '..."" 1 

b) for every st* j . « • . . 

ft 0 <S/(i(j, s)) = s(min (j, s), max (j, s)) 

(3)/a follows from the fact that all the attributes but the last one of path (ft o £ f,\(r, j)) 
are in the set {s(z,;'), \(i,j)\{f(qi),f(qj)} = {qr,qs}} and there are only two ways 
out of this circle which lead to s(r, i) and s(.i, r). To prove (3)/b we distinguish 
three cases. • -
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1) i=p+1. 
a) / - 1 ( i , ) = 0 : consider (ii), 
b) f~1(q1) = {qil, ..., q„} for some / ^ 1 : 

path ( » 7 i o , i0", s)) = (i(si. P + l ) . s ( p + l , Sj), . . . , i ( s , , p+ l ) , 

s ( p + l , s,), s(min (m, s), max (m, s))); 

2 ) / V / J + l and 
, a) s = p + \ : consider (i), , 

b) s^p + l: p a t h ^ o ^ , i(j, j ) )=path i(j,s)); 
3) i and s—m. 
Let f (qj) ~ {qtl,..., (/ & 1), i = 4 for some 1 ^k : and 

path (f/jOij^, i(m,jr')) = 'a . 1 

Then - • • ' . • < . . ' . > 
' p a th (riio^f, i(m,j)) = fSXa, - -

Where />4-1), . . . J( / r , /» + l ) , s ( / r , p + l ) , .... sOi,>4-1)) for some r^fc; 
Since the last attribute of a is s(max (m,y), min (/w,y)),' (2)/a implies that 
i f ( i ( j , m))=s(min (m, j), max (m, j)). Finally, (2) and (3) imply (1). 

It must be noticed, however, that (1) holds only under one particular ordering 
of Q. Let us fix an arbitrary order, i.e. suppose that Q—[ri\. Then by steps 1 and 
2 we in fact construct where f=Q~1 °f ° e for some bjjection q. Since 
f=Qof'og-1, we can take (Recall that t]t is an arbitrary 
representant, and the construction of and . can be carried out directly.) 

Now define h: X(L, R)~~M(A„, Y) as follows. For x£X consider the mapping 
/:[«]—[«] for wh ich / ( / )=y if <5(z, x)=(j,w): Let 

(i) attT(h(xj)=Zf; 
(ii) for each i£[n] 

out (h (x), s(i)) = w if 6(i, x)=(j, H>); . 
(iii) for each 1 s i V y ^ H . ' . . 

out (h(x), s(/,y'))=out (h(x), i(i,j))=L 
Extend h to a homomorphism of X* into M (A„, Y). An easy induction shows 
that for any u£X* §(i,u)—(j,w) implies that 

a) attrforofc(«))=rj/,: . > 
b) out(r]{oh(u), s ( l ) ) = w . , ; 

Thus, to make T and the injective SDAST (An, X, L, R, Y, h, a0) equivalent we 
only have to set: 

(i) ao=s(l) ; . . . . ... 
(ii) if q=i and S(i, L)=(j,w), then h(L)=t]j with the modification 

out (h(L), s ( l ) )=w; 
(iii) h(R)(a) is defined iff a=s(i) (/£[«]) and 6(i, R)(=(j, w)) is defined. In 

this case h(R)(s(ij)=(s(i),'w). ! ' 
,v j[n [3] we proved that injective SDAST mappings are closed under composition. 
Thus, u^ing,Lemmas 1 and 2 we get the following result. 

Theorem. SDAST, injective SDAST and 2DFT define' the1 same ' class: of 
mappings. 
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Corollary. ([1], [2]). 2DFT mappings are closed under composition. Other 
results of [1] and [2] concerning 2DFT with regular lookahead (which are called 
quasideterministiç in [2]) and the reverse run of 2DFT can also be derived from 
this theorem. 

Abstract 

The result indicated in the title is achieved as a corollary of the following four statements. 
1. 2-way deterministic finite state transducers (2DFT) and simple deterministic attributed 

string transducers (SDAST) are equivalent. 
2. Every SDAST mapping is the composition of two 1DFT mappings and an injective 

SDAST mapping. 
3. 1DFT mappings can be defined by injective SDAST. 
4. Injective SDAST mappings are closed under composition. 
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On some extensions of russian parallel context 
free grammars 

B y J Ü R G E N D Ä S S O W 

1. In the last years some authors have studied the. effect of mechanisms regu-
lating the derivation process to the generative capacity. The matrix grammars, 
programmed grammars, random context grammars, and periodically time-variant 
grammars belong to the most investigated mechanisms. A. Salomaa, O. Mayer, 
and M. V. Lomkovskaja, and others have given the results in the case of context 
free grammars (see [11], [5]); concerning L systems investigations have been done 
by S. H. von Solms, G. Rozenberg, and P. J. A. Reusch (see [12], [8], [6]); the author 
has considered.extension of indian parallel context free grammars ([1]). 

In this note we will complete these results and study the generative capacity 
of extensions of russian parallel grammars introduced by M. K. Levitina [3]. Already 
Levitina regarded the extension by the matrix mechanism and proved that the as-
sociated family of languages coincides with the family of programmed context free 
grammars. We will show that also the extensions by the mechanisms of programmed 
grammars, random context grammars, and periodically time variant grammars 
generate the same family of languages. 

2. For sake of completeness, we will recall some definitions shortly. For detailed 
information see [11], [3]. A russian parallel context free grammar is a construct 
G=(VT, VN, P, S) where 

i) VT and VN are disjoint nonempty finite sets, V= VNUVT, 
ii) P is a finite set of pairs (p, i) where /€{1,2} and p is a production 

A~*W with A£VN, wÇV+, 
iii) sevN. 

The derivation x=±y, x, V is defined by 
i) X-= Xj Ax2 , y = x1 wx2, Xx, x2Ç V*, 

ii) (A^w, 1)6P 
or by 

i) x=x1Ax2Axs ... xn_1Axn, y = x1wx2wx3... x„_1wx„, xlt x2, ...,x„€(F\{A})*, 
ii) (A^w,2)CP. 

* . . . . . . • . ' 
=> denotes the reflexive and transitive closure of =•. The language = L(G) generated 
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by G is defined as 

L(G) = {w: w, w£KT*}. 

Now we will give some mechanisms regulating the derivation process. 
Programmed grammars: Each rule has the form (/: (A—w, /), F, S) where 

/ is the label of the rule, F and S (the failure field and the success field) are sets 
of labels. If A occurs in x, we rewrite x (as in a russian parallel grammar), 
and in the next derivation step we have to apply a rule with a label in S. If A does 
not occur in x, we apply a rule with a label in F. 

Random context grammars: Each rule has the form ((A-~w, i), U, T) where 
U and T are subsets of VN. The production (A-»w, i) is applicable to x if 
and only if any symbol of U occurs in x and no symbol of T occurs in x.1 

Periodically time variant grammars: We associate a subset (p(i) of P with 
an integer ¿^1 such that, for each k, (p(n+k+j)=<p{n+k) for some n and j. 
The rule applied in the z'-th step of the derivation has to be choosen from the set <p(i). 

For these three type of grammars, the generated language is defined as above. 

Matrix grammars:. A matrix . mi=, ra, . . . , r i ( i J is an ordered sequence 
of rules TijZP. The application of a matrix mL to a word x is defined as the 
application of the rules. ri3 in the,given order.. The generated language consists 
of all words over VT which, can be derived from S by applications of matrices. 

. We use the following notations:, 
¡F(PRP) — family of programmed russian parallel languages, 

RCRP) — family of random context russian parallel languages, 
&(TVRP) r— family of Russian parallel periodically time-variant languages, 
^ ( M R P ) — family of russian parallel matrix languages. 

If /== 1 (z'=2) for all rules (A-^w, i) of P, we get the context free grammars 
(indian parallel context free grammars, introduced by K. Krithivasan, and R. Siro-
mocrey) and its associated extensions. We will use the letters CF or IP instead of 
RP to denote the corresponding family of languages. It is known that . 

fi . ; %(PCF)=iF(RCCF) =.f(TVCF) ^!F(MCF), . . 

W(PIP)=SF{RCIP) = 2F(TVIPy=&(MIPX 
and 

.- S' (XIP) a F(XCF) for X£ {P,RC,TV, M). 

3. We will prove analogous relations for russian parallel versions, too. 

Theorem. ^(PRP)=&{RCRP) =F(TVRP)=^(MRP) =^(PCF). ' 

Proof i) By definition, 3?(XCF)<Z^(XRP) for X£ (P, RC, TV, M). There-
fore we have to prove ^ ( X R P ) Q ^ ( X C F ) only. , " 

ii) ^(PRP)Q^(PCF). 
' ! j i ' t . , . . . 

1 This definition is due to Lomkovskaja and differs slightly from van der Walt's definition. 
The difference has no effect to the generative capacity. By the parallel rewriting (if i—2), the above 
definition is-more useful. " ' ' '•• ' . . • * • " 
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Let L=L(G) for the programmed russian parallel grammar G—(VT\ VN, P, S). 
We will construct a programmed context free grammar G' which simulates the 
application of rules (A-*w, 2) by a set of usual context free productions (in the 
construction we will write only B-+v instead of (B—v, 1)). We put 

Px — {(I. A -*• w, F, S):(l:(A w, 1), F, S^P}, 

P2 = {(I: A + A„ F, {l'}):(l:(A r w, 2), F, 

¿>3 = (I': A - AT, {/"}, {!'}):(I:(A - w, 2), F, S)€P, 

P4 = {(/* : A, - w, {/"}) :(l:(A*w, 2), F,S)€P}, 

and G'=(VT, VFFUV, PIUPIUPGUPI, S). - Obviously, G' is a programmed 
context free grammar with L(G')=L. 

iii) ^(RCRP)Q^(RCCF). 
Let L^^(RCRP) and L=L(G) for some random context russian parallèl 

grammar G=(VT, VN, P, S). We introduce new alphabets Vi and, V2 ..by 
VI={AI: A£VN}, « = 1,2, and define the homomorphism h on F by h(A)—A2 

for AÇVN and h(a)=a for aÇVT. Further we put 

P, - {(A - W, U, RUKUK):((A - W, 1), U, T)£P}, . 

P2 = {{A+ALTU,T U ((F, U F 2 ) \{^}) : ((A - w, 2), £(, r ) 6 P}, , 

- P3 = { { A ^ h(w), (i/\{/l})U{/lj}, ( r U {/1} U ij)\{/li}) : ' : 

•.((A^w,2),U,T)iP}, 

and 
G; = (vT,vN{jvi\jv2,p1{jp2{jpz{]pi,s). ' • 

If the production (A-*w, 1) is applicable to A: in G, then the corresponding 
production of Pi is applicable in G', and we derive-the same word in both , gram-
mars. Now let (A-~w, 2) be applicable to x in G and derive the word >>.' Then 
À-^A1 is applicable to x in G', and then we have to apply A—Ax on all occur-
rences of A in x. Now we can apply only A1-+h(w), and we have to do this substitu-
tion at all occurrences of Ax. Then we have to use the applicable rules of P4 and we 
get also the word y. Therefore L(G)QL(G'j. The other inclusion can be proved 
by analogous arguments. Thus we have constructed a random context (context 
free) grammar G' with L=L(G'). 

iv) 3?(TVRP)QS?(TVCF). 
Let L£lF(TVRP) and L=L(G) for some periodically time-variant russian 

parallel grammar G=(VTiVN, P, S). Let cp{i) be the subsets of P such that 
(p{m)=(p(m+j) for a certain j and all m^n. We will construct a programmed 
russian parallel grammar G' such that L=L(G'), which proves ^(TVRP) £ 
Q&(PRP). Thus &r(TVRP)Q&r(TVCF) by ii) and the result concerning the 
context free case. . . . -
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Let Vn={A1, ..., A,}. We introduce new alphabets VI = {Aki\ l^k^s) 
and the homomorphisms h¡ on V by 

u /„-v _ J ^t i if x = ' 

_ 1 f if x = a£VT 

for /'= 1, 2, ..., n+j— 1. Further we put 

<¡¡>'(0 = {{An - r ) : l ^ k S s, (Ak — w, r)€<p(i)} 

for i = 1,2, ..., n+j-2, 

<p'(n+j-1) = {K„+,--i - hn(w), (Ak - w, r)£<p(n+j-1)}. 
n+j'-l 

We consider the programmed russian parallel grammar G'=(VT | J V¡, P', SJ 
¡=1 

where the elements of P are given in figure 1. 
Obviously, L=L(G'). 
v) ^(MRP)Q^(MCF). 
This fact follows from Levitina's result &(MRP)=9R(PCF). (Using the method 

of iv) we can prove it.) 

Corollary 1. For X£ {P, RC, TV, M), &(XIP)g &(XRP). 
Because some of the properties of &(PCF) are known, for instance 2F(PCF) 

forms an AFL, we get also information on the extensions of russian parallel 
languages. 

4. A language L is called of index k if there exists a grammar G with 
L(G)=L such that any word iv£L has a derivation with the property that each 
sentential form of this derivation contains at most k occurrences of letters of VN. 
L is of finite index iff there exists an integer k such that L is of index k. 

By ^(X) F I N we denote the family of languages of which are of finite 
index. 

By the results of [9], [7], [10], and the fact that the construction in [1] and in 
this note preserve the finiteness of the index of a language, we get a second corollary. 

Corollary 2. &(PCF)F1N=&(RCCF)FIN=^(TVCF)FIN=&(MCF)FIN= 
=ÍF(PIP)FIN =@R(RCIP)FIN=&(TVIP)FJN —^(MIP)FIN— 
=P{PRP)FIN=&(RCRP)FIN =!F(TVRP)FIN=F (MRP) FIN • • 

In [9], properties of this language family are studied. For instance, it forms an 
AFL again. 

5. Finally, we remark that the context free languages and the russian parallel 
context free languages are incomparable with the extensions of indian parallel 
languages. This follows by the following facts: 

— {(fb"cn\ n S l } is in ¡F(MIP), it is not a russian parallel context free 
. language ([3]), * -

— the extensions of indian parallel context free languages coincide with the 
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1 I ' 

(Atl — A)t, 2) 

si ; - ? 

1 : \r 

(As2 — A,3,2) 

s F s 

(An — AM, 2) 

(A.i - Asi, 2) 

S F 

<?'( 2) 

s F s 

(An — A1S, 2) 

S F 

<?'Q) 

s F s 

(Ai3 — An, 2) 

i 
F 

i !' 

1 

. 1 
1 —• Am„, 2) 

<?'(n) <?'(n) 

• i • ' 

F . 
• i • ' 

(Ai„ — Alt„+l, 2) 

i 

1 1 
(Amn Aa$n+1, 2) 

s F 

<P'(n+1) 

q>'(n+j-1) 

•. s F •. s 

I (Ai,n*j-i r" Ain, 2) ' 

An arrow labelled by S 
Figure 1 

leads to the success field;-an arrow labelled by F to the failure field 
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F(PRP) = F(RCRP) = !F(TVRP) =2F(MRP) = 

$?(IP) 3F(CF) 
; i Figure 2 
\ X-+ Y denotes XQ Y, X?£ y . Language families which are not connected are incomparable. 

: EDTOL languages ([1]), and there are context free languages which are 
not EDTOL languages. 

, Thus figure 2 gives the complete relation'between the regarded language families. 
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A new method for the analysis and synthesis of 
finite Mealy-automata 

B y C s . PUSKAS 

In this paper we deal with the problem of analysis and synthesis of finite 
Mealy-automata. As it is known, this problem has already been solved, namely, 
it is proved, that if X and Y are non-empty finite sets and a:X*-*Y* is an 
automaton mapping, then there is a finite Mealy-automaton inducing a if and 
only if all classes of the partition Ca of X+ corresponding, to a, are regular 
languages (see [3]). For a given automaton mapping, a Mealy-automaton can be 
constructed inducing it and vice versa, but the known algorithms use, as an inter-
mediate step, the notion of the acceptance of languages in automata without outputs 
and the synthesis algorithms give no reduced automaton, generally. In this paper 
we give a new proof of the previous theorem, which provides us more advantageus 
algorithms for both the analysis and the synthesis of finite Mealy-automata. In the 
latter case, our method supplies immediately the minimal Mealy-automaton inducing 
a given finite automaton mapping. 

Preliminaries 

Let I be a finite non-empty set. We shall denote the algebra of all languages 
over X by ££(X) and the set of all matrices over J i f ( X ) by M(X). A matrix 
N£M(X) is said to be of type mXn if it has m rows and n columns. The language 
in the z'-th row and in the y'-th column of N will be denoted by (N)y. Based on the 
regular operations (addition, multiplication and iteration, denoted by + , • and 
{ }, respectively) in ^f(X), we introduce the following operations on M(X). If 
L£SC{X) and N€M(A"), then L - N and N - L are language matrices, defined by 

(L-N)0 .=L.(N)0 . and (N = (N)y 

respectively. Let N and P be two language matrices of the same type. Then the 
sum N + P is the language matrix, given by 

(N+P);y = (N)y + (P)(J-. 

If N is a language matrix of type mXn and P is another one of type nXp, then 

3 Acta Cybernetica VI/4 
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we define the product N • P in the usual way of matrix products, i.e., 

( M - P ) , 7 = ¿ ( N V C L ) * , - . k=1 
Using the definition of the product we can form the powers of quadratic matrices 
as follows: let 

N* = N*_1 • N (fc = 1, 2, ...), 

where № = E means the unit language matrix, that is, 

Finally, the iteration {N} of a quadratic matrix N is defined by 

{N}= ¿ N * . 
fc=o 

We note that we use the term language vector instead of language matrix if 
it has only one row or only one column. The set of all row language vectors over 
•SC(X) will be denoted by V(X) and the set of all column language vectors over 
se{x) will be denoted by VC(X). 

Let NGM(A') be a quadratic matrix of type nXn. Take a directed graph 
with n nodes, which are labelled by natural numbers 1, ..., n and there is an arrow 
from the node i to the node j if and only if e6(N) i ;. This graph is called the 
characteristic graph (see [3]) of the matrix N. If the characteristic graph of N has 
cycles and the node i belongs to a cycle, then the number i is said to be a cyclic 
number with respect to N. 

Now we consider matrix equations of form 
N Q + P = Q, (1) 

where N and P are given language matrices and N is of type nXn. 
We shall use the following results which are generalizations of some results 

due to V. G. Bodnarcuk [2] (see also [3, 4, 5, 7]): 

Statement 1 [6]. If the characteristic graph of N has no cycle, then 
Q = { N } - P 

is the unique solution of the equation*( 1). In the opposite case, every solution of (1) 
has the form 

Q = {N}-(P+R), 

where R is an arbitrary language matrix with the same type as P, such that if 
i (1 ^i^n) is not a cyclic number with respect to N, then (R);j = 0 for all j. 

Statement 2 [6J. If the equation (1) has a unique solution, then it can be determined 
by subsequent elimination of unknown rows of the matrix Q. 

Statement 3 [6]. If every element (N)u and (P)y of the matrices N and P, 
respectively, is regular and the characteristic graph of N has no cycle, then every 
element (Q)y of the solution matrix Q of the matrix equation (1) is regular. 
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Connections between language vectors and automaton mappings 

It is known, that every automaton mapping a:X*-~Y*, where X and Y are 
non-empty finite sets, determines a partition Cx of X+, which consists of classes 

Ly = (p£X + Mp) = y) (y£Y). 

Here r denotes the last letter of the non-empty word r. Conversely, every partition 
C oi X+ defines a unique automaton mapping a: X* — Y* appart from the nota-
tion of elements of Y. This fact makes possible for us to establish a one-to-one 
correspondence between automaton mappings and certain language vectors. 

In the following we use the term /-vectors instead of row language vectors and 
they will be denoted by a, b, c, .... 

An /-vector a€ V'(X) is said to be complete if the sum of its components at is 
the free semigroup X + and the intersection of any two components at and a3 

j ) of a is the empty language. 
It is obvious that if X={xt, ..., x,), Y=(yx, ..., ym) and a :X* — Y* is an 

automaton mapping then we can correspond to a a complete /-vector a of m 
components, such that 

al = (p€X + M i ) = yl) (i = 1, ..., m). 

Conversely, if V(X) is a complete /-vector of m components then it determines 
an automaton mapping a :X*-»Y*, such that a(e)=e and for p=xllxh ... xlk, 
< P ) = y j l y j 2 ••• yJ k

 i f a n d o n l y i f *ii£aJx> xhxi£aj,> •••> xhxh - x^ajk-
An /-vector a 6 Vr(X) is called regular if every component of a is a regular 

language. 
A system <a1( ...,a„) of complete /-vectors from Vr(X) is said to be closed 

if there exist functions 
/ : (1, ..., H)X(1, /) (1 n> 

and 
b:<l,.. . ,n>-Kr(JT), " 

such that 
K 0* = 2 Xj 

ik 
and 

a { = 2 xj*nuj)+Hi) , (2) 
XjiX 

for all i (=1, ...,«) holds. 
We would like to direct attention to the fact, that a closed complete /-vector 

system can be considered as the rows of a solution language matrix of a matrix 
equation (1). Indeed, if we set 

( N ) y = 2 ** O'J = 1 «) 
f(i,k) = j 

and we put a ; and b(/) into the i-th row of Q and P, respectively, then (2) gains 
the form (1). Therefore, by Statement 3, we have got immediately the following 

Lemma 4. If (a2, ..., a„) is a closed complete l-vector system then a^ ..., a„ 
are regular. 

3* 
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Theorem 5L Let SH=(A,X, Y, 5,).) be a finite Mealy-automaton with state set 
A — (a1,...,an), input set X =(xly ..., x,), output set Y ..., ym), transition 
function S: AXX-+ A and output function ),:AXX-~Y. Let f and b be the 
functions •••• 

/: <1, ..., W>X<L, ..., 1)^(1, n), defined by S(a-t, Xj)-af(iJ) and 

b:<1 ,.,.,n)~Vr(X), given by b(i)k = 2 xj-W,,Xj) = yk 

Then the l-vectors Vr(X) (/ = 1, ..., n), where 

Cik =. + = yk) (i = 1, ..., n; k = 1, ..., m) 
t 

form a closed complete l-vector system, that is, satisfy the equalities (2). 

Proof It is obvious that ..., a„ are complete /-vectors. Thus we have to 
show that a1,...,a„ satisfy the equalities (2). L e t / ( 1 « / S n ) and k (1 ^k^m) 
be arbitrary index pair. We prove that 

"ik = 2 Xjaf(.i.j)k + b(i)k. XjZX 

Let p be an arbitrary element of aik. We distinguish two cases. 

Case 1. If \p\ = 1, i.e., p=Xj for some / ( l ^ j ^ l ) then Xj£aik implies 
¿(a,-, Xj) = yk. Hence, by definition of b, we have that Xj£b(i)k and therefore 
p€ 2 Xjaf(ij)k+b(i)k. 

-Xj£X 

Case 2. If \p\^2 then p=x}q (1 and 

yk = A(a,,p) = A (a,, Xjq) = Xj), q) = Haf(iJ), q), 

that is, q£a/(iJ)k and p=Xjq£xjaf(iJ)kQ 2 xja/a,j)k+b(i)k. Conversely, 
XjiX 

let p be an arbitrary element of 2 x j a f u j)k+b(i)k- If p£b(i)k, then |/?| = 1 

and X(fli,p) = yk and therefore p£aik. If p£Xjaf(iJ)k for some j (1 ^ j ^ l ) , 
then p=Xjq with q£a/aj)k. This implies that 

yk = H<if(i,j),P) = • X j ) , q = k(ai,Xjq) = X(altp), 

i.e., p£aik. Thus we have shown that 

aik = 2 Xja/(ij)k + b(i)k 
• • • • XjiX 

for all i (1 S i ^w) and k ( l ^ J t ^ m ) holds. • V 

By Lemma 4 and Theorem 5 we immediately get 

Corollary 6. If <H=(A, X, Y, <5, ).) is a finite Mealy-automaton then for all 
state a£ A and output yZY the language 

• r • ay = (peX + \Ifrp)=y) 
is regular. 
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Theorem 5 and Statement 2 provide us an algorithm to the analysis -of finite 
Mealy-automata. To illustrate this, let us consider 

Example 1. Let 21 be the Mealy-automaton, given by the transition-output table: 

91 

(a2, u) (a3, v) (a2, u) 
(a3, v) (a2, w) (a3, w) 

Taking the ordering u < v < w of the output letters, by Theorem 5 we have the 
following /-vector equations: -

aj — xa2+ya3 + [x, y,-&], " ^V''' ^'-;' 

a2 = xaa + ya2 + [<d, x, y], , . , . 

a3 = xa2 + ;'a3 + [x, 0, >•]. : . •;, 

From the third equation we obtain that ;' 

a 3 = M(xa 2 - | - [x> 0, y]) . . .. . 

Substituting this into the expressions of ax and a2, we have, that 

aj = xa2 + y{y}(xa2 + [x, 0,\y]) + [x, y, 0] = 

= {y}xa2+[{y}x, y, y2{y}], 

a2 = x{y}(xa2+[x, 0, ^] )+ja 2 +[0, x, y] =[.. ,/>. ! , - . 

= (y+x{y}x)a2+[x{y}x,-x, y+x{.y}y]. > . 

Now we can already determine the /-vector a2: . " ; V ... . , . 

a2 = {y+x{y}x}[x{y}x,x,y+x{y}y]= -

= [{y+x{y}x}x{y}x, {y+x{>-}x}x, {y+x{y}4(y + x{y}j)] 
Then 

+[{y}x,y,y2{y})= . -

= [{y}x(e+{y+x{y}x}x{y}x), y+ {y}x{y+x{y}x}x, y2{y}+ J / :: 

+ {y}x{y + x{y)x}{i+x{y}y)'\ : : . . 
and J . ' ' . . . , 

a3 = {y}xai+[{y}x, 0, {y}y] = ; ; 

Now we define a new operation on the set of /-vectors. 5It is well-known that 
if L is a language from ¿¿{X) and P£X* then the left-side derivation of L with 
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respect to p is the language iDp(L)=(q£X* | pq£L). We modify this concept 
as follows: by the left-side e-free derivation of L with respect to p we mean the 
language ¡D~(L)=(q£X+\pq£L). It is obvious that 

D - ( n - l ' D ' ( L ) Íf HL> 
" l i , " U ( i ) - ( i > if PÍL. 

We extend this operation to /-vectors, that is, if a=[ű! , . . . , am] then we define the 
left-side e-free derivation of a with respect to p, by 

iDp (a) = [¡D-(ai), ..., ,D-(aJ]. 

Lemma 7. If a=[ŰJ,..., am] is a complete l-vector then for all p£X*, ,D~(a) 
is a complete l-vector as well. 

Proof. It is easily seen that a ; n a y = 0 implies that ,£)"(«,.)fl¡Dp(aj)=0. 
On the other hand, if a is an arbitrary element of X+ then pqfX+. Consequently, 
there exist a unique component űj'of a, such that pq£a,- because of the completer 
ness of a. Hence we obtain that (a,). Since e^,/)"(a,) for all / (1 ^ i ^ m ) 

m 
holds, it follows that X + = Z i D p («»)• • 

¡=i 

Lemma 8. If a=[a l 5 ..., am] is an arbitrary l-vector in V(X) then 

a = 2 XjiD'i^+b, 
XjiX 

where b=[fc l5 ..., ¿>m] is an l-vector for which bt= 2 x j 0 = 1, m). 
Xj €o( 

Proof. Let ű; ( l á / á m ) be an arbitrary component of a. By the definition 
of b it is trivial that any word of length one from af is in bt and there is no other 
element of On the other hand, the word p£a i t for which |p| isin 
if and only if the first letter of p is Xj. • 

A closed complete /-vector system (a^ ..., am) is said to be reduced if a l 5 ..., am 
are pairwise different /-vectors. 

Lemma 9. If a is a complete regular l-vector then there exists a unique reduced 
biased conwlete l-vector svstem containing a and it can be determined aleorithmicallv. 

Proof. If VÍX) with Y=(xx, ..., x,) then we extend the ordering of X, 
which is given by the indices of the elements in X onto X* as follows: for arbitrary 
pair of words p and q let p<q if either |/>|<|g| or |/>| = |g| and in the latter 
case p precedes q by the lexicographical ordering. Then we form the left-side 
e-free derivations of a. Since a is a regular /-vector, it has only finite different 
left-side e-free derivations and they are regular as well. Therefore, there exist a 
system of words plt...,p„ in X*, such that the following conditions hold: 

(i) if then lDPi(^lDPj(&), 
(ii) for all q£X* there exists a unique i ( I s i S n ) , such that ,D~(a)=/Dp1(a), 
(iii) if q is an arbitrary word in X* for which ,í)~>(a)=,Z)-(a) (1 s i s n) 

then Pi -< q. 
Let us assume that the elements of the system (p l 5 ..., p„) are indexed ac-

cording to the ordering of X*, that is, pi<pz<... <p„. Then px—e. Let a( = 
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=(Z>p((a) for all i( = l,...,n). The system (a^ ..., a„) consist of pairwise dif-
ferent complete /-vectors. We show that this system is closed as well. To prove 
this, we have to note that for all q£X* and a;6(als ..., a„) there exists pj (1 == j^n), 
such that ,i>~(af)=IjDpJ(a1) because a1= /Dj i(a) = ,I>-(a)=a and ,D~(a;) = 
=,D~(lDp{(a1))=,Dpiq(a1) and the system (px, ..., pn) satisfy the condition (ii). 
We have to determine the functions / : <1, ..., w}x(l , • ••, !)-*(}, • ••> n) and 
b: <1, ..., ri)—Vr(X) yet. Let for all / (1 =£/ ==«) and y ( l = s / S / ) , 

f{i,j) = ,D" (a,) = (aa) (1 ^ k s n ) 
and 

b(i) = [f>(i)i, • ••, b(i)J, where b(i)s= 2 (s = l,...,m). 

Finally, the fact that (ax, ...,a„) is the unique closed complete /-vector system, 
which contains the/-vector a(=aj) follows from Lemma 8. • 

To illustrate the algorithm described above consider the 

Example 2. Let X=(x,y) with the ordering x<y and take 

a = [x{x}; y{y}, +j^Jx^x+y}]. 
Let ax=a. Then 

= x[x{x], 0, {x}y{x+y}]+y[&, y{y}, y, 0]. 

Let a2=,D-(a1)=[x{x}, 0, {*M*+:v}] and a3= iDJr(a1)=[0, y{y}, {j>}x{*+j>}]. 
Then 

a2 = x[x{x}, 0, {x}y{x + y}] + y[V>, 0, (x + > 0 { x + j } № , 0, y]. 

Let a4= tD~ (a2)=,D^(a^=[0, 0, +;>}]. 

a3 = Jt[0, 0, (x + y){x+y}] + y[9, y{y}, M x { x + j}] + [0, y, x] and 
ad = jc[0. 0. Ot+j>) {*+>}] + y[Q. 0. (x+y){x+j} ] + [0. 0. x+y]. 

It can be seen that = ,Z),"y(a1)=/Z)-(a1) and lD^x(a1)=lD~yx(a1) = 
,D~yy(a1)=iD~y(a1), that is, a t , a2, a3 and a4 are the all different left-side e-free 
derivations of a. Finally, the functions / : <1,2, 3 , 4 ) x <1, 2)—(1,2, 3, 4) and 
b: (1,2, 3,4)->-V r(X) are derived from the previous computations: / (1 ,1 )=2 , 
/(U2)=3, / ( 2 , 1 )=2 , / ( 2 , 2 ) = 4 , / ( 3 , 1 )=4 , / ( 3 , 2 ) = 3 and / (4 , l ) = / ( 4 , 2 ) = 4 , 
furthermore b( l)=[x, y, 0], b(2)=[x, 0, y], b(3)=[0, y, x] and b(4)=[0, 0, x+y]. 

Theorem 10. Let X = (xlt ..., xt), Y =(yx, •••, ym) and let a:X*^Y* be an 
automaton mapping. Let at be the complete l-vector corresponding to ol. If ax is 
a regular l-vector and (a1, ..., a„) is the reduced closed complete l-vector system 
containing ax then a. can be induced by the reduced initially connected Mealy-
automaton = «ai, ...,a„),altX, Y, 8, X), where S(at, xj)=af(iJ) and k(ai,Xj)=yk 
if and only if Xj£b(i)k (i= 1, ...,n;J = 1, ...,/; liiSm) and the functions f and 
b are determined by the system (al5 ..., a„). 
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Proof. It is obvious that 91 is well-defined. Since every /-vector a, of the 
system (a l5 ...,a„) is a left-side e-free derivation of ax and a j= ! /)p(a1) implies 
that a1p=ai, it follows that 91 is an initially connected Mealy-automaton. We 
have to prove that 91 induces the mapping a. To verify this, it is sufficient to show 
that 

for all J(=1, ..., m) holds. Instead of this equality, we prove more, namely that 

a is = < p ( ! * + | I ( ^ ) = (3) 
for all / (=1 , ...,«) and J ( = 1 , ...,m) holds. If |/>.| = 1, that is, p—x} for some 
Xj£X then by the definitions of the functions b and X we obtain that 

Xjeais oxjib(i\ o X(a,, Xj) = ys. 

Let us assume that (3) have already been proved for all p£X + of length less than 
or equal to r, for all / (=1, ..., n) and s (=1, ..., m). Now let p£X+, such that, 
\p\=r+\. Then p=Xjq for some xsdX and \q\=r. Thus taking into account 
that the system (aj, ..., a„) is closed and the previous hypothesis, we obtain that 

Ptais = 2 xlaf0it)s+b(i)s <=> q€af(iiJ)s o 

~ ¿("/(¡.J)» q) = ys (ah Xj), q) = ys<=> Xfa,p) = ys. 

Therefore, (3) is true. But this means, that a; is just the /-vector corresponding to 
the automaton mapping induced by the state a t of 91 for all / (=1, ' . . . , n). Thus, 
the fact that the system <al5 ..., a„) is reduced implies that 91 is reduced as well. • 

To show how we can apply this result for the synthesis of finite Mealy-automata 
consider 

Example 3. Let X=(x,y), Y=(u, v, iv) and let a: X*-*Y* be the automaton 
mapping, given by 

<x(e) = e, . 

a(x*) = M* (fc — 1), 

« ( / ) = o» ' (k S 1), 
a(xkyp) = M*wm+1 (k S 1, m = |j>|), 

a ( f x p ) = p*wm+1 (k == 1, m = |p|). 

Then the complete /-vector corresponding to a is just the regular /-vector a2 = 
=[x{x}, (x{x}y+y{y}x){x+y}] from Example 2. Thus the mapping a can 
be induced by the automaton 91=({a1, a2, a3, a4), alt X, Y, 5, X), where <5 and 
X is given by the transition-output table: 

• x (fl2, u) (a2, u) (a4, w) (a4, w) 
y (a3, v) (a4, w) (a3, v) (a4, w). 
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Summarizing the results of Theorems 5 and 10, we have got 

Corollary 11. If X and. Y are finite non-empty sets and a: X* y * is an 
automaton mapping then it can be induced by a finite Mealy-automaton if and only if 
the complete l-vector corresponding to a is regular. 
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Komplexität von Erzeugen in Algebren 

H . J Ü R G E N S E N 

1. Das Problem 

21=(A, F) sei eine endliche Algebra; A ist die endliche Trägermenge von 21, 
und F ist die endliche Menge von Operationszeichen. Die Abbildung v:F—N0= 
=NU{0} ordnet jedem Operationszeichen fdF seine Steifigkeit vf zu. Jedes 

/6 F definiert eine Operation auf A, die ebenfalls mit / bezeichnet sei, d.h., eine 
Abbildung / : Avt^A. Für MQA sei 

und für G g F und " sei 

Ferner seien SOI, 501' die kleinsten Unteralgebren von 21, die M enhalten und 
gegen F bzw. gegen G(-, A) abgeschlossen sind. 951 ist also die von M erzeugte 
Unteralgebra; 9JI' könnte man als das von M erzeugte G-Ideal bezeichnen. 

In der vorliegenden Arbeit untersuchen wir den Aufwand zur Bestimmung 
von ®t oder 9JT aus 21, M und G. Als Maschinenmodell für die Realisierung 
der Algorithmen verwenden wir die RAM (— random access machine); diese Wahl 
einübt es, die Kosten einigermaßen realistisch auch für „relativ" kleine Algebren 
abzuschätzen, weil keine wesentlichen Kosten für die Adreßrechnungen anfallen. 

" Um das Problem genau zu stellen, müssen wir noch festlegen, wie 21, M und 
G dargestellt werden: Die Elemente von A können abstrakt, d.h., etwa als natürliche 
Zahlen 1,2, ..., n := \A\ gegeben sein oder konkret, etwa als Transformationen einer 
endlichen Menge. In vielen Fällen ist die Kenntnis von n und 21 für den Erzeugungs-
algorithmus irrelevant, in anderen wird man 21 mit 9JI identifizieren können. 
Wir setzen die Existenz eines Programms zur Berechnung einer Bijektion x v o n 

A auf [1: n]:— {1, ..., TJ} voraus, dessen Kosten mit konstant hA angesetzt werden. 
Die Operation /£ F kann sich auf die /-Bilder der Argumente oder auf die Argu-
mente selbst beziehen. Für / setzen wir konstant die Kosten cf an. Als typische 
Realisierung von x könnte man an ein hash-Verfahren denken mit im wesentlichen 
linearen Kosten relativ zur Größe der Darstellung der Elemente. Als Realisierung 

G(M, N) = \a a€^A3/6C3í, 1 ^ ¡S vf3a£M 
3a l 5 ..., £*;_!, ai+1, ..., av € N: a = i> • 
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für / käme einerseits ein Tabellenzugriff in Frage oder andererseits z.B. ein tat-
sächliches Rechnen mit den konkreten Elementen, etwa den Transformationen. 

Wir wollen Platz- und Zeitaufwand verschiedener Verfahren diskutieren; zu 
diesem Zweck vereinbaren wir, daß die Kostenfunktiön <f> eines Problems jeweils 
die zwei Varianten und <PZ für die Platz- und die Zeitkomplexität hat. 

Verwandte Fragen werden in [3, 4, 6] behandelt. Dabei diskutiert [6] allerdings 
keine Komplexitätsfragen. Die Aufsätze [3,4], soweit sie thematisch einschlägig 
sind, arbeiten mit einem anderen Algorithmusbegriff, der es erlaubt die „Buch-
führungskosten" zu ignorieren. In [7] wird ein Algorithmus zum Erzeugen von 
Normalteilern in Gruppen angegeben, dessen Aufwand mit 0(n2) abgeschätzt 
werden kann, wenn n die Gruppenordnung ist; allerdings werden auch bei dieser 
Abschätzung alle Buchführungskosten vernachlässigt. Weitere einschlägige Arbeiten 
findet man in der Bibliographie des Übersichtsartikels [5]. Im allgemeinen werden 
in diese keine Komplexitätsaussagen gemacht. In [2] schließlich wird gezeigt, daß 
einige natürliche Probleme für Permutationsgruppen in polynomialer Zeit lösbar sind. 

2. Die naiven Algorithmen 

Die Trägermenge (M) von 9Jt erhält man mit Hilfe der folgenden trivialen 
Bemerkung: 

2.1. Bemerkung. Sei M0:—M und Mi+1:=MiUF(M[) für / = 0 , 1 , . . . . Es sei 
k minimal mit Mk+1=Mk. Dann ist 

( M ) = \ J M i . 
i = 0 

Dabei gilt ,k^\(M)\-\M\^\A\-\M\. 

. Sei m:—\M\, := [A/,-1, ih:=\(M)\, n:=\A\. Zur Bestimmung von Mi+1 
aus MK werden 2 mlf Polynome berechnet. Jedes Ergebnis ist in eine Menge 

M' mit MjQM'QMi+1 einzusortieren. Bei Realisierung der Mt durch Listen 
kommt man ohne Berücksichtigung der Kosten für die Abbildung x und die Opera-
tionen f mit einem Zeitaufwand 

• 0(mi+! Z ™vi') 
fZF 

für die Bestimmung von Mi+1 aus Mt aus. Insgesamt ergibt m'~0{m) = 0(ji) 
und m—m +1=0(w)=O(n) die (sehr grobe) obere Schranke 

(m - m +1) O ( 2 x) = 0 ( 2 ™Vf *') = O (m"+is) = 0 (n"+2) . 
/ € F . . .. . ftF 

für den Zeitaufwand mit " ' . 
' li:= max (vf\f£.F). 

Der Platzäufwand hat ohne Berücksichtigung des zur Definition von 91 erforderlichen 
Platzes die Größenordnung O(m); es wird nur Platz zur Abspeicherung der Mt 
benötigt', und Mi+1-- kann jeweils als Verlängerung von Mt realisiert werden. 
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Für die Trägermenge [M] von SR', gegeben durch MQA und GQF, hat 
man die folgende konstruktive Definition: 

2.2. Bemerkung. Sei M'0:=M, M'2i+1:=M'2iUF(M'2i), M'2i+2:=M'2i+1(J 
[}G(M'2i+1, A) für / = 0 , 1 , . . . . Es sei k minimal mit M'2k+2=M'2k. Dann ist 

2k 
[M] = U Ml. 

i = 0 

Dabei gilt ks][M]\-]M)^n-m. 

Sei m't:= \M[\, m:= |[M]|. Unter denselben Bedingungen wie oben erhält 
man als Zeitschranke für die Bestimmung von [M]: 

m' - rn 
2 (mii+i- 2 m'2]f + m'2i+2- 2 ™2i+1-ti'j-1-vi) ¡ = 0 / £ F f(F 

= 0 ( m ' " + 2 + m / 3 n " / - 1 ) 

= 0(n" + 2 + n"'+2) = 0(n"+2) 
mit 

H' :=max(vf\f£G), 

wobei /¿'>1 vorausgesetzt sei (sonst ist [M\~{M)). Der Platzaufwand kann 
wieder durch O(m') abgeschätzt werden. 

Für den Speziallfall von Halbgruppen oder Ringen ergeben diese zugegebener-
maßen sehr naiven Abschätzungen die folgenden Aussagen über den Zeitaufwand: 

Halbgruppen: Erzeugen einer Unterhalbgruppe der Ordnung rh: 0(m4). 
Erzeugen eines Ideals der Ordnung m': 0(m'3ri). 
Erzeugen eines einseitigen Ideals der Ordnung in': 0(m'3ri). 

Ringe: Erzeugen eines Teilrings der Ordnung rh: 0(m4). 
Erzeugen eines Ideals der Ordnung m': 0(m'sn). 

3. Der Vorteil sorgfältiger Buchführung 

Wir wollen jetzt den durch Bemerkung 2.1 gegebenen Algorithmus sorgfältiger 
studieren; dabei übernehmen wir die oben eingeführte Bezeichnung und definieren 
zusätzlich 

Qt+1:=F(Md\M, für 1 = 0 ,1 , . . . . 
Dann ist offenbar 

Mt+l = MtÖF(Qt,Md für ¿ = 1,2, .... 

Zur Bestimmung von F(Qh M() müssen genau 

ZmJf-mlL! feF 

\ 
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verschiedene Polynomwerte berechnet werden. Wir wollen wieder voraussetzen, 
daß die Mf in Listenform gespeichert sind: 

% q q 
1 \ I 

M0 = M Q1 ... ßf 
V 

M, 

MI-! 

Man benötigt vier Zeiger: 
q0 verweist auf den Anfang der Liste, q0 hinter das Ende, 
q verweist auf den Anfang von Q¡, q hinter das Ende. 

Zu beginn der Berechnung von Mi+1 ist q0 — q. Mit jedem neuen Element wird 
q0 „nach hinten" verschoben. Der Algorithmus endet, wenn nach der Berechnung 
von Mi+1 gilt: q = q0. Andernfalls setzt man q'—q,q'=q0 und fahrt mit der 
Berechnung von Mi+2 fort. 

Sei nun / £ F und v r > 0 . Zur Bestimmung der Argumente (aly ..., aV/)€ 
€M?>\MiLi benutze man z.B. vf Laufvariable pi,..-,pvf mit 

q^ px<q und q0 ^ pj<q für j > 1. 

Zu jedem derartigen vytupel (px, ..., pVf) betrachte man ferner sämtliche Per-
mutationen der Form 

(Pj> Pz, P3> • • • > Pj-1> Pl> Pj +1» •••> Pvf)> 

für die P j < q ist. Bei sorgfaltiger Buchführung über die p j mit p j ^ q (z.B. durch 
gekettete Speicherung dieser pj) kann man diese Permutationen insgesamt mit 
dem Aufwand 0 ( / + l ) bestimmen, wobei t die Anzahl dieser pj ist. Der ge-
samte Zeitaufwand für alle VY-tupel ist daher proportional der Anzahl der betrachte-
ten VY-tupel, und diese ist 

q r ' £ mf-V-1-q¡-(V/7 1 ) - ( v , - j ) ^ ^ ^ (mU-mjL,) = 

j=o V J ) tVf 

= O^imP-mULj). 
Der Platzaufwand hat die Größenordnung 0(yf) für die Laufvariablen — diesen 
Aufwand hatten wir in den „naiven" Abschätzungen vernachlässigt. 

Für jedes v^-tupel (a1; ..., aVf) sind die folgenden Operationen auszuführen: 
(1) Berechnung von a\—f(a,, ..., aVf). 
(2) Prüfen, ob a im bisher aufgebauten Teil von Mi+1 liegt, und, wenn nein, 

a in Qi+1 einfügen. 
Für (1) treten jedesmal die Kosten cf auf. Die Aufgabe (2) läßt sich durch 

Suchen in einer zu m i + l proportionalen Zeit erledigen. Eine Verbesserug ist nur 
bei Abänderung der Speicherungsmethode für die M¡ zu erzielen. Diese Möglich-
keit soll später weiter verfolgt werden. 
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In der bisherigen Version haben wir also die Zeitschranke 

m-m+l fVf + 1)2 

2mv
0fc/.m1+ 2 Z Äll •(.mp-m^1)-crmni 

ftF ¡=1 SZF Wf 

<PZ wird maximal für m1=m2=... = m, d.h., m1—m0=m—m. Dies entspricht 
der Situation, daß man zunächst alle Elemente von < M ) \ M erhält und danach 
nur noch kostspielige Überprüfungen gemäß (2) mit negativem Ergebnis macht. 
Dies ergibt 

mit c:=max (cf\f£F). Für festes n und c hat man also $ z =0(m" + 1 )=0(n ' , + 1 ) . 
- Diese Schranke erhält man — etwa für / i=2 — auch aus dem trivialen Erreich-

barkeitsalgorithmus für gerichtete Graphen (vgl. [1], S. 207). 
Wie angekündigt, wollen wir jetzt die Speicherungsmethode ändern. Ein ein-

facher Übergang auf hash-Tabellen oder boolesche Vektoren, der die Vereinigungs-
operation (2) erheblich beschleunigen würde, ist nicht zu empfehlen, weil mit dieser 
Beschleunigung eine Verlangsamung der Bestimmung der v^-tupel eingehandelt 
würde. Man beachte, daß der Zugriff auf die M t gleichzeitig sequentiell und indiziert 
möglich sein sollte. Zwei Lösungswege mit unterschiedlichen Auswirkungen hin-
sichtlich der Kosten liegen nahe: Man kann neben dem Listenspeicher für die 
Mt vorsehen 

(a) ein Feld der Größe 0(n) zur Markierung der in Af; vorhandenen Ele-
mente von A (etwa als hash-Tabelle) oder 

(b) eine zusätzliche Abspeicherung der Mt in Form balancierter Bäume. 
In beiden Fällen wird zu jedem Element ein zusätzlicher Rechenaufwand zur 

Indexberechnung bei (a) oder für Vergleiche bei (b) nötig, dessen Zeitbedarf durch 
hÄ abgeschätzt werden kann. Im Falle (a) sind je Element 0(1) Zugriffe aus-
reichend; im Falle (b) muß man für Suchen, Einfügen und Restrukturieren 
0(log mf) Schritte ansetzen. Für (a) erhält man somit die Zeitschranke 

/ 

0(ti-m"+1-c), falls /i > 0, 
0{m-c), falls /1 = 0, 

m-m + l ÍV/- + 1')2 

5":= 2ml,-crhA+ 2 Z Z •(rn]f-m\L1)-crhA+0(n) = 
fçF ¡=i feF 

= 0(mll-c-hA+n) 
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und die Platzschranke :.- , 
*Fp := 0(n+m + n). 

Der zusätzliche Zeitaufwand 0(n) ist erforderlich, um die Anfangsbesetzung der 
hash-Tabelle zu organisieren. Dies spart man bei (b). Dort hat man die Kosten 

m-m + l Cv^+l')2 ' 
ß*:= Zmlr-c, hA-logm1 + 2 2 fZ • ("»?' - •cfhA• log m,+i = 

f(F ¡=1 f£F 4 Vj 
v f> 0 

= 0(m" -c-hA- log m) 
Und ; j 

Q" := 0(m+fi). 

Zusammenfassend : erhalten wir: 

3.1= Satz, Die Erzeugung von 3Jt ist möglich mit dem Aufwand 

= 0(m"+n), Wp — 0(n) 

beziehungsweise mit dem Aufwand 

Qz = 0{fh<1- log m), Q" = 0 {m). 

Für die Erzeugung von 931' aus MQ A und GQF kann man ähnlich vorgehen. Sei 

öa+i := F(M'2i)\M'2i, 

Q'2i+2:=G(M'2i+1,A)\M'2i+1. 
Dann ist also 

M'2i+1 = M'n{JF{Q'2i{jQ'2i--L, M2i) • 
und 

M'2i+2 = M'2i+1ÖG(0'2i+1ÖQ'2i,A). 

Wie oben schätzt man den Zeitaufwand und den Platzaufwand ab und erhält : 

3.2. Satz. Die Erzeugung von 9JT ist möglich mit dem Aufwand 

Wz = 0(m'*+m' n"'~1 + n), V" = Ö(n) 

beziehungsweise mit dem Aufwand 

Q'2 = 0(m'*logm'+mn','~1\ogm'), Q'p = 0(m'). 

Es ist klar, daß die Schranken Wz und der Größenordnung nach optimal 
sind, weil ohne genauere Kenntnis von 91 jeweils sämtliche Operationen / auf 
sämtliche mögliche vytupel angewendet werden müssen. 

An dieser Stelle ist anzumerken, daß die obigen Aussagen stillschweigend 
voraussetzen, daß |F | = 0(1) ist für die einmal gewählte Klasse von Algebren. 
Es ist offensichtlich, welche Verallgemeinerungen für den Fall, daß |F | 7*0(1) 
ist, durchzuführen sind. Wir beschränken uns darauf, für diese Situation ein reprä-
sentatives Beispiel anzugeben: 91 sei eine Gruppe; um auch die Normalteiler-
eigenschaften ausdrücken zu können, wählen wir 

F= 
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mit 
v. = 2, v_! - 1, v7a = 1 

und ' 
ya(b) = a^-b-a. 

Die Unteralgebren von 21 sind gerade die Normalteiler, und geeignete Modifikation 
von Satz 3.1 ergibt die Aufwandsschranken 

Wz = 0(nm+m2+n), W = 0(n) 
beziehungsweise 

Q* = 0(nm\ogm+m2logm), Q" = 0(m). 

Die entsprechenden Schranken ohne Berücksichtigung der Buchführungskosten 
findet man in [7]. 

4. Kosten der Uniformisierung 

Der Ablauf der im vorigen Abschnitt vorgeführten Algorithmen ist in hohem 
Maße von den Eingabedaten M und gegebenenfalls G abhängig. In diesem Ab-
schnitt untersuchen wir an den Spezialfällen endlicher Halbgruppen und endlicher 
Ringe die Kosten eines von den Eingabedaten unabhängigen Erzeugungsverfahrens. 

Für die angesprochenen Spezialfälle ergeben sich aus 3.1 und 3.2 die folgenden 
Schranken: 

Halbgruppen: V* = 0(m2+n)=0(n2), W = 0(n); 

= Oim'n) = 0(n2), W" = 0(n) mit G = F = {•}. 

Ringe: Wie Halbgruppen, mit G = {• }. 
Wir werden zeigen, wie sich die Erzeugungsaufgaben in Halbgruppen und 

Ringen auf die Multiplikation von «X «-Matrizen über dem booleschen Halbring 
B zurückführen lassen. 

Sei also jetzt 91 eine endliche Halbgruppe. Zu a£A sei 

die durch die innere Linkstranslation von a definierte «X/i-Matrix über B, d.h.} 

;<. _ J1' fa l ls a b = c> 
jo, falls ab 

Für MQA sei 
•= 2 Aa-

Sei weiter A°M die NXN-Einheitsmatrix über B und 

A*M:= 2 A i f -
J-o 

Man beweist leicht, daß Ah an der Stelle (b, c) genau dann eine 1 hat, wenn 
b=c ist oder wenn c—axa2... ajb für geeignete 76N und ax,...,afiM ist. • 

4 Acta Cybernetica VI/4 

9 
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Sei nun nM der «-komponentige Zeilenvektor über B, dessen b-te Komponente 
genau dann 1 ist, wenn b£M ist. Damit gilt: 

4.1. Lemma. c£(M) genau dann, wenn die c-te Komponente von nMA% 
gleich 1 ist. 

Die zur Berechnung von A%f erforderliche Zeit hat bekanntlich dieselbe Größen-
ordnung wie die zur Multiplikation zweier «X «-Matrizen über B erforderliche 
Zeit Multz (n, B). Der Zeitaufwand für die Herstellung von AM ist durch 0(n2) 
beschränkt. Damit folgt: 

4.2. Satz. Die Unterhalbgruppe 9JI . von 21 kann mit einem durch 
0(Multz («, B)) beschränkten Zeitaufwand (uniform) erzeugt werden. 

Natürlich hat auch der Platzaufwand für die Erzeugung von SDi die Größen-
ordnung des für die Berechnung von A*M, d.h., für die Berechnung der transitiven 
Hülle einer binären Relation erforderlichen Platzaufwandes. 

Iniir Aif* TH^iil^rv^nmina opfit man pin w^nio qnHprQ v o r ' 
* • • - — • O — ' --- -

4.3. Satz. Die Berechnung des von M erzeugten Linksideals (Rechtsideals, 
Ideals) der Halbgruppe 21 kann (uniform) in der Zeit 0(n2) durchgeführt werden. 

Zum Beweis hat man nur zu beachten, daß c genau dann im von M erzeugten 
Linksideal liegt, wenn die c-te Komponente von NMAA gleich 1 ist. Zur Berechnung 
von AA ist jedoch keine Multiplikation, sondern nur die Addition 

A*A = AA + A°A 

erforderlich. Mit der dualen Aussage erhält man auch die Behauptung für Rechts-
ideale und Ideale. 

Es ist ohne Schwierigkeiten möglich, diese Überlegungen auf Ringe 21 zu 
übertragen. Neben der Assoziativität für die beiden Operationen + und • nutzt 
man dabei nur noch die Distributivitätsgesetze 

a -(b + c) = a • b + a • c, (a + b) • c = a • c + b • c 

aus. Den durch M ^ A bezüglich + und • bewirkten Linkstranslationen ent-
sprechen die Matrizen A+ M und A. M. Man beweist leicht, daß c£(M) genau 

'«dann gilt, wenn, die c-te Komponente von NMLA*+YML gleich 1 ist, wobei Mj durch 
'NML = TIMA* M definiert ist. Damit erhält man aus Satz 4.2: 

4.4. Korollar. Der Teilring SR von 21 kann mit einem durch 0(Multz («, B)) 
beschränkten Zeitaufwand (uniform) erzeugt werden. 

Für die Erzeugung von Idealen tritt, weil im allgemeinen auf die Erzeugung 
der durch M erzeugten Unterhalbgruppe bezüglich + nicht verzichtet werden 
kann, ebenfalls der Aufwand 0(Multz («, B)) auf. 

Ein uniformes Erzeugungsverfahren für beliebige universelle Algebren wird 
schon vom Ansatz her erheblich komplizierter als für die Spezialfälle von Halb-
gruppen und Ringen. Man beachte insbesondere, daß die so bequeme Darstellung 
durch Matrizen über B im allgemeinen wenig Vorteile bringen dürfte; in den 
Beispielen von Halbgruppen und Ringen ist durch die Matrixdarstellung etwas zu 
•gewinnen, weil der Assoziativität in der Algebra die Assoziativität der Matrix-
multiplikation korrespondiert. . 
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On the lattice of clones acting bicentrally 

B y LÁSZLÓ SZABÓ 

1. Introduction 

For a set F of operations on a set A the centralizer F* of F is the set of 
operations on A commuting with every member of F. If F = F** then, we say 
that F acts bicentrally. The sets of operations on A acting bicentrally forms 
a complete lattice &A with respect to Q. 

The sets of operations acting bicentrally were, characterized in [5] and [11]. 
For \A\=3 the lattice ¿¡?A is completely described in [2] and [3]. The aim of this 
paper is to investigate the lattice ¡£A. Among others we show that for any set 
A there exists a single operation / such that {/}** is the set of all operations of 
A (Theorem 5). Furthermore, it is proved that if BQA then JS?B can be embedded 
into &A (Corollary 7). 

2. Preliminaries 

Let A be an at least two element set which will be fixed in the sequel. The set 
of «-ary operations on A will be denoted by 0(/> (ns 1). Furthermore, we set 

0A= U 0\in)- A set FQOA is said to be a clone if it contains all projections and 
n = l 

is closed with respect to superpositions of operations. Denote by [F] the clone 
generated by F. Let / and g be operations of arites n and m, respectively. 
If M is an mXn matrix of elements of A, we can apply / to each row of M to 
obtain a column vector consisting of m elements, which will be denoted by f(M). 
Similarly, we can apply g to each column of M to obtain a row vector of n ele-
ments, which will be denoted by ( M ) g . We say that / and g commute if for every 
mXn matrix M over A, we have (f(M))g—f((M)g). 

By the centralizer of a set FQ 0A we mean the set F*QOA consisting of all 
operations on A that commute with every member of F. It can be shown by 
a simple computation that F*=[F]*=[F + ] for every FQ 0A. The mapping 
F—F* defines a Galois-connection between the subsets of 0A. Indeed, F j g F 2 
implies F * 3 F * and FQ(F*)* = F** for every F l 5 F2 , F ^ O A . From this 
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it follows that F* — F*** for every FQ 0A. Thus the mapping F^F** is a closure 
operator on the subsets of 0A. The set F** is called the bicentralizer of F. If 
F=F** then we say that F acts bicentrally. The sets of operations on A acting 
bicentrally form a complete lattice with respect to Q . Denote by this lattice. 
In <gA we have A F ^ f ] ^ , V / \ = ( U F,-)** and (V Fi)* = A F,*, (A F,)* = 

¡€I iil ¡ZI >£/ '(.I '(.I ¡(.1 
= V F f . It follows that the mapping F^F*(F£H?A) is .a dual automorphism 

i€/ 

The set of all projections, and the set of all injective unary operations on A 
will be denoted by PA and SA, respectively. An operation / € F is said to be 
homogeneous if fkSA. The symbol HA denotes the set of all homogeneous opera-
tions, i.e., HA = SA. 

We say that an operation f^O A is parametrically expressible or generated by 
a set FQOa if the predicate / (x , , ..., xn)=y is equivalent to a predicate of the form 

Oh) ••• (3f|) ((A! = BjA... A(Am = BJ) 
where At and Bi contain only operation symbols from F, variables x, , ..., x„, 
y, tx, ..., commas and round brackets. 

For denote by /„ the n-ary near-projection, i.e. the «-ary operation 
defined as follows: 

"v 1 (x„ otherwise. 

We need the ternary dual discriminator-function d which is defined in the following 
way: 

fx if y ^ z, 
(z if y — z. 

If fZOA and BQA then fB denotes the restriction of / to B. 

3. Results 

First we give two examples. For every subset XQ A let Cx be the set of all 
unary constant operations with value belonging to X. Furthermore, let Ix be 
the set of all operations f£0A for which / (x , . . . , x )=x for every x£X. 

Example 1. For every subset XQA we have Cx=Jx and /*=[CX]. In parti-
cular, PA=0A and 0*A=PA. 

Proof. CX=IX and IX^[CX] are obvious. Now let / £ / £ be an «-ary opera-
tion and suppose that /(£[Cx]. Then / is neither a projection nor a constant opera-
tion with value belonging to X. Therefore there are elements aa, ..., ain£A, 
i = l , . . . ,n+2, such that a ,= / (a a , ..., a j ^a ; , - , i = l , ..., n, and (an + 1 , a„ + 2) = 
=(f(an+lil. ...,an+1J, /(a„ + 2 j l , ..., a„ + 2 j)${(x, x)| x€X}. Let. M=(au)(n+2)Xn. 
Since («!, ...,aB+2)${(x, ...,x)\x£X}, and (a l t ..., a„+2) is distinct from each 
column of M, there exists an (w+2)-ary operation g£lx such that ( f ( M ) ) g = 

an+2)9£f({M)g), showing that / and g do not commute and 
This contradiction shows that Hence I x=[Cx\ . 
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Finally if X=Q then we have IX = 0A and [CX]=[®\=PA. • 

Example 2. If then (SAUCA)*=HA and / / ^ [ S ^ U C J . 

Proof. It is well known that HAQIA if \A\^3 (see e.g. [1]). Therefore 
(SA\JCA)* = S$ncZ=HAMA=HA. In [10] it is proved that [ S ^ U C J acts 
bicentrally. Thus H* = {(SA U CAf)*=[S* U C J * * = U C J . • 

For \A\=2, E. Post [8] described the lattice of clones over A. Using this result 
the lattice Z£A can be determined by routine. Figure 1 is the diagram of Z£A in 
case \A\=2. (We use the notation of [9]). 

C , = O X 

Fig. 1. 
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Considering the diagram we can observe the following facts: if \A\—2 then 
<£a has 25 elements, six atoms (04, 05, Oe, Slt Plt L4), and six dual atoms 
(D3,C2,C3,S6,Pe,L1). Remark that the dual automorphism F—F* coincides 
with the reflection of the diagram with respect to the axis S3—P3. 

For \A\=3, 3?A is a finite lattice of power 2986 and it has 44 atoms and dual 
atoms (see [2], [3] and [4]). 

In general we have the following. 

Theorem 3. If A is a finite set, then the closure operator F—F** is algebraic, 
and Z£a is an atomic and dually atomic algebraic lattice. If A is infinite, then the 
closure operator F—F** is not algebraic. 

Proof. First let A be a finite set. A. V. Kuznecov showed in [5] that F = F** 
if and only if F contains every operation para metrically generated by F. From 
this it follows that the closure operator F—F** is algebraic. Thus i£A is an al-
gebraic lattice. It is well-known that there are finite sets FQGA such that F** = OA 

(see e.g. [4]). Therefore 3?A is dually atomic. Since S£A is dually isomorphic to 
itself, it is atomic, too. 

A. F. Danil'cenko proved in [4] that if then every dual atom of 
is of the form {/}* where f ^ O A is an at most |^|-ary operation. From this it 
follows that has finitely many dual atoms and atoms (the numbers of atoms 
and dual atoms are equal). 

- Now let A be an infinite set and let xlt x2, ...£A be pairwise distinct elements. 
Put J r—fo.Xj+i , ...}, 1 = 1 , 2 , . . . . Then, by Example 1, / = 1 , 2 , . . . 

and clearly - - Furthermore U and ( Q IX)**=(C\I$,)*= 
;=i ¡=i i=I 

= ( f l [Cx$)*PZ=0A. It follows that the closure operator F - F * * is not 
¡=i 

algebraic. • 

Theorem 4. If \A\S5, then HA is an atom and [S^ U C J is a dual atom in Z£A. 

Proof. First we show that if d is the ternary dual discriminator and 
/„ (3shs|V4|) is a near-projection then {<i}* = {/„}*=[S^UCJ. The inclusions 
{ i /}* i [S A UCJ and { / „ } * i [ ^ U C J are obvious. Let / e O W S * U C J b e a n 
m-ary operation. If / depends on one variable only then we can assume without 
loss of generality that / is a unary operation. Since / is non-injective and non-
constant, there are pairwise distinct elements a, b, c£A such that / ( a )^ / ( i>)= / (c ) . 
Furthermore choose elements x4, ..., x„£A such that a, b, c, x4, ..., x„ are pairwise 
distinct. Then f(d(a,b,c))=f(a)^m=d(f(a),f(b),f(c)) and f(ln(a,b, x4, ... 
...,x„, c))=f(d)^f(c)=ln(f(a), f(b),f(x4), . . . ,/(x„),/(c)) showing that / does not 
commute with d and /„, i.e. f${d}* and /${/„}*. Now suppose that / depends on 
at least two variables, among others on the first. Therefore there are elements 
a2, ..., a„£A such that the unary operation g(x)— f(x, a2, ..., a„) is not a constant. 
If / takes on at most n — 1 elements from" A then g is not injective. Therefore 
g${d}* and {/„}*. From this it follows that {d}* and /${/„}*. Finally suppose 
that / takes on at least n ( ^ 3 ) values. Since / depends on at least two variables, 
there are elements a1, ...,am,b1, ...,bm,a,b,c£A such that a, b and c are 
pairwise distinct and a=f{a1,...,am), b=f(b1,a2,...,am), c = / ( a l 5 b2, ..., bm) 
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X41 ... x4m 

x n l . . . Xfim 
a2. ••«m 

£>1 a2. 
ax b 2 . •bm 

(see e.g. [6]). Then d{f{a itb2, ..., bm), f(bu a2, ..., a J , / (a l 5 ..., am))=d(c, b, a) = 
= c^a =f{a1, ..., am) =f(d(a1, bt, ax), d(b2, a2, a2),..., d(bm, am, a j ) showing that 

f${d}*. Finally, since / takes on at least n values, there are elements xa, ...,xim£A, 
i=4, ...,«, such that a, b, c, x4, ..., x„ are pairwise distinct elements where 
xi=/(xa, ..., xim). Now consider the following nXm matrix M. 

M = 

Then ( f ( M ) % = / „ ( x 4 , ..., xn, a, b, c)=x4^c =f(al, b2, ..., bm) =f((M)l„) showing 
that / and /„ do not commute. This completes the proof of the equalities {d}* = 
= [ S a V C a ] and 

Now we are ready to prove the theorem. Since HA=[SA\JCJI\, it is enough 
to show that IIA is an atom in £CA, i.e. for any nontrivial operation fdHA we have 
{ff*=HA or equivalently { / T M S ^ U C J . In [1] and [7] it is shown that if 
then every non-trivial clone of homogeneous operations contains the dual discrimi-
nator or a near-projection. Therefore, if f£HA is a non-trivial operation and 
de[{f}] then [SA\JCA]Q{f}*=[{f}rc{d}*=[sA{JCA}. If /„€[{/}] for some 
«S3, then [SAUCA]Q { /}*=[{ /} f^ { 4 r = [ ^ U C J . Hence 
which completes the proof. • 

- Theorem 5. There exists a function f^OA such that {f}** = 0A. 

Proof. If A is a finite set then let f£0A be a Sheffer function, i.e. an operation 
/ for Which [{f}] = 0A. Then [{/}**=[{/}}**=OT=0A. 

Now let A be an infinite set. In [12] it is proved that there exists a binary rigid 
relation Q on A (Q is rigid if the identity operation is the only unary operation 
preserving Q). Choose a rigid relation Q and define a binary operation h as follows ; 
h(x,y) — x if (x,y)£q and h(x,y) = y if (x, We show that {h}*C]SA = 
= {idA}. Indeed, let t£SA and t^idA. Then there is a pair (x, y)^Q such that 
(t(x), q. Clearly x^y, since otherwise the unary constant operation A-*{x} 
preserves q. It follows that t(h(x, y)) = i(x)^t(y)=h{t(x), t{y)) and {h}*. 

Let gdOA be a fixed point free permutation whose cycles are all infinite. 
Furthermore, let a,b£A with afb. 

Now we are ready to define an operation / such that {/}** = 0A. Let 

g(x) if x = y = z = u, 
d(y, z, u) if y = g(x), 
h(z,u) if x = g(y), 
a , i f y - g ( g ( x ) ) , 
b if x = g(gQO). 
x otherwise.. 

f(x, y, z, u) 

Denote by ca and cb the unary constant operations with values a and b, re1 

spectively. Then g, d, h, ca, c6 €[{/}] since /(x, x, x, x)=g(x), f(x,g(x), y, z) = 
=d(x,y,z), f(g(x),x,x,y)=h(x,y), / (x , g(g(x)), x, x)=ca(x) arid ' f(g(g(xj), 
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x,x,x)=cb(x). If t£{f}* then t£{d,h,ca,cb}*. Since by Theorem 4, 
'€[5.4 UCJ. We can suppose that t is unary. If t£SA then t£ {h}* implies t=idA. 
If t£CA, i.e. t is a constant operation with value x0 then we have that a=ca(t(a)) = 
= t(ca(a))=x0=t(cb(a))—cb(t(a))=b which is a contradiction. Thus we have 
{f}*=PA and (f}**=P*=0A. • 

Let BQA(B?±Q) and let s be a mapping from A onto B such that s(b)=b 
for every b£B. For any operation f£0(

B"\ « = 1, let us define an operation fs€0A 
as follows: / s ( a l f ..., aB)=/(i(ai) , ..., J(fl„)) for any a l 5 ..., an€A. For any FQOB 
let Fs=PAU{fs\f£F}. 

Theorem 6. Let FQOB such that idB£F. Then (FS)**=(F**)S. In parti-
cular, if F = F** then FS=(F5)**. 

Proof. We shall prove the theorem through some statements: 
(1) s£Fs and ¿6(FS)*. 
Since idB£F, we have s=id%$Fs. Let F. If g£PA then, clearly, s com-

mutes with g. If g=fs for some f£F, then for any ..., andA we have 
s(g(#i, .... an)) = j ( / s ( f l i , ..., a j ) = j(/(j(«i), J(a„)) = f{s(s(ai))> •••> s{s(a*j)) = 
=g(s(a1), ...,s(an)). Hence s commutes with g and s£(Fs)*. 

(2) If g€(Fs)* then g preserves B. 
Indeed, if g is w-ary and bu ...,b„^B then g{J}x, ...,b„)=g(s(b1), ...,s(b„)) = 

(3) g£(Fs)* if and only if gB£F* and g commutes with s. 
First suppose that g€(Fs)*. Then g commutes with s, since s£Fs. If / £ F, 

then g commutes with f s . By (2), we have gB£0B, and clearly the restriction of 
f s to B coincides with / . These facts imply that gB commutes with / . Hence 
gB£F*. Now suppose that gB£F*, g commutes with s, and / S £ F S ( / £ F ) . Let 
g and / be m-ary and n-ary, respectively, and choose arbitrary elements an,..., aim 6 A, 
/=1 , ...,n. Then 

fs(g(an, •••» aim), —•> 8(am, •••> O ) = f(s(g(au, ..., almj), ...,s(g(anl, ..., anmj)) = 
= / ( ^ ( • y ( f l l l ) , •••> i(fllm)). •••> ^ ( ^ ( « n l ) , ¿ ( O ) ) = 

= gB(/(s(aii), ...,s(anl))),...,f(s(alm), ...,s(anJ) = 
= g{fs(."u, -,aHl), ...,fs(alm, ..., anJ). 

Hence g commutes with f s and g€(Fs)*. 
(4) If fdF* then / S € ( F S ) * . 

Clearly, the restriction fB to B coincides with f and f s commutes with s. 
Therefore, by (3), we have /S€(FS)*. 

(5) If g£(Fs)** then g£PA or g maps into B. 
Suppose g€(Fs)**\PA is an n-ary operation which takes on a value from A\B. 

Since g is not a projection, for every {1, . . . ,«} there are aa, ..., ain£A such 
that fli=g(aa, ...,ain)^aH. Furthermore let an+11, ..., an+l n<EA such that 
g(a„+i,i,..., an+hn)-an+1^B. Let us define an (n-f-l)-ary operation h£0A as 
follows: 

v N_J s ( a n+i ) (*i» •••' *n + l) = ( a u •••> an+l)> 

otherwise. 
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Then h commutes with s, and hB, being a projection, belongs to F*. Therefore, by 
(3), h£(Fs)*. Now g{h{allL, ...,a„ + 1>1), ...,h(aln, ..., an+1,nj)=g(an+1>1, ...,an+li„)= 
= an+1 ^ s(an+1) = h(a1} ...,an+1) = /i(g(an, ..., aln),..., g(a„+1>i, ..., a„+i,„)). It 
follows that g does not commute with h, which is a contradiction. 

(6) If g<E(Fs)** then g preserves B. 
This follows from (5) 
(7) If g£(Fs)** then gBdF**. 
Let g£(Fs)** and let / be an arbitrary operation in F*. Then, by (4), we have 

that g commutes with f s . Taking into consideration (6), this implies that gB (£0B) 
commutes with / (the restriction of f s to B). It follows that gB£F**. 

Now we are ready to prove the theorem. First let g€(Fs)**. If g£PA then 
clearly g£(F**)s. Suppose that g$PA and let gB=f• Taking into consideration 
(5), (1) and (7), we have that g maps into B,g commutes with s, and f£F**. 
Thus if g is w-ary then for any ax, ..., a„^A we have g(ax, ..., an)=s(g(al, ..., anj) = 
=g(s(ai), ...,j(a„)) =/(•*(%), ...,s(an)) showing that g=fs and gi(F**f. Finally 
let gC(F**)s. If g<=PA then g£(Fs)**. If g$PA then there is an /£F** such that 
g=fs. Take an arbitrary operation h from (Fs)*. Then, by (3), h commutes 
with s and hBeF*. It follows that hB commutes with / (hBeF*=(F**f). Let 
g and h be m-ary and w-ary, respectively, and choose arbitrary elements aa, ... 
..., aim£A, i=l, ..., n. Now 

h(g{a}1, ..., alm), ..., g(anl, ..., anmj) = hB(f(s(an), ..., s(almj), f(s(anl), ..., s(a„m))) = 

= f(hB(s(an), ...,s(anl)),...,hB(s(alm), ...,s(anJ)) = 

- - = f(h(s(an),..., .v(anl)), ..., h(s(alm), ..., s{a„m))) --

= f(s(h(au, ...,anl)), ..., s(h(alm, ...,a„J)) = g(h(an, ...,anl), ...,h(alm, Ji-

lt follows that g commutes with h and g£(Fs)**. • 
Corollary 7. The mapping F - - F s from SCB into SCA is an isomorphism. 

Proof. From Theorem 6 it follows that if Fe£CB then Fs££eA. Observe that 
(FJ fl F2)S = FF fl FF and {Fx U F2)S = F( U F2S for any F l 9 F^S£B. Therefore 
taking into consideration Theorem 6, for any F1? F2£I?B we have that (F1AF2)S — 
=(Fi 0 F 2 ) S =.FF n Fg = FF A F2

s a n d (F^ F2f=({F1 U F 2 )** ) S = ( ( F i U F 2 ) S )** = 
= (FF UF£)** = FF VFF. Finally, it is obvious that the mapping F—FS is injective. • 

Corollary 8. If s ̂  idA then [{J}] is an atom in i£A. 

Proof. Let PBQOB be the set of projections on B. Then F|=[{i}] and there-
fore, by Theorem 6, [{.?}]£ y A . It is trivial that [{j}] is an atom in £?A. • 

BOLYAI INSTITUTE 
ARADI VÉRTANUK TERE 1 
6720 SZEGED, HUNGARY 



/ 388 L. Szabó: On the lattice of dones acting bicentrally 

References 

[1] B. CSÁKÁNY and T. GAVALCOVÁ, Finite homogeneous algebras. I, Acta Sci. Math., 42 (1980), 
57—63. 

[2] A. F. DANIL'ŐENKO, On the parametrical expressibility of functions of three-valued logic 
(in Russian), Algebra i logika, 16/4 (1977), 379—494. 

[3] A. F. DANIL'ŐENKO, Parametrically closed classes of functions of three-valued logic (in Russian), 
Izv. Akad. Nauk Moldav. SSR, 1978, no. 2, 13—20. 

[4] A. F. DANIL'ŐENKO, On parametrical expressibility of the functions of ¿-valued logic, in: 
Finite Algebra and Multiple-valued Logic (Proc. Conf. Szeged, 1979). Colloq. Math. Soc. 
J. Bolyai, vol. 28, North-Holland (Amsterdam, 1981), 147—159. 

[5] A. V. KUZNECOV, On detecting non-deducibility and non-expressibility (in Russian), in: Logical 
deduction, Nauka, Moscow (1979), 5—33. 

[6] A. I. MAL'CEV, A strengthening of the theorems of Stupecki and Jablonskil (in Russian), 
Algebra i Logika 6, no. 3 (1967), 61—75. 

[7] S. S. MARŐENKOV, On homogeneous algebras (in Russian), Dokl. Acad. Nauk SSSR, 256 
(1981), 787—790. 

[8] E. POST, The two-valued iterative systems of mathematical logic, Ann. Math. Studies 5. Princeton 
(1941). 

[9] R. PÖSCHEL und L. A. KALUZNIN, Functionen- und Relationenalgebren, Ein Kapitel der 
diskreten Mathematik, Math. Monographien B. 15, Berlin (1979). 

[10] L. SZABÓ, Endomorphism monoids and clones, Acta Math. Acad. Sci. Hungar., 26 (1975), 
279—280. 

[11] L. SZABÓ, Concrete representation of related structures of universal algebras. I, Acta Sci. 
Math., 40 (1978). 

[12] P. VOPENKA, A. PULTR and Z. HEDRLIN, A rigid relation exists on any set, Comment. Math. 
U n i v . Caro l inae , 6 (1965) , 1 4 9 — 1 5 5 . 

Received Agust 30, 1983. 



Analysis of data flow for SIMD systems 

REINHARD KLETTE 

0. Introduction 

A general approach to characterizing the inherent complexity of computational 
problems is given by the quantitative analysis of the extent of the data flow that has 
to be performed during the solution of these problems. On the other hand, any 
parallel processing system possesses a restricted ability for fast data transfer deter-
mined essentially by the interconnection pattern of the processing elements. In 
the present paper, these general observations, as previously mentioned by Gentleman 
(1978), Siegel (1979), Abelson (1980), or Klette (1980), will be transformed into : 
precise definitions of local, global and total data transfer within SIMD systems, 
and the corresponding definitions of local, global and total data dependencies for 
computational problems as well. The basic relation between these corresponding 
notions — the computational time must at least be sufficient for realizing the 
necessary extent of data transfer — will be represented in a so-called data transfer 
lemma that outlines the starting point of our formalized method of obtaining lower 
time bounds by data flow analysis. This approach will be illustrated by application 
to a variety of different parallel processing architectures where the unifying feature 
will be that we shall use SIMD models that employ an interconnection network 
and use no shared memory. Our parallel processing systems will be abstract models 
of computation where the level of abstraction may be compared with that of a random 
access machine (RAM); cp. Aho et al. [2] for this model of serial computation. 
For computational problems such as those mentioned in the present paper the author 
was inspired by the digital image processing area, where reference is made to Rosen-
feld et al. [9] and Klette [5]. But, of course, this does not represent a serious restric-
tion; e.g., matrix multiplication or pattern matching are computational problems 
of general importance. 

The general SIMD model as used in this paper is characterized by a finite or 
infinite set of processing elements (PEs), an interconnection network, and a central 
processing unit (CPU). For a rough scheme of an SIMD system which the reader 
may have in mind throughout this paper, see Fig. 1. 

CPU. The CPU has a (central) random access memory which consists of 
a finite or infinite sequence of registers /•<,, ... with a distinguished accumu-
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NETWORK 

PROGRAM 

Figure 1. 
Scheme of an SIMD system 
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lator r0. Let DcPU be the depth of this random access memory, i.e., the number 
of CPU registers, for ls£>C P USo°. Furthermore, let WCPV be the word length 
of these registers (number of bit positions), which is assumed to be constant for 
all CPU registers, for 1 ^ WCPV ^ <*>. The CPU spreads a single instruction stream 
to the synchronized working PEs. The programs of the system are stored in a, 
potentially size-unlimited, special program memory of the CPU. Part of any instruc-
tion addressed to the PEs is an enable/disable mask to select a subset of the PEs 
that are to perform the given instruction; the remaining PEs will be idle. The CPU 
may read the accumulator contents of any one PE of a specified subset of all PEs, 
and is able to transfer its accumulator contents to some of the PE accumulators. 
Any data transfer between CPU and PEs is restricted to serial mode. 

PEs. Each PE has some (local) random access memory which consists of a finite 
or infinite sequence of registers r0, r2, ... with a distinguished register r0 called 
the accumulator. Let DPE be the depth of these random access memories, i.e., 
this depth is assumed to be constant for all PEs of a given system, fór 1 SZ)P ES 
Furthermore, let WPE be the unique word length of the PE registers, for 1 S IVPE^<=°. 
Each PE is capable of performing some basic operations which take place in its 
accumulator. Direct data access is restricted to its own registers, to the accumula-
tors of the directly connected PEs in the sense of the given interconnection network, 
and, possibly, to the accumulator of the CPU. The PEs are indexed by integers 
or tuples of integers. Each PE knows its index. Let NPE, 0 S JVPE S °O, be the number 
of PEs of a given system, and ind = ( j y , j2 , ...,ylVpE} be the set of all PE indices of 
a given SIMD system. 

Interconnection network. Each PE is located in a node of a given undirected 
graph representing the two-way interconnection scheme. Any PE may uniquely 
identify the different edges connected to its node by using a given coding scheme. 
Let N w be the branching degree of the network, i.e., the maximum degree of the 
nodes of the given graph, for 0 ̂  Nm < 

For the selection of a specialized SIMD model the following system features 
may be concretely specified: 

• off-line or on-line communication with the outside world, 
• special values for NPE, jVin, DCPU, DPE, WCPV, or WPE, 
• the set ind, 
• the interconnection network structure including the edge coding scheme, 
• the CPU instruction set including the available set of enable/disable masks 

as well as the method of the data exchange between CPU and PEs, and 
• the restrictions on the system in communication with the outside world, 

i.e., input and output management. 
Note that as regards the technical realization of an SIMD computing facility, in 
principle, one implementation may offer different ways to run such a system, i.e., 
the working principles of several SIMD models as considered in the present paper 
may be unified within one implementation. Essentially, this is the problem of 
constructing a flexible interconnection network with reconfigurability, and/or of 
running a system using different modes. 

The outline of this paper is as follows. In the first section we shall present 
some standardized system description features for specifications of SIMD models. 
In Section 2 we shall describe how the data flow of an SIMD system may be measured 
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by functions in a quantitative way. Then, in Section 3 the corresponding notions 
of data dependencies will be explained for computational problems. In Section 4 
the data transfer lemma will be given as well as some applications of this lemma to 
different models of computation for lower time bound determination. Our concluding 
remarks are given at the end of the paper. 

The standard SIMD models as described in Section 1 constitute the frame-
work of a parallel simulation system (PARSIS) presently under implementation; 
cp. Legendi [7] for a similar project for simulation of cellular processors. 

1. OFF-NETs and ON-NETs 

In our experience in parallel program design the exclusion of given technical 
restrictions, e.g., on NPE, Nw, etc., in the first steps of problem solutions, enables 
us to find important methods of parallelization of solution processes as well as 
general features for system description. Of course, for concrete implementation 
quite a lot of time must be spent in taking given restrictions for jVPE, Nw, etc. 
into consideration. The present paper is concerned with the first phase, the theore-
tical preparation for the second phase, which is the concrete implementation. In 
this sense, we shall deal with abstract SIMD models throughout this paper. More 
detailed discussion will be the subject of forthcoming papers, depending on the 
progress of the PARSIS project. 

The common one-accumulator computer, e.g., the random access machine 
(RAM) in the sense of Aho et al. [2], may be considered as the simplest example 
of an abstract SIMD system — NPE = 0 and JDCPV=fVCPlJ = <=°. We shall use the 
RAM as the underlying model for serial data processing where, in distinction to [2], 
infinite precision, real number arithmetic is assumed, which is convenient for our 
theoretical considerations of computational problems such as the Fourier transform, 
or for operations on finite sets of points in the real plane, by avoiding discussions 
of round-off errors. In this sense, our standardized system description features 
start with the declaration of abstract registers. 

Abstract registers. For an SIMD system with abstract registers we assume that 
any register may store one real number at a time, without any special encoding 
tricks. For our theoretical considerations in this paper, it is not important to specify 
how the reals are stored in these abstract registers by special bit representations. 

Standard register enumeration. We assume a unique enumeration of all registers 
as follows. For registers rm of the PE with index j or ( j , k), called PE (J) or 
PE (j,k) in the sequel, we use the integer tuples ( j , m) or ( j , k, m), respectively, 
and for register rm of the CPU just the integer m. 

Uniform network structure. Either TVIN=0, or Nlfi=p^l and the network 
structure is characterized by p different functions / 0 , / i , •••,fP~i on the set ind 
of all PE indices in the following way. For j, A:£ind, PE(y') and PE(fc) are directly 
connected iff there exists an i, Osi^p — l, such that fi(j)=k. Because of our 
assumption that all connections are two-way it follows that 

(A j, fee ind) [(v«e {o, I , ..., p-imu) = k = (v/i€ {o, 1,..., P - i » fh(k) =j]. 
In [10] the functions / 0 , / i , •••,fp-1 were called interconnection functions. With 
the exception of a fixed set of PEs at the network border, we also claim that all 
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PEs are directly connected to exactly p different PEs. When fi(j)=k, PE(/c) 
is called the ith neighbor of PE (J). In this way, the edge coding scheme for uniform 
networks is defined. For each PE, the neighborhood consists of all (i.e., at most p) 
neighbor PEs. Examples of infinite networks as well as finite networks matching 
our uniformity demand are given in Table 1. In the sequel we shall use these networks 
as defined here. 

Some remarks are necessary regarding Table 1. The left-right 2' (LR2I) net-
work and the left-right-up-down 2' network (LRUD2I) network were used for 
vector machines in Pratt et al. [8] and Klette et al. [6], respectively, without the re-
striction by an integer m as stated in Table 1. Note that we have restricted our-
selves to interconnection networks with finite branching degree. The special form 
of the set ind in the Quadtree network is determined by our standard PE address 
masking scheme as defined later on. The finite uniform networks mentioned in 
Table 1 were studied by Siegel [10] — the perfect shuffle (PS), the ILLIAC, the 
Cube, the pliis-minus 2' (PM2I), and the wrap-around plus-minus 2' (WPM2I) 
network, with the modification that the PS network is an undirected graph to match 
our uniform network convention, i.e., for the PS network the inverse shuffle func-
tion was added in comparison to [10]. For y'£ind = {0,1, ..., 2m — 1} let ... a^a0 
denote the binary representation of j and a¡ denote the complement of a¡. Then 

exch (am_1...a1a0) = am^1...a1a0, 

shuf (am-1...a1a0) = a m _ 2 . . . a 1 a 0 f l m _ 1 , 

shuf_ 1(am_1 . . .a1a0) = a0am_1 . . .a2a1 , 

cub e¡(am_1...ai+1aiaí„1...a0) = ám-1...ai+1aiaiJ1...a0, 

WPM+i(flm_1...fl i...fl0) = bm_1...bi...b0, 

where ¿>,_i... b0bm.y... bi+1bi = (ai^1... a0am.1... a ;+1a¡) + 1 mod2m, 

W P M _ ( a m _ I . . . A , - . . . A 0 ) = bln.1...bi...b0, 

where ... b0bm^1 ... bi+1bi=(ai^1 ... a0am^1 ... ai+1a¡) — 1 mod2m, for 0 s i ' < m 
and m S l . 

Standard PE masking scheme. As standard masks we shall use the simple bit 
patterns for PE indices as used, for example, in [10]. In the case of integer indices, 
a standard PE address mask is given by an arbitrary, non-empty word on the alphabet 
{0,1, x} enclosed by brackets, where x represents the "dont't care" situation. 
The only PEs that will be active are those whose address (i.e., index) matches the 
másk from right to left, where the indices are given in binary representation; 0 mat-
ches 0,1 matches 1, and either 0 or 1 matches x. For example, by mask [x] all 
PE's are activated. For the representation of concrete standard masks within 
programs, etc. we take liberties such as [all PE's] instead of [x], or [odd PE's] 
instead of [lx] if the rightmost bit position is assumed to be the sign position. 
In the case of integer tuple indices, the standard PE address masks are arbitrary 
tuples of non-empty words on {0,1, x} enclosed by brackets. Note that for infinite 
networks as given in Table 1 any given PE address mask activates an infinite mani-
fold of PE's. For example, the mask [Oxx] applied to the bintree network will 
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Table 1. Uniform networks 

Network ind Nin Case 
Edge coding scheme 

Network ind Case 
o 1 2 3 4 5 6 7 

LINEAR integers 2 ail 7 - 1 — — — — — — 

LR2Im integers 2 m ail fuU)=j + 2l and / 2 i + iO')=y- 2' for O s i < m and m S 2 

BINTREE positive 
integers 

3 j—2 
ail 

0/2j 
2j 2y+l — — — — — 

TRIANGLE positive 
integers 

5 j—2 
ail 
i* 2' 

L//2J 
2j 2j+ 1 

y - i 

— 

— — 

— 

y V 2 ' - l — — — y + i — — — 

QUADTREE U • 5 
J * 4 
al! 

"J/4i 
4; 4/4-1 4j + 2 4 / + 3 

— — — 

HEXAGONAL tuples of integers 3 ail 

even J 
j+k\ 
odd / 

a * - « (j>k+ 1) 

O - l ,k) 

(j+hk) 

— — — — — 

SQUARE tuples of integers 4 all ( j , k - l ) (/,*+» U-hk) U+hk) — — — — 

TRIAGONAL tuples of integers 6 all (J,k-1) 0 , ^ + 1 ) 0 - 1 ,k) (j+hk) C / - U - D 0 + i , f c + i ) — — 

DIAGONAL tuples of integers 8 all (j;k— 1) 0 , * + D (j+hk) 0 - U - D 0 + U + D O - U + 1 ) O + U - 1 ) 

LRUD2Im tuples of integers 4 m all /«(À k) = ( j + 2l, k), /4i + 1(y, k) = (j—2', k), ftl + t(J, k) = 0 , * + 2'), 
fu + a(j,k)=(j,k-2'), for 0 â i < m and m s 2 

PSm {0,1, ...,2m — 1} 3 all exch shuf shuf"1 
— — — — — 

ILLIACm {0,1, ...,2m — 1} 4 all + lrnod2m — lrnod2m m 
+ — m o d 2 m 

2 
m 

mod2m 

2 
— — — — 

CUBEm {0,1, ...,2m~1} m all / , 0 ) = cube i0), for OS/ -<m 
PM2Im {0,l,...,2m_1} 2 m all /aiO) = / + 2 ' mod 2 m , / 2 i + 1 0 ) = ; —2' mod 2m, for 0 s i - = m 
WPM2I™ {0,1,... ,2""») 2 m all /»<0')=-WPM+,0"), / 2 i + iO)=WPM_,(/'), for 0 s / < m 
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activate the processing elements PE(2) and PE(3) on layer 1 of the bintree, 
disables layer 2, enables the first four PE's of layer 3, and so on, where the common 
binary representation of non-negative integers is assumed for the PE indices of the 
bintree network. 

Abstract CPU instruction set. For any one of our theoretical SIMD systems, 
we shall assume that its CPU instruction set may be obtained by special interpretation 
and selection of the instructions of an abstract CPU instruction reservoir defined 
as follows. There are two different types of instructions, parallel instructions for 
activating some of the PEs, and serial instructions where the CPU itself is addressed 
for certain activity. Any parallel instruction consists of a PE address mask, an 
operation code (READ, WRITE, LOAD, STORE, OP, or OP1+1, / si), and an 
operation address a where we shall use the standard register enumeration for 
explaining the meaning of these operation addresses. For the serial instructions, 
we assume branching instructions JUMP b, JGTZ b, JZERO b, JLTZ b (where b 
symbolizes an instruction number in a CPU program and the contents of the CPU 
accumulator are tested), the HALT instruction, and instructions consisting of an 
operation code (READ, WRITE, LOAD, STORE, OP l 5 or OP2). See Table 2 

Table 2. Abstract CPU instruction set without test and stop instructions 

Instruction Possible operation address a 

[mask] READ a m; *m 
[mask] WRITE a m\ *m 
[mask] LOAD a m\ - - *m\- : i 
[mask] STORE a m\ *m; : ii, h, 
[mask] OPj a m; *m; : i 
[mask] OP2 a m; *m; : i 
[mask] OP, + 1 : «1, ¡i, ... h 

READ a m; *m 
WRITE a = x; m\ *m 
LOAD a = x; m; *m; 0 ) 
STORE a m; *m\ U) 
OP2 a = * > m\ *m\ 0 ) 
OP2 a — x; m\ *m; U) 

for the complete abstract CPU instruction set without jump and stop instructions. 
In the case of a parallel instruction, OPj denotes a unary operation determining 
the new accumulator contents of all activated PEs by a certain transformation of 
the contents of the register addressed by a as well as thé old accumulator contents 
of the activated PEs; and OP / + 1 denotes an (/+l)-ary operation in the same sense. 
For the activated PE(y') the operation address m indicates the contents of register 
(J, m), "m indicates the contents of register ( j , n) if the nonnegative integer n is 
the contents of register (J, m) at that moment (i.e., indirect operand addressing, 
in any situation of incorrect programming ; e.g., in the case that (J, m) does not 
have a nonnegative integer contents at that moment, an interrupt of the programmed 
system is assumed), and the operand : i1,i2,...,ii for 1 indicates the contents 
of the accumulators of those neighbors of the activated PEs that are encoded by 

6* 
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i„is, ..., /, according to the edge coding scheme of the interconnection network. 
LOAD and STORE have the obvious meanings that the accumulator contents of the 
activated PEs are replaced by the addressed value, or copied to the addressed 
registers, respectively. READ and WRITE denote the necessary operations for 
communication with the outside world where the source and the destination of the 
data in the "outside world" remain unspecified (certain places within a computing 
environment not belonging to the given SIMD system itself). In the case of a serial 
instruction, the unary operation OP t and the binary operation OP2 produce new 
CPU accumulator contents by a certain transformation of the addressed values, 
where in the case of OP2 the old CPU accumulator contents is used as the operand 
in the first position. READ, WRITE, LOAD, and STORE have the obvious fixed 
meanings. The operands —x, m, *m, and (J) indicate the data unit x itself, 
the contents of CPU register m, the contents of CPU register n if register m 
contains the nonnegative number n at that moment, and the contents of register 
(J, 0), respectively. Note that with this abstract CPU instruction set data transfer 
between the CPU and the PEs is possible via the accumulators in serial mode only. 
Furthermore, for a specialized SIMD model, it is convenient to identify the basic 
computational power of the PEs and the CPU with that of the RAM as represented 
by the RAM instruction set [2, Fig. 15], roughly speaking. In this way, an interesting 
point is provided by the description of how the PEs are able to perform local logical 
decisions in SIMD mode as we shall explain in Example 1 by equation (1) for a spe-
cial SIMD model. 

Off-line I/O convention. For the off-line communication of an SIMD system 
with the outside world we assume that a special set of input registers of the system 
is fixed such that all other registers of the system contain value zero at the beginning 
of any computation (moment i=0) as it is assumed for those input registers not 
actually needed for the placement of input data. Each of the input registers may 
contain at most one data unit of the input data. Thus, for concrete problem solu-
tions, it is necessary to specify 

• what data structure is assumed for the given input data, and 
• how the data are placed in the given input register set. 

Also, a set of output registers of the system must be fixed. In this sense, for concrete 
problem solutions it has to be clear 

• what is the desired data structure for the output data, and 
• how this data structure has to be stored, or computed in the predetermined 

output register set. 
As off-line I/O convention we declare that for a certain L, the 
CPU registers 0,1, ...,L— 1 are fixed to be input and output registers, and for 
any PE(y'), if there exists a certain mSO such that register ( j , m) is fixed to be 
an input register (output register) then register (/, 0) is an input register (output 
register) as well. What is true for the register holds for the accumulator, too. 

On-line I/O convention. For the on-line communication of an SIMD system 
with the outside world some registers are predetermined to act as input and/or 
output registers. As on-line I/O convention we adopt the same rules as in the off-
line case. But, at the beginning of any on-line computation (moment t=0) , all 
registers of the system are assumed to hold value zero. Input data or output data 
may enter or leave the system at a moment as specified by the CPU program according 
to READ or WRITE instructions. In any correct program these input (output) 
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instructions have to be addressed to a proper subset of all registers specified as 
input (output) registers. For the input (output) data it is assumed that there exists 
a memory facility in the outside world from where (to where) the input (output) 
data are obtained (given) by the system. Thus, for concrete problem solutions it is 
necessary to specify 

• what data structures are assumed for the input and output data, and 
• how these data are partitioned into waves of information such that one wave 

may enter (leave) the system per input (output) operation as performed 
according to the CPU program. 

The size of these waves of information, i.e., the number of data units forming those 
waves, may alter during a computation process, and just one data unit, for example 
by LOAD = x, will be considered to be the simplest case of a wave of information. 

Uniform cost criterion. For measuring the time complexity of computations, 
we assume that any (basic) instruction of the SIMD system needs one unit of tjme 
for performance on this system. 

Definition 1. A model of computation SYS is called a standard off-line network 
system (SYS £ OFF-NET) iff SYS is defined by 

• a CPU and a fixed set of indexed PEs, with concrete values for Z>CPU 
and A > E , 

• abstract registers if not otherwise specified, and the standard register enume-
ration, 

• a uniform interconnection network with 0 ̂  vVIN < 
• the standard PE masking scheme, 
• a special interpretation and selection of instructions of the abstract CPU 

instruction set where 
(OFF. 1) no READ and WRITE instructions are contained in the instruction set 

of SYS, 
(OFF. 2) for the CPU all RAM instructions [2, Fig. 1.5] except READ and WRITE 

are avilable, 
(OFF. 3) for Ar1N=/?sl at least one instruction of the type [all PE's] OPp + 1 : 

0,.,...,p— 1 is available, and 
(OFF. 4) for any output register ( j , 0), i.e., accumulator of PE(y), at least one 

instruction of the type OP2(/) is available, i.e., the CPU may have con-
trol of any outputting PE, 

• the off-line I/O convention, and . 
• the uniform cost criterion. 
For the defined class OFF-NET we may define subclasses — e.g., OFF^NETp 

to be the set of all SYS£OFF-NET having the branching degree p=Nm, OFF-
SQUARE to be the set of all SYS 6 OFF-NET having a square network as defined 
in Table 1, OFF-BINTREE with the same reference of Table 1, OFF-PS = 

= u OFF-PSm, or just OFF-RAM. 
m = l ' 

Example 1. Let us consider the following special SIMD system EXAM PI £ 
€ OFF-SQUARE. Let DCPU = DPE = oo. Additionally to the CPU . registers 
0,1, ...,L — 1 for a certain 1, all the accumulators (j,k, 0), OMj^M and 
0^k<N for some M, /Vs 1, are fixed as input and output registers of EXAMP1. 
The system possesses the following instruction set: 
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[mask] ADD a, a for m, *m, :ilt ..., /, for ilt ..., /(€{0,1, 2, 3}, 
[mask] OP, a, a for m,*m, :/ for /£{0, 1,2, 3},/ = 1,2, 
[mask] LOAD a, a for m, *m, :i for /£ {0, 1,2, 3}, 
[mask] STORE a, a for m, *m, :ix, ...,il for /j, ...,/,£ {0, 1, 2, 3}, 

LOAD a, a for =x , m, *m, ( j , k), 
STORE a, a for m, *m, ( j , k), 
OP2 a, a for =x, m, *m, ( j , k), 

JUMP b, JGTZ b, JZERO b, JLTZ b, and HALT. 
Here, [mask] represents an arbitrary PE address mask, OPx is ABS (absolute value) 
or SIGN (signum function), OP2 is ADD, SUB, MULT, or DIV, for the tuples 
(j,k) with 0 £ j < M and 0^k<N. 

To give a short illustration of the computing power of EXAM PI let us consider 
the computation of the parallel Roberts gradient (cp. [9] for its importance to digital 
image processing), where the input image A=(ajk) of size MxN is assumed 
to be stored in the PE input registers (aJk in register (J, k, 0)) at the beginning 
of the computation. At the end Of the computation, value max \\ajk—aJ+ltk+1\, 
\aj+i,k~ aj,k+i\} has to be present in register (j,k, 0). 

By performing the following sequence pf parallel instructions, 
1. [all PEs] STORE 1 7. [all PEs] STORE 3 
2. [all PEs] LOAD :2 8. [all PEs] LOAD 1 
3. [all PEs] STORE 2 9. [all PEs] LOAD :1 
4. [all PEs] LOAD :1 10. [all PEs] SUB 2 
5. [all PEs] SUB 1 11. [all PEs] ABS 0 
6. [all PEs] ABS 0 12. [all PEs] STORE 4 

all registers (j,k, 3) contain value \aJk—aJ+1>k+1\, and all registers (j,k,4) 
contain value \aj+l k—aj k+1\, for and O^k^N. These values may be 
considered as two MXN matrices B and C. For max (B, C)=(max {bJk, cjfc}) 
we have 

max (B, C) = 5Xsign (5—C)+CXsign (C—5)+5—5Xsign \B — C\, (1) 

where X means the parallel MULT operation (cross product of two matrices), 
and sign the parallel SIGN operation. Using this formula, the parallel Roberts 
gradient may be computed on the defined special OFF-SQUARE system within time 
29 or less, independent of the values of M and N, as the reader may check easily. 
Note.that formula (1) describes a way in which the PEs are able to perform local 
logical decisions in SIMD mode. 

Example 2. By some easily described modifications, the system EXAMP1 
may be altered dramatically. Replace the square network by LRUD2Im, for 
m<max {log2M, log2jV}, let WfE = 1, and replace the parallel operations ADD, 
OPi and OP2 by logical operations AND, NOT, and OR, respectively. What results 
is a special OFF-LRUD2Im system EXAMP2 which essentially coincides with the 
PBS (paralleles Binarbildverarbeitungssystem). The computational power of the 
PBS was extensively studied in [4]. 

Definition 2. A model of computation SYS is called a standard on-line network 
system (SYS 6 ON-NET) iff SYS is defined by 
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• a CPU and a fixed set of indexed PEs, with concrete values for Z)CPU 
and DPE, • 

• abstract registers if not otherwise specified, and the standard register enu-
meration, 

• a uniform interconnection network with 0 g Nm 
• the standard PE masking scheme, 
• a special interpretation and selection of instructions of the abstract CPU 

instruction set where, for yVIN ^2 , an integer tuple (p, q) may be denoted 
to be the characteristic of SYS in the following sense: 

(ON. 1) P=Ar,N and 1 
(ON. 2) a proper subset {ils i2, ..., /,} of all directions {0,1, ..., p — 1} is specified, 
(ON. 3) at least one instruction of the type [all PE's] OP4 + 1 : il9 i2, ..., iq is avaible, 
(ON. 4) for any of the instructions [mask] LOAD : j or[mask]OP fc(+1):y1,y2>--,A, 

1, it follows that j,j\,j2, ...,jk(L {h, i2, -.,/„}, 
(ON. 5) for any of the instructions [mask] STORE : ji,j2, ..., jk, kisl, it follows 

that j \ , J 2 , ...,./'t€{0, 1, . . . , / J - l } - { / 1 , i 2 , ...,iq), i.e., the result sof con-
secutive parallel operations may be shifted through the system in directions 
{0, 1, ..., p— 1}— {/1; i2, ..., iq) only, and, furthermore 

(ON. 6) for the CPU all RAM instructions are avilable including READ and 
WRITE, 

(ON.7) for any output register (/', 0), at least one instruction of the type OP2(y) 
is available, 

• the on-line I/O convention, and 
• the uniform cost criterion. 

For the defined class ON-NET we may define subclasses — e.g., ON-NETp.9 
, to be the set of all ON-NET systems with characteristic (p, q), ON-LR2Im to be 
the set of all SYS 6 ON-NET having a left-right 2' network as defined in Table 1, 

ON-ILLIACm with the same reference to Table 1, ON-PM2I= Q ON-PM2Im, 
m = l 

or just ON-RAM. 
Any infinite network class OFF-LINEAR or ON-DIAGONAL may be con-

sidered as an abstraction of a finite network system, or as the union of classes of 
finite network systems in the following way. 

Definition 3. Let OFF-IN be the set of all OFF-NET systems which are defined 
a special infinite network IN, e.g., IN=LINEAR or IN=LRUD2Im . A model 

of computation SYS is called a finite OFF-IN system (SYS6 F1N-OFF-IN) iff there 
exists a system SYS0£ OFF-IN such that SYS may be obtained as a restriction of 
SYS0 in the following sense: 

Let ind0 and DpE be the PE index set and the PE memory depth for SYS„, 
respectively. A finite cut-off of the PE register set of SYS0 is defined by a certain 
finite subset ind of ind0 and a (possibly infinite) memory depth DpE-^DpE. The 
work of SYS may be described as follows. All registers in a certain finite cut-off 
of SYS0 are available in SYS but all registers not in this finite cut-off will be con-
sidered to be dummy registers, i.e., they are assumed to store value zero if addressed 
as an operand, and to "forget" any value handed over to them; this is the only 
difference between SYS0 and SYS. 
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Analogously the set FIN-ON-IN may be defined. 

Example 3. An example of a FIN-ON-BINTREE system may be specified 
as follows. Let 1 ) ^ = 00 and DeE = m^2. The finite cut-off of the bintree net-
work is given by ind= {1,2, ..., 2m —1}. Additionally to the CPU accumulator 
which acts as an input and output register (L=1), the registers (2m_1, 0), 
(2m_1 +1, 0), ..., (2m — 1, 0), i.e., the accumulators of the 2m _ 1 leaf node PEs, 
are fixed as input registers, and register (1,0), i.e., the accumulator of the top node 
PE, is fixed as an output register. The system possesses the following instruction set: 

[mask] ADD a, a for m, *m, : 1, : 2, : 1,2, 
[mask] OP, a, a for m,*m, : 1, : 2 and /=1 ,2 , 
[mask] LOAD a, a for m, *m, : 1, : 2, 
[mask] STORE a, a for m, *m, : 0, 
[subset leaf nodes] READ 0, 
[top node] WRITE 0, 

LOAD a, a for = x, m, *m, (1), 
STORE a, a for m, *m, (1), 
OP, a, a for =x , m, *m, (1), a n d / = 1, 2, 
READ 0, 
WRITE a, a for =x , 0, 

JUMP b, JGTZ b, JZERO b, JLTZ b, HALT. 
Here, [mask] represents an arbitrary PE address, OPx either ABS or SIGN, 

OP2 one of the operation codes ADD, SUB, MULT, or DIV. Altogether, a FIN-
ON-BINTREE system EXAMP3 is defined which may be obtained by a restriction 
of an infinite ON-BINTREE model where infinite sets of input and output PE 
registers are available in the infinite origin. 

To give a short illustration of the computational power of the system EXAMP3 
] JV-l 

let us consider the computation of the arithmetical average — 2 "i> A r=2n _ 1 and 
•<» i=0 

n odd, for M consecutive waves of information (an, . . . ,%_,) where a, is 
fed to the accumulator of the PE(2n _ 1 + /), for / = 0, 1, ..., N— 1. In order of 
the M consecutive waves of information the arithmetical average have to leave 
the system via register (1,0). 

For initialization of the system, at first the instruction LOAD = iV, STORE (1), 
[top node] STORE 1 will be performed in this order. For M ^ ( n —1)/2 the following 
sequence of instructions is executed (« —1)/2 times: 

[leaf nodes] READ 0, 
[all PEs] A D D : 1,2, 
[leaf nodes] LOAD 1, 
[all PEs] A D D : 1,2, 

followed by the following sequence of instructions which is executed M—[(« —1)/2] 
times: 

[top node] DIV 1, 
[top node] WRITE 0, 
[leaf nodes] READ 0, 
[all PEs] ADD : 1, 2, 
[leaf nodes] LOAD 1, 
[all PEs] A D D : 1,2. 
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Finally, the following sequence of instructions is executed («—3)/2 times: 
[top node] DIV 1, 
[top node] WRITE 0, 
[all PEs] ADD : 1, 2, 
[all PEs] ADD : 1,2, 

followed by the last two instructions [top node] DIV 1 and [top node] WRITE 0. 
Thus, altogether, the arithmetic averages of —1)/2 consecutive waves of 
information (a0, alt ...,aN-1) may be computed within 6M+n basic operations 
of EXAMP3, instead of O(N-M) basic operations in the serial case using a RAM 
as model for computation. 

In conclusion, we point out that SIMD now denotes not a general concept 
(single-instruction, multiple data) but an exactly defined class of models for computa-
tion, namely the union of all system classes given by Definitions 1, 2, and 3. 

2. Local, global, and total data flow measures 

Let SYSiSIMD; throughout this paper such a special parallel processing 
system will be used as a standard system for considerations of data transfer re-
strictions in computing systems. Any computational process performed on such 
a model SYS may be uniquely specified by a CPU program n and a concrete input 
situation I characterized by the placement of input values into the set of input 
registers if off-line mode is used, or by the partition of the input data into consecutive 
waves of information fed to some of the input registers of the system from the out-
side world if on-line mode is used. 

As suggested by applications to visual perception, the set of input registers of 
the model SYS may be considered as the retina of the system, and any new wave 
of information to this set of input registers represents a snapshot of the outside 
world. In this sense, after t steps of a computational process characterized by 
a program n and an input situation I, for any register r of the system we may 
mark out a certain receptive field rec£ (r, t) containing all the names of those input 
registers which have had any influence on the contents of register r up to the moment 
t, where new waves of information to the retina of the system create new names 
of the input registers, formally represented by r(0), r ( 1 \ r(2), ..., r(i), ... for register r. 

Standard register names. At time t=0 of any computational process, each 
register r in our standard enumeration possesses the name rw. At t=0 let the 
wave number WN=0 also. At time t-f 1 assume that a serial or parallel READ 
instruction, or an instruction LOAD=x, OPj=x , or OP 2 =x has to be performed. 
Then, by this operation we obtain WN+1 and the new names r(WN) for 
all registers which were addressed by these instructions. For example, the number 
( j , c(j, mffWN) in the case of an instruction [mask] READ *m for all activated 
processing elements PE(y), where c(j, m) denotes the actual contents of register 
(j,m), or the name 0(W,JV) in the case of an instruction OP2=x. 

Definition 4. Let SYS £ SIMD. Standard register names are assumed. For 
a program n of SYS, an input situation / of SYS, a register r of SYS, and an 
arbitrary moment /=0 , the receptive field rec£ (r, t) is recursively defined as 
follows: 
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moment t=0: 

rec'„ (r, 0) = 
{rt°>} if input register r stores an input value according 

to I, for off-line mode, 
empty set, otherwise 

moment t+1, t SO: 
At moment / + 1 a certain instruction has to be applied according to n and / , 
or the- HALT instruction is assumed for this moment. 

(i) Depending on this instruction, if it is one of those listed in Table 3, the 
changes of receptive fields are defined as given in this Table where we omit the 
indices n and / for simplification of the expressions. In the case of parallel instruc-
tions, the mentioned changes are valid for all activated PEs PE ( j ) where j matches 
[mask]. 

Table 3. Changes of receptive fields in step t + 1 

Instructions Changes of receptive fields 

[mask] OPl m 
[mask] OPi *m 
[mask] OP1 :i 
[mask] OPi m 
[mask] OPt *m 

[mask] OPl+l : ilt i /", 

[mask] STORE m 
[mask] STORE *m 
[mask] STORE : ilt /,, ..., i, 

[mask] READ m 
[mask] READ *m 

rec (0', 0), t + l )=rec ({j, m), ' ) 
rec ((J, 0), / + l ) = r e c ( ( j , m), / )Urec ((;', c(J, m)), / ) 
rec (0', 0), i + l )=rec ((/¡(y), 0), / ) 
rec (0', 0), t + l ) = r e c ((J, 0), / ) Urec Qj, ni), t ) 
rec (0', 0), t + 1 ) = r e c ((y, 0), t) U 
Urec ( 0 , m), / ) Urec ((y, c(J, m», / ) 
rec ((j, 0), / + 1 ) = r e c ((J, 0), / ) U rec ((/; 0 ) , 0), t ) U 
Urec ((/¡t0'), 0), i ) U . . . Urec (( / ¡ ,0) . 0) | t ) 
rec ((;, m), t + l ) = r e c (( j , 0), / ) 
rec ((/, c(J, m), t+ l ) = r e c ({j, 0), f )Urec ((j, m), t ) 
rec ((/¡(J), 0), / + l ) = r e c (<J, 0), / ) , rec ((/;. (J, 0), t + 1 ) = 
=rec ( 0 , 0), /), -, rec (i/^U), 0), f + l )=rec ( j j , 0), t ) 
rec ( j , m), / + 1 ) = {(/, m)<"' f0} 
rec (O-, c(J, m), t + 1 ) = r e c (0', m\ t ) U { ( j , c{j, m))<H'w'} 

ÖP1 = x rec (0, i + l )={0 < H r i °} 
OPi m rec(0, i + l )=rec (m, t) 
OPi *m rec (0, t+ l )=rec (m, t)Urec (c(m), t ) 
OPi (J) rec (0, / + l )=rec ((/, 0), / ) 
OP*=x rec (0, / + I)=rec (0, / )U {O'^1"} 
OP2 m rec (0, t + l )=rec (0, OUrec (m, /) 
OPt *m rec (0, / + l )=rec (0, OUrec (m, t)Urec (c(m), t ) 
OP, 0") rec (0, / + l )=rec (0, t)Urec ( ( j , 0), / ) 
STORE m rec (m, t-f l )=rec (0, t) 
STORE *m rec (c(m), t +1) = rec (0, t) Urec (m, / ) 
STORE 0 ) rec (0", 0), / +1 )=rec (0, /)) 
READ m rec (m, / + 1 ) = {m l l , , i"} 
READ *m rec (dm), t + l) = rec (m, r)U {c(/«)(H'i"} 
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(ii) For the parallel or serial LOAD instructions the changes of receptive 
fields are the same as for the corresponding OPx instructions. 

(iii) In the case of a WRITE, JUMP, or HALT instruction no changes of 
receptive fields appear. 

(iv) In the case of a JGTZ, JZERO, or JLTZ instruction no changes of receptive 
fields appear in step i+1 , but the set rec (0, t) will be added at moment t'^t+2 
to any receptive field that alters at moment t' according to (i) or (ii), if at moment 
t' an instruction has to be performed covered by cases (i) and (ii). For example, 
the instruction [mask] OP2 m, at moment t'^t+2, will produce the changes 
rec((_/, 0), i') = rec((_/, 0), / ' - l )Urec ( (y , m), / ' - l ) U r e c ( 0 , /) for all activated PEs. 

For illustration of this definition, consider the special OFF-SQUARE system 
as defined in Example 1. Let / be any concrete input situation for computing 
the parallel Roberts gradient and let n be the sequence of the 12 parallel instruc-
tions as given there. At moment t—0 we have rec {¿j, k, 0), 0) = {(_/, k, 0)(0)}, 
for 0 s a n d and for any other register r of the system EXAMP 1, 
rec (r, 0) is the empty set. After performing the 12 instructions of n the reception 
fields of maximal cardinality 2 belong to the registers (J, k, 0), (J, k, 3) and (j,k, 4), 
for Osj^M-2 and O^k^N-2, where, e.g., rec (0", k, 0), 12) = { (7+1, k, 0)(0>, 
(J, k+1, 0)(0)}. For the system defined in Example 3, and the program and the 
input situation as described there, after performing the 6M+n instructions the 
receptive field of maximal cardinality NM+1 belongs to the register (1,0), i.e., 
to the accumulator of the top node PE. 

Definition 5. Let SYS^SIMD. For a set R of registers of SYS and a moment 
define the local data transfer function ASYs by 

ASYS (R, 0 = max max max card (rec1 (r, /)), it I r£R 

the global data transfer function ySYs by 

TSYSCK, 0 = max max card ( ( J rec'„(r, t)), 
* ' r£R 

the total data transfer function rSYS by 

TSYSCR,̂ -0 = max max card (rec£0% 0)-* 1 riR 

By this definition, it follows immediately that the functions l s y s , ySYs and 
Tgys a f e monotonically increasing for any set R of registers of SYS and increasing 
values of t. Furthermore, 

AsvsCR, 0 S ySYS(R ,t) ^ tSYS(R, t) (2) 

for all models SYS£ SIMD, sets R of registers and moments iSO. Also note that 
for any model SYS, if within t steps of an arbitrary program n for SYS starting 
with an arbitrary input situation I for SYS at most a)SYS(i) input data may be 
fed to the system, then 

7SYSCR, 0 cuSYS(i), and (3.1) 

tsvsOR, t) ^ XSYS(R, t) • card (R), (3.2) 

for any set R of registers of SYS and t ^ 0 . 
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Example 4. In Section 4 we shall characterize the way to use these data transfer 
functions for obtaining lower time bounds for concrete computational problems. 
For serial data processing we shall apply the system RAML , cp. [2, Fig. 1.5], as 
model for computation, where i?L={0, 1, 2, ..., L—1}, Z.S 1, is assumed to be 
the set of all input/output registers of such a machine (DcPV— jVpe=0, IVCPU = 
For i s 0 , we have COOFF—raml(0=^+' a " d «ON—raml(0 = /- F° r OFF-RAM = 

= U O F F - R A M l , note that coOFF_RAM(/)= max oj0FF—RAM, ( 0 is not defined. 
L=1 L 

Furthermore, we have 

A o f f - r a m . ^ l , 0 - [ [ i L + i ) / 2 l + t > o t h e r w i s e , ( 4 1 ) 

? O F F - R A M L ( ^ L , 0 =L + t, a n d ( 4 . 2 ) 

t o F F - R A M L ( ^ , 0 = ^ ( i - l i / 2 ] , + l) for t^[L/2J, (4.3) 

in the case of using the RAML in off-line mode, and 

^ • O N — R A M T ( ^ L , 0 = VON—RAM^C^L, ' ) = U 

(R A - I ' C + O / 2 F O R L = L (A* T O N - R A M , ( ^ ' Î > - ( I L ( ; _ ( L / 2 ) + 1 / 2 ) F O R ( 4 - 5 ) 

in the case of using the RAML in on-line mode. The maximal data flow for obtaining 
equation (4.1) is possible by indirect addressing OP2 *m, followed by O P 2 = x 
operations. For (4.3), the same sequence of operations is extended by L— 1 instruc-
tions STORE m. For (4.4), t operations of the type O P 2 = x may be considered. 
For small t the exact derivation of the function T 0 F F — R A M l represents a sophisticated 
problem already, for this quite simple model of serial computation. 

Example 5. For further illustration of the concrete derivation of these data 
transfer functions, let us consider both systems EXAMP1 and EXAMP3 as defined 
above. 

For the system EXAMP1, first we see that CJEXAMPI (t)=MN+L+t, for 
t^O. Let Rm n be the set {(/, k, 0) : O^j^M and 0^k<N} of all PE input/ 
iutput registers of the system. By using t operations of the type 

[all PE's] ADD :0, 1, 2, 3 

we obtain the maximal local and total data transfer within the field of PE accumula-
tors, where 

AEXAMPI 

CRM,N,t) = 2t*+2t+l, (5.1) 

(2/2+2t +1)MN--(/+1)2+ 2 ( ^ 1 ) 3 ) (M+N) S S t E X A M P i ^ (2i2+2i + 1 )MN, (5.2) 

[M, N}, by elementary combinatorial considerations and (3.2). 
• [N/2] we have 

MN+(t-to) — AEXAMPÎ M.N, 0 ^ MN+L+t. (4.3) 
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For t^t0=M+N—2 we can easily see that 

M2N2
 + (t-t0) S T E X A M P I ( ^ M , N , 0 MN(MN+L +t). 

Finally, for the case of global data transfer we obtain 

(5.4) 

VEXAMPI C^M, N S 0 — 

MN for t = 0 
MN+2t+\ for 2 i + l si, 
MN+[(L-l)/2\ + t for 2t+1 > L 

and t > 0 (5.5) 

where, for 2 i + l s L , the maximal global data transfer is possible by t operations 
of the type ADD *m, and one operation STORE ( j , k), e.g. 

For the system EXAMP3, at first we have a»EXAMP3(/) = / • N, for N=2"~1 

and t^O by using t operations of the type 
[leaf nodes] READ 0. 

Let R a={0, (1, 0)} be the set of the two distinguished output registers of this syste 
EXAMP3. By using the instruction pair 

[leaf nodes] READ 0, 
[all PEs] A D D : 1,2 

repeated (m—1) times, m ^ l ; the single instruction 
[leaf nodes] READ 0 

again; and finally (« — 1) instructions 
[all PEs] ADD : 1,2, 

we obtain the maximal local data transfer for register (1, 0) in any case t ^m. 
We have 

0 for i = 0 
2 ' - 1 for l S i S n - 1 
m-N for t — n+2m—l, m ^ 1 

and 1 = 1 or 1 = 2, 

^EX AMP 3 ( ^ 0 » 0 — 

for all t SO. Analogously, for the same set R0 and t ^ 0 

ÏEXAMP3 ( * 0 > 0 — 

0 
2 t - l 

m-N 
m-N+1 

TEXAMP3(^0> 0 

0 
2,-l 

2m-N 
2m • N+1 

for 
for 
for 
for 

for 
for 
for 
for 

t = 0, 
1 s t s n-1, 
t = n + 2 m - 2 , 
t = n + 2 m —1, 

m S 1, 
m S . l , 

t = 0, 
l S f S n + 1, 
t = n + 2m — 1, m s 1. 
i = n+2m, m s 1. 

Of course, the values of AE X AMF3> 7EXAMP3. and TEXAMP3 depend on the choice 
of the set R0, and may be quite different for some other sets of registers. 

Definition 6. Let CLASS ^ SIMD. The general data transfer functions are 
defined as follows, for such a set CLASS of models of computation, for ( ¡nS0 ; 

^CLASS(') denotes the maximal value of all ASYs(^> ')> 
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rCLASS(n, t) denotes the maximal value of all ySYs(^> 0 with card (R)=n, and 
TCLASS(n, t) denotes the maximal value of all rSYS(R, t) with card (R)=n, 
where SYS is an arbitrary element of CLASS, and R denotes a set of registers 
of SYS. 
Interesting examples of CLASS are sets like OFF-NETp , ON-NETp , , OFF-

SQUARE, OFF-BINTREE, or ON-HEXAGONAL, where these general data 
transfer functions are fully defined. 

Theorem 1. For standard off-line network systems and 2S / )<<»we have 

• ^ O F F - N E T , ( 0 — 

and 

2/+1 ' for p = 2 

+ l for 
P-

r* / . . A T* A .. A t*\ t n 
1 OFF-NET„V"> <•) — 1 OFF-NET„V' ' , L > — " ' ^ O F F - N E T . V ' J > » 0 L "> ' = 

Proof. First, let us consider the local situation. For p = 2 , the maximal transfer 
of data units is possible by indirect addressing to the CPU accumulator, e.g. For 

3, there exist special OFF-NETp models SYS, such that, according to (OFF.3), 
at any moment 1 ^s^t the maximal possible number of p(p — l f ~ l new names 
of input registers may enter the receptive field of a certain register r, for i^O. Thus, 

AsYs t(M, 0 = i + 2 p ( p - i y = p f ( p ~ 1 ) ' ~ 1 ) + !• 
5 = 0 v p — > 

For the total and global situation note that by choosing sufficiently complex SYS„ ( , 
for 0, the maximal local situations of data transfer characterized by receptive 
fields of cardinality A0FF—NETp(0 at moment t may appear in n different registers 
and time t such that these registers are far enough from one another so that their 
receptive fields are pairwise disjoint. • 

Example 6. By (4.1) andTheorem 1, it follows that / 1 O F F - R A M ( 0 = ^ O F F — N E T 2 ( ' ) = 

=2t+l, for / s 0 . Of course, this coincidence is not true in the total and global 
cases. According to Theorem 1 we have R 0 F F _ N E T 2 ( « , 0 = 7 O F F — N E T 2 ( « , t)=n(2t+ 1 ) , 

for n, ( S 0 , but by elementary considerations F o f f _ r a m ( « , t)=2/+n, for n g 1 
and T O F F - R A M ^ , t)=2n(t-n+2)-2, for 2. 

In Table 4 the general local data transfer functions are collected for some 
classes of off-line systems as defined in Section 1. For these classes, the functions 
AOFF—NET A S given in Theorem 1 act as upper bounds, where the proper value 
of p has "to be specified. The classes OFF-LINEAR, OFF-PS, OFF-BINTREE 
and OFF-QUADTREE represent examples for the maximal transfer situations 
as characterized by Theorem 1, for p=2, 3, 5, respectively. 

Some remarks about Table 4 and about the other networks which were defined 
in Table 1. 

1. For the bintree, triangle and quadtree network note that the maximal 
receptive fields may be obtained for central nodes of these tree structures only, and 
not at the top node. The maximal possible cardinalities of receptive fields of top 
node accumulators are given for illustration of this fact. 
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Table 4. General local data transfer functions for offline systems 

CLASS P ^OFF-CLASS(' ) t = 4 f = 8 

LINEAR 2 2 / + 1 9 17 

HEXAGONAL 3 
3 . 3 

— / a + — i + 1 
2 2 

31 109 

SQUARE or ILLIAC 4 2f2 + 3 / + 1 41 145 
TRIAGONAL „ 6 3<2+.3/+l 61 215 
DIAGONAL 8 4«2 + 4 i + l 81 289 
PS 3 3 • 2' — 2 46 766 
BINTREE 3 3 • 2' — 2 46 766 

top node 2t + 1 — 1 31 511 

TRIANGLE 5 3 • 2 e + 1 + —2i— 5 99 1,579 
top node 2t + 1 — 1 31 511 

QUADTREE 5 (5 • 4* — 2)/3 426 109,226 
top node (4 t + 1 —1)/3 341 87,381 

2. For all examples of CLASS given in Table 4, we have rOFF_CLASS(«, t) — 
= ^OFF—CLASS ("> t ) = n- /LOFF—CLASS(0> f o r = 0 . 

3. The hexagonal, square, triagonal, and diagonal networks are special examples 
of infinite graphs of constant degree p such that the general local data transfer 
function is equal to y t2+y t+1. Such networks correspond to usual digital metrics 

for- the orthogonal grid in a natural way, e.g., the metrics or d8 as used in 
digital image processing, cp. [9], to the square or diagonal network, respectively. 

4. For the networks CUBE"1, PM2Im, WPM2Im, LR2Im, or LRUD2Ira, the 
derivation of the three general data transfer functions represents a very sophisticated 
problem. Of course, the1 values of these functions depend on the value of m, and 
the consideration of classes like 

CUBE = IJ CUBE"* 
m®2 

would lead to undefined general data transfer functions. In, [4] the general local 
data transfer functions were analyzed for some concrete SIMD systems similar 
to FIN-OFF-LR2Im or FIN-OFF-LRUD2Im systems like EXAMP2 which was 
defined above. But, for the present paper, we recommend data transfer analysis 
for specialized (finite) SIMD systems to the interested reader, and are satisfied with 
some hints: 

CUBEM: For this system, the exact derivation of the local transfer function 
should be a solvable task. We have " -

OFF—CUBEM ( 0 
¿ ( 7 ) 

for t m 

s: 2m for i = m 
^ 2 m + 1 ( i - w ) ' for t > m. 

For example, we have / I Q F F — C U B E 2 5 6 (4) = 177,589,057 and /lOFF_CUBE256(8) is 
about 4 • 1014. 
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PM2r": For this, as for the other "power-of-two systems", the analysis of 
data flow represents quite a hard problem, cp. [4]. But, to give the reader some 
feeling about the complexity of the data transfer functions for these systems, some 
values will be collected: 

•^OFF-L OFF—PM2IM ( 0 

= 1 for t = 0 
= 2 for / = 1 
= 2 ( m - l ) ( m - 2 ) + 4 for t = 2 

sr 2m 

^ 2m+1(t — \m/2]) 
for t = \m/2] 
for t \m/2]. 

Note that exponential increase changes to linear increase at t=\m/2\. 

WP 
we have 

WPM2Im : It may be that this is the most complicated situation of any network ; 

•^OFF—WPM2I-" (01 

= 1 
= 2 

for t = 0 
for t = 1 

s 2m for t = \m/2] 
& 2m+1(i—fm/21) for t fm/21. 

This great difficulty in analyzing data paths should be a hint to the limited practical 
importance of this network. 

' 1 1 LR2Im : For brevity we shall use the function a(i)= 2 . / 2 =- t -0 '+1) -^ - ( ' + 1)2 + 

1 
J = I 

U/+1)3. We found the following interesting values: 

1 for t = 0 
2m+ 1 for t = 1 
2(m-2) 2 +4m + l for t = 2 
l + 6m+4(m—2)2+2 • a(m - 4 ) for t = 3 
l + 8m + 6(m-2)2+4-<r(m - 4 ) + 

•^OFF—LR2I™ 

+ 4 . 2 ff(0 
i = l 

l + 10m + 8 ( m — 2 ) 2 + 6 • <j(m —4)4-
m — 6 

+ 8 - 2 X 0 + 
¡ = 1 

Hi — 8 i 
+8 2 2°U) 

¡=i i 

2 m-t-c„ 

for t— 4 

for t = 5 

for t ë [(m—l)/2j 
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The contents cm depend on the value of m only, for example c 2 = — 1, c 3 = l , c4 —7, 
C5=25, CG= 71, c 7 = 185, C8=455, C9=1081, and c10=2503. Because the L R 2 F 
is an infinite n e t w o r k r 0 F F _ L R 2 1 m (n, t) = TOFF^hRnm(n, t)=n- AOFF_LK2im(t), 
for n, tssO. 

LRUD2Im: Of course, we have 
^ o F F - L R U D 2 I " . ( 0 = 2 - / l o F F - L R 2 I » . ( 0 - 1 ' for t= 0» and. because LRUD2Im 

is an infinite network we have F O F F LRUD2IM("» 0 = 7~OFF LRUD2IM ( " > T ) = N • 
• /10FF—LRUD2I-(0> F°R "» { 

Theorem 2. For standard on-line network systems and 2 1 ^ q ^ p — \ , 

a n d r O N _ N E T p > , ( n » 0 = TON—NETp,,(M> 0 = « • ^ O N - N E T p > , ( 0 . f or n, t £ 0 . 

Proof. Consider the local data transfer situation first. At / = 1 assume that 
a sufficiently large set of input registers obtain input data in parallel by a READ 
instruction. Then (q— l)l(q— l)=2t—1 = 1 for q^2, or t= 1. For <7=1, the 
maximal local transfer situation, i.e., the maximal transfer of data units to a given 
register, is possible by indirect addressing. Thus, /10N—NETP,I(0—^2/— 1 for t ^ 1. 
For q=s2, according to (ON.3) it follows that 

where these maximal cardinalities of receptive fields may be obtained in certain 
PE accumulators. For given n, t ^ 0 , by choosing a sufficiently large field of PEs 
obtaining input data in their accumulators at the first instruction ( /= 1), n receptive 
fields of maximal cardinality /ION—NETP,9(0 m a y be pairwise disjoint. • 

Example 7. By (4.4) we know that ylON—RAM(0=^ON—RAM(«> T ) = U for and 
i s 1,and thus /ION-RAM (0 < ^ON-NET,,, , (0 aswellasrO N_R A M(«, 0N-NETP > 1(", 0 

for t S 2 and n s l . Furthermore, T^N—RAM(W> t)—n^t — Y + Y ) > F°R * — « = 1, 

and thus rON-RAM("» 0^ON-NET , , ,xfaO for 1 = " = 2 . 
In table 5 for classes of on-line systems mentioned in Section 1 some results 

on the analysis of general local data transfer functions are collected. For these 
classes the functions given in Theorem 2 act as upper bounds where the proper 
values of p and q have to be correlated. By ON-IN{ili ia we denote a special 
O N - I N system with fixed set '{/1} /2, ..., /,} according to ( O N . 2 ) . The classes 
O N - L I N E A R { 0 ) , O N - B I N T R E E { I > ? ) , and ON-QUADTREE { 1 j 2 i 3 > 4 ) represent 
examples for maximal transfer situations as characterized by Theorem 2. 

Some remarks about Table 5 and about the other networks which were defined 
in Table 1: 

1. For all examples of CLASS in Table 5 we have rON_CLASS(«, t) = 
^TW-CLASSI", t)=n • /FON—CLASS(0' FOR / S O . 

0 

^ON-NETP ,„(0 = 2 / - 1 

for t = 0, 
for t & 1 and q = 1, 

(q'-l)/(q-l) for i S l and q & 2, 

,..(0= 2 = !)/(?-1). 
t - i . 

¡=0 

6 Acta Cybernetica VI/4 
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Table 5. General local data transfer functions for on-line systems 

CLASS P {/,, /,, ..., (',} 'toN—CLASS ( 0 f = 4 f = 8 

LINEAR 2 {0} 2f — 1 7 15 

HEXAGONAL 3 {0,1} 
{0} 

'( ' +1) /2 
2i — 1 

10 
7 

36 
15 

SQUARE or 
ILLIAC 4 {o, 1, 2} 

{0, 2} 
{0, 1}, {0} 

t2 

' ( ' +1) /2 
2 / - 1 

16 
10 
7 

64 
36 
15 

TRIAGONAL 6 {0, 1, 2, 3, 4} 
5 5 

— t* i + 1 
2 - 2 

31 121 

iA 1 1 yll l"> -»» 

{o, 2, 4} 

3 1 
— ; 2 1 
2 2 
t2 

22 

16 

92 

64 

DIAGONAL 8 {0, 1, 2, 3, 4, 6, 7} 
7 7 

— I2 / + 1 
2 2 

43 197 

BINTREE 3 {1,2} 
{0,1} 

2' — 1 
'(' +1) /2 

15 
10 

255 
36 

TRIANGLE 5 {1,2, 3 ,4} 2' — 1 15 255 

QUADTREE 5 {1,2, 3, 4} ( 4 ' - l ) / 3 85 21,845 

PS 3 {0, 1} ([(l + /5 ) ' + S - ( l - ^ 5 ) t + 3 ] / 
/ 5 -2t + 3) —2 11 87 

2. The class GN-PS{0,i} denotes special SIMD systems using the PS network 
in its original [10] meaning. Let / 0 = l , / i = l , / a = 2 , ...,/B+2==/B+/B+1, ..., where 

/„ = [(1 + /5)"+1 -(1 -i5)n+1l\5 • 2"+1 

t 
denotes the wth Fibonacci number, « s 0 . We have ^ O N — P S / 0 U ( 0 = 2 f n = f n + 2 ~ 2 , 

' " = 1 

for i^O; cp. [3] for a similar result. 
3. For the bintree, triangle, and quadtree network note that the maximal 

receptive fields may be obtained for the top node accumulator, for {il5 /2 , . . . , ig} 
equal to {1, 2}, {1, 2, 3, 4}, {1, 2, 3, 4}, respectively. 

4. The analysis of the general data transfer functions for classes ON-CUBEm, 
ON-PM2I"1, ON-WPM2Im, ON-LR2I"1, and ON-LRUD2Im will not be considered 
in the present paper. 
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3. Local, global, and total data dependence measures 

For parallel processing systems, the optimal time for the solution of a computa-
tional problem depends upon the data transfer abilities of the given system as well 
as on the principal possibilities of parallelization of a solution process for a given 
problem. The first may be characterized by the data transfer functions /fSYS, 
AYS> TSYS by a general system analysis as considered in Section 2. The second 
property, however, requires individual consideration of the "given computational 
problem. 

For example, consider the multiplication of two NXN real matrices A B—C. 
For a given system SYS assume that all N2 elements of matrix C have to be 
computed in N2 different output registers represented by the set -ROUT- Let 
r^RouT ^OUT' and R} be the set of N distinctive registers for outputing 
the N diagonal elements of C. Then it follows that XSYS(r, t*)^2N, ySYS(^i, '*) = 

N2 and Tsys(/?„> ' * ) — - c a r d (/?0) if the product A • B is to be computed 
on SYS within time t*. Thus, if the functions ASYS, rSYS or TSYS are known, 
lower time bounds are derivable from these inequalities for the solution time t* 
immediately, where the maximal lower time bound from the three possible values 
is taken as the result. For example, according to our considerations in Section 2 
for the system EXAMP1 we have 1 under the assumption that M=2N. 
But note that a better lower time bound for this system and the matrix multiplication 
problem may be obtained by more specialized considerations as demonstrated by 
Gentleman [3, Theorem 1]. Because each data unit transfer from a certain 
register rx to a certain register r2 of the system EXAMP1 may be performed in 
the reverse direction, from r2 to in the same time, the proof of Theorem 1 
in [3] matches the situation given by the system EXAMP1, i.e., for /-£7?oux we 

have 1EXAMP1 (r,2t*)^N2, and thus t*^j(2N2-l)1/2-j. 

For a general approach to the derivation of lower time bounds for parallel 
processing systems we shall use the quantitative description of data dependencies 
of the desired output data in relation to the input data specification, for computa-
tional problems which may be identified with special functions as described later on. 

Definition 7. Let «, m & 1. Let / be an «-ary function defined on a certain 
set domain ( / ) of «-tuples of real numbers, and into the set of m-tuples of real numbers. 
For an «-tuple (x l s x2, ..., x„)£domain(f), define 

sub, (*!, x 2 , ..., xn) = {j: 1 ^ n & ( W ^ x j f a , x2, ..., Xj_x, x', xj+l, ..., x„)€ 

domain (J) & pToji(f(x1, x2, ..., *„)) ^ proj,- ( / (x 1 ; x2, ..., x', xj+1, ..., x„))} 

to be the set of all positions j such that changes in the /th component of , x2, • • •, x„) 
have an effect on the projection p ro j ; / , for l ^ i ^ m . Then, define 

Xr — max max card (sub; x2, ..., *„)), J (x t , JC2, . . . ,x n ) l ^ i ^ m 

yf = max card ( u sub;(x1; x2, ..., x J , 
t . ; = 1 .. ) 

6* 
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and 
m 

x f = max 2 ! c a r d (sub,- (*i, *2, • • • > *„))• 

The function / is called locally d-dependent iff globally d-dependent iff 
dSyf, and totally d-dependent iff for an integer d s O . 

By this definition, for arbitrary functions / defined on «-tuples of real numbers 
and into the set of m-tuples of real numbers, it follows immediately that Xf=yf=xf 
if m = l, and for m ^ l 

(7.1) 

(7.2) 
and 

xf m • Xf. (7.3) 

For example, in the case of the following function / . 

we have subx x2, x3, x4, 0) = {1, 2, 5} if x1+x29ix3+x4, and s u ^ (j^, x2, x3, 
xn 0 ) - {1,2} if x1+x2=x3+xi. Because of Xf=yf = xf=3, this function is 
local, global, or total 1-, 2-, and 3-dependent, but not 4- or 5-dependent. 

Now, in a sequence of examples, the data dependence measures as given by 
Definition 7 will be analyzed for certain computational problems. The results 
are collected in Table 6, i.e., the following examples may be considered as explanatory 
remarks to this table. 

Example 8. The multiplication of two NXN real matrices may be considered 
as a 2N2-ary function into the set of JV2-tuples of real numbers. For this computa-
tional problem, it is evident that 

^•MATRIX—MULTIPLICATION = 2 N , 

VMATRIX—MULTIPLICATION = 2 N 2 , a n d ^MATRIX—MULTIPLICATION — 2 N 3 , 

where these maximal values of data dependence are true for each input vector of 
length 2N2 containing non-zero values in all positions. By this example it follows 
that the upper bounds (7.2) and (7.3) cannot be reduced in general. The inversion 
of an NXN real matrix in place may be considered as an N2-ary function into 
the set of A^-tuples of real numbers. We have 

^-MATRIX—INVERSION—IP — VMATRIX—INVERSION—IP = N 2 , 
and 

TMATRIX—INVERSION—IP = N 4 , 

where this maximal case of data dependence appears for any matrix containing 
non-zero values in all JV2 positions. These data depence quantities may be con-
sidered as a direct consequence of the data dependence quantities for the determinant 
of an NXN real matrix, 

¿DETERMINANT " ^DETERMINANT = T DETERMINANT = N 2 . 
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The solution of a system of N linear equations in TV unknowns may be considered 
as an (¿V2+A0-ary function into the set of TV-tuples of real numbers. We obtain 

^-LINEAR—EQUATIONS = ^LINEAR—EQUATIONS — TV2+TV, 
and 

^LINEAR—EQUATIONS = N3+N2. 
Transposing an NX N real matrix in place may be considered as an TV2-ary function 
into the set of 7V2-tuples of real numbers, 

•^TRANSPOSITION—IP = 1 > AND ^TRANSPOSITION—IP = "^TRANSPOSITION—IP = N 2 , 

but for binary operations on permutated NXN real matrices in place, 

(au)i,j=0,1 n - i => (0P2 (¿¡ l j , ani',j)))i,j=0,1 J*-l» 

considered as TV2-ary functions into the set of TV2-tuples of real numbers, 

M̂ATRIX—it—IP = 2 for 71 id, 

Y MATRIX—JT—IP — N 2 , and 
^MATRIX—7I—IP = 2A'2—card {(¿J):0 sS i , j =§ N - i & n(i,j) = ( I , j)}, 

the transposition may be considered as a special permutation n*, t m a t r i x — i p = 
= 2 N 2 — N , and op2 as the exchange operation in this case, op2(ajj, aK*(iiJ)) — 
=(a„*(i?Jrj, atj), where the second component of these resulting tuples will be 
considered as a dummy result. 

Example 9. In this example, three two-dimensional transforms of NXN 
pictures will be dealt with. First, the Fourier transform of an NXN complex matrix 
(2D-DFT, two-dimensional discrete Fourier transform, cp. [9]) may be considered 
as a 2TV2-ary function into the set of 2TV2-tuples of real numbers. In this case, we have 

2 T V 2 - 4 S ¿ 2 D _ D F T 2 T V 2 - 1 , 

7.d-dft = 2N2, and IN4 T2D_DFT si AN4-IN2, 
where these maximal values of data dependence are true for each input vector of 
length 2N2 containing non-zero values in all positions. For the exact determination 
of dft ar*d t2d—dft > the influence of different values of N has to be studied. 
The Walsh transform of an NXN real matrix (2D-WT, two dimensional Walsh 
transform, cp. [9]) may be considered as an TV2-ary function into the set of TV2-tuples 
of real numbers, 

X20—WT = ?2D—WT — N2, and T2D_wt = N4, 
where these maximal values of data dependence are true for any input vector of 
length TV2. The computation of the parallel Roberts gradient (see Example 1) on 
images of size MXN may be considered as an MN-ary function into the set of 
MTV-tuples of real numbers. For this function, 

^ROBERTS—GRADIENT ~ 4 , 

YROBERTS—GRADIENT = MN, and ROBERTS-GRADIENT = 4MTV-2M-2TV-2, 
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by considering the case of non-zero values in all MN positions, and by paying 
attention to border effects. 

Example 10. The computation of the convex hull of a simple polygon, cp. [5]' 
where the N extreme points of the polygon are given by coordinate tuples of real 
numbers starting with the uppermost-leftmost point, may be considered as a 2/V-ary 
function into the set of 2yV-tuples of real numbers. In the resulting vector of length 
2N, there appear all coordinate tuples of the extreme points of the convex hull of 
the given polygon in order, starting with the uppermost-leftmost point, and with 
the same run orientation as the given polygon. Positions actually not needed in 
this resulting 2/V-tuple contain value zero by assumption. In this case, it follows that 

¿CH-SIPOL = VCH-SIPOL = 2N, and 2A^2-8yV+12 S TCH_sipol S 4JV2 

by analyzing the input situation of special convex polygons with N extreme points 
as illustrated in Fig. 2, for N =s4. The computation of the convex hull of N planar 

Figure 2. 
Convex polygon for analyzing the 
maximal possible data dependence 

situation, for N ^ 4 

points, cp. [5], given by coordinate tuples of real numbers, may be considered as 
a 2N-ary function into the set of 2Ar-tuples of real numbers as described above, 
analogously to the simple polygon situation. For this problem, 

^CH—POINT — VCH—POINT — 27V, a n d TCH—POINT = 4 N2, 

where these maximal values are true for any input situation. The computation of 
the Voronoi diagram of N planar points, cp. [5], given by coordinate tuples of real 
numbers, may be considered as a 2iV-ary function into the set of (18JV—33)-tuples 
of real numbers in the following sense. The Voronoi diagram may have 2N—5 
vertices at most, and, as a special planar graph, 3N—6 edges at most, for N^3. 
See Fig. 3 for an illustration of the construction of such a "maximal Voronoi dia-
gram", where the number v(N) of vertices, and the number e(N) of edges satisfy 
the recursive equations 

w(3) = 1, e(3) = 3, 

v(N+l) = v(N) + 2, and e(W+l) = e(A0 + 3 
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Figure 3. 
Voronoi diagrams for JV=3, 4, 5, 6 with 2JV-5 = 1, 3, 5, 7 verticesand 3TV-6=3, 6, 9 ,12 | 

edges, respectively 

for TVs 3. The 187V—33 = 3(27V—5)+4(37V—6) positions of the resulting vector 
of a Voronoi diagram computation we consider as a unique characterization of 
a Voronoi diagram by linearization of adjacency lists for this special graph structure 
with the positions for each vertex where two are reserved for the coordinate values 
and one for a common pointer, and two times two positions for each edge — for 
the index of the vertex at the other end of the edge, of for the slope of the edge, 
and for a common pointer. For concrete inputs of TV points, positions actually 
not needed in the resulting (187V—33)-tuple contain value zero by assumption. 
Then, we have .. 

^-VORONOI—DIAGRAM = V VORONOI—DIAGRAM = 2 7 V , 
and 

127V—3 3s tVORONOI—DIAGRAM = 27V(187V—33), 

for TVs3, where the local and global case may be analyzed by using a regular 
7V-gon, and for the total case a Voronoi diagram in the sense of Fig. 3, with 27V—5 
points, was used where each point of the diagram essentially depends on there 
input points, i.e., on six coordinate values. 
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Example 11. Matching of a pattern of length M against a string of length 
N ( M ^ N and the elements of pattern and string are assumed to be reals) may be 
considered as a (N+M)-ary function into the set of (N—M+ l)-tuples on {0, 1} 
where, for 

/PATTERN—MATCH1NG(PI> P2> •••> Pm> Sl> S 2> •••5 S M) = ( e l > E 2» •••> EN-M + l ) 

we have ^¡=1 iff si+J=pJ+1, for all j=0, 1, ..., M— 1, and e,=0 otherwise, 
for /=1, 2, ..., N—M+l. We have 

^•PATTERN—MATCHING — 2 M , 

7 PATTERN—MATCHING = M+N, and ^PATTERN—MATCHING = 2M(N-M+l). 

In all three cases, the maximal dependence may be analyzed for the trivial input 
situation p.=sj = const, for i — 1,2, ..., M and j — l, 2, ..., N. Detection of 
a pattern of length M within a string of length N, M^N, may be considered as 
an (N+M)-ary function into the set {0, 1} where the output is equal to 
max {E,: / =1 ,2 , ..., N—M+l & /PATTERN—MATCHING (Pi, Pi, —,PM.\•••,%) = 
=(ei> e2> •••> eJv-M+i)} for input ipi,pi,...,pM-,s1,si,...,sN). Then, 

max {2M, M+[N/M]} =S AP ATTERN-SIGNALIZATION ^ M+N. 

Note that this represents the first example of a computational problem where the 
equality yf=n remains an open problem, for an «-ary function / with n—N+M 
in the case of pattern detection. As a last example, sorting of N real numbers 
may be considered as an N-ary function into the set of iV-tuples of real numbers. 
For this very important problem, we have 

^•SORTING = ^SORTING ~ N , A N D R50RTING = N 2 , 

where these maximal values are true for N pairwise different input values. 

4. Data transfer lemma and applications 

Between the quantitative descriptions of data transfer for SIMD systems 
(Section 2) and of data dependence for computational problems (Section 3), the 
following direct relation holds. 

Lemma 1. (Data Transfer Lemma). Let SYSgSIMD, and let n be an ar-
bitrary program for SYS for the computation of a function / which is n-ary and 
has m-tuple values. Let R denote the set of output registers of SYS where the 
w-tuples appear at the end of the computation (card (R)=m, off-line mode), or 
those output registers of SYS via which the computed values of the m-tuples leave 
SYS in certain waves of information (card (R)^m, on-line mode). Then, the 
computation of f(xi, x2, ...,x„) on SYS by n requires at least /„ steps of com-
dutation for a given input (xl5 ..., x0)6domain ( f ) , where /lSYS(/0)=^/, 
rSYS(caTd(R),t0)^yf, and TSYS(card (R), t0)^if. 

Proof. Let us consider the local off-line or on-line situation. Assume that 
Ay=card (subfC*!, x2, x„)), for a given input vector (xj, x2, ..., xn), and for 



Analysis of data flow for SIMD systems ,417 

a given position i, l^i^m. Let subi{x1,x2,...,xn)={j1,j2,...,jl/}. For any 
position ik, k = \, 2, ..., Xf, either the name of an input register receiving value 
xjk at a given moment will be transferee! to the receptive field rec[Xl' x»> (rco, /*) 
by some operational instructions only, if value p r o j i ( f { x 1 , x2, ..., x„)) appears 
in register at time t*^t0 of computation, or during the t* steps of compu-
tation of proj^/Ocj, x2, ..., x„)) at least one test instruction JGTZ, JZERO, 
or JLTZ must be performed where the contents of the CPU accumulator depends 
on the input value xjk at the moment of testing. In the second case, if the test 
instruction is followed by certain operational instructions directed to register r(0 

the name of the input register receiving value xJk at a given moment will be trans-
ferred to the receptive field rec£Xl'*2 Xn> (r(,), t*), too; cp. (iv) in Definition 4. 
Without loss of generality, assume that j\,j2, v = Xj-, denote all the positions 
which have produced register names in the receptive field rec£Xl,X2 x">(r{l),i*). 
If v — 71 j-, then Tty^card (rec[Xl'Xz Xn)(r<-i), t*))^XSYS(t0) follows immediately. 
For u < / / , let /,, t2, ..., tw be all the moments where test instructions have to be 
performed according to n and input (x l5 x2, ..., xn) such that the contents of the 
CPU accumulator depend on one of the input values xJv+1, • ••, xJx at least,.at 
the moments of testing. Consider the following program n' computing something 
unspecified, produced by n and (x,, x2, ..., xn) in the following way: 

— all test instructions at moments t 1 , t 2 , . . . , t w will be deleted in n, and 
— all other instructions of n will be performed according to it: and input 

(x^ x2, ..., x„), in the same order, where all instructions LOAD a or 
OPj a, for a equal to =x , m, *m, or (/), will be replaced by OP2 a, for 
the same value of a, if such instructions appear in n. 

Thus, the receptive field of register 0, i.e.', the CPU accumulator, will increase 
monotonically according to n' and (x,, x2, ..., x„). After t*—w operations 
according to n', rec(0, t*—w) contains all input register names for the input 
data x j v t l , ..., Xjx . This receptive field will be combined with rec£*1,Xz Xn> 

(r( i ),/* —vf)sreciJCl ,*2 '--x» )(/ i ), i*) at moment by adding an 
instruction OP2 a (see conditions (OFF.2) and (ON.6)) or OP2(/) (see conditions 
(OFF.4) and (ON.7)) to %'. Thus, X f ^ c a r d ( r e c i ^ x * - - - x J ( 0 , t * - w + l ) ) m 
— /1SYS( '* — U ' + ^ S Y S ( ^ O ) ' Note that the off-line or on-line I/O convention 
is necessary to ensure that a non-accumulator PE register r(i) may be replaced by 
the accumulator of the same PE which is an output register, too. For this replace-
ment, parallel STORE instructions may be replaced by parallel OP, instructions 
using the same masks for PE addresses. 

What we have explained is one of the possible ways to ensure the necessary 
data transfer within time limit l„, for. the local off-line or on-line situation. The 
essential point in the program transformation from n to n' may be characterized 
by the word "linearization", because all test instructions could be deleted, in fact. 
This linearization approach may be used for the local, global and total situation 
in the following way. 

For the given program n and an input situation 7, all the performed instruc-
tions will be written as a linear sequence S0. We obtain sequence SV by deletion 
of all instructions JLTZ, JZERO, JGTZ, JUMP, WRITE, and HALT in sequence S0. 
Now, for the special case of an on-line program, if in sequence »S0 there were some 
STORE instructions in front of a WRITE instruction directed to certain output 
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registers r€ R, then these STORE instructions will be shifted to the end of sequence . 
In the resulting sequence S8, all serial or parallel OPj a or LOAD ot instructions will 
be replaced by an O P s a instruction formally, in the same position for the same 
value of a. For the resulting sequence S3 we have monotonically increasing re-
ceptive fields for all accumulators, for the CPU and PEs. Also, by the described 
step from St to S2, for sequence S3 the receptive fields of output registers will be 
monotonically increasing for consecutive output waves of information. Now, if 
in the original sequence S0 there was no test instruction, our program linearization 
is finished. In the other case, in S3 we shall place an instruction JZERO, e.g., in 
that position where the last test instruction was located in sequence S0. Now con-
sider an arbitrary output register /•£ R. If there is an operational instruction behind 
the JZERO instruction directed to r then register r will obtain the receptive field 
of the CPU accumulator containing all the register names corresponding to tested 
input values, cp. (iv) in Definition 4. If there is no operational instruction behind 
the JZERO instruction directed to r then we shift the last instruction directed to 
r in front of the JZERO instruction to a position behind this instruction. By corn 
sideration of all registers r£R, our program linearization is finished. Note that 
the length of the resulting linear instruction sequence is restricted by the length of 
the original sequence S0. 

Now assume that A /=card (sub,-^, x2, ..., *„)) for a certain i, l^i^n, 
m m 

V/=card((J subj(y!, y2, •••, y„)) and zf= card (sub; (z1? z2, . . . jZn), for certain 
>=i ¡=i 

input vectors x2, ..., xn), (ylf y2, ...,yn), (z1? z2, ..., z„). These input vectors 
characterize input situations IX,IY,IZ for SYS. By linearization of -N according 
to these input situations we obtain linear programs n x , i t y , n 2 , respectively, all 
of length ^ t0. Thus, we have 

' " V , , ^ ; . 
vl?-' i^-Vf, 
-(zi,Z2 r ) _ (R,t0) = 

which proves our statements. • 

Corollary 1. Let CLASSgSIMD. For any system SYS6CLASS, the compu-
tation of a function / which is into the set of m-tuples of real numbers requires 
at least t0 steps of computation in the worst case, where /1CLASS('O)=^/» 
JCLASS(™> to)^y f , and r C L A S S ( m , f 0 )Sx f . 

Proof. Immediately by Lemma 1 where the generalization about all programs 
computing the function / is used as well as about all systems of CLASS. For the 
on-line case note that there may already be a certain m 0 ^ m such that 
AXASS (m 0 , to) = yf, a n d TCLASS(m0, /0) = */- • 

Example 12. Let CLASS = {EXAMP1} and consider the computation of the 
parallel Roberts gradient as described in Example 1. In this case we get the trivial 
lower time bound 1 only; an upper bound was 29. Now, let CLASS = {EXAMP3} 
and consider the computation of the arithmetical averages of M consecutive waves 
of information of length N=2"~1 as described in Example 3. Here, by Corollary 1 
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we obtain the lower time bound n+2M—2=max {«— 1, n+2M—2, n+M—1}, 
cp. equation (6.1), (6.2), (6.3), for values lf=N, yf=N-M and r f = N - M . An 
upper bound was 6M+n. 

Using common asymptotic notations, for both examples the optimal times 
0(1) and d(M+n) are known as a result. 

Theorem 3. For any system SYS€OFF-NETp, p ^ 2 , the computation of 
a function / which is into the set of m-tuples of real numbers requires at least 
f0 steps of computation in the worst case, where 

t0 S max {(d1 —l)/2, (d2—m)/2m, (d3—m)/2m} 

for p—2, and for p^3 

t0 s max {log,_1 (dt (p - 2) + 2) -1.586, 

logp _ j (d2 (p -2) + 2) - log, _! m -1.586, 

logp-x (d3 (p- 2) + 2) - logp _! m -1.586}, 
% 

if / is locally ^-dependent, globally cf2-dependent, and totally ¿4-dependent. 

Proof. Immediately by Theorem 1, Definition 7 and Corollary 1 where the 
relation log , , - ! /» 1.586, p ^ 3 , was used. • 

In Table 7 are collected, for the classes of off-line systems defined in Section 1, 
the lower time bounds that may be obtained by using Corollary 1. Because the 
classes OFF-LINEAR, OFF-PS, OFF-BINTREE and OFF-QUADTREE represent 
examples for the maximal transfer situation as characterized by Theorem 1, for these 
classes the lower time bounds are as given by Theorem 3. If a function / into the 
set of m-tuples is globally or totally ¿'-dependent, then the value d has to be replaced 
by d'/m in the lower time bounds given in Table 7, to obtain the corresponding 
values for the global or total situation. 

Theorem 4. For any system SYS£ON-NETPi9, 1 the compu-
tation of a function / which is into the set of m-tuples of real numbers requires at 
least t„ steps of computation in the worst case, where 

i0 S max {(dx +1)/2, (d2 + m)/2m, (d3 + m)/2m) • 

f o t 9 = 1, and for 
ft 

t0 S max{log?(d1(9—1) + 1), log,(d2(q — l)/m +1), 
9 

logq(d3(q-l)/m + lT}, 

if / is locally ^-dependent, globally <f2-dependent, and totally ^-dependent. 
Proof. Immediately by Theorem 2, Definition 7 and Corollary 1. • 

In Table 8 are collected, for the classes of on-line systems defined in Section 1, 
the lower time bounds that may be obtained by using Corollary 1. Because the 
classes ON-LINEAR{0), ON-BINTREE{1>2), and ON-QUADTREE(1>2i3j4) re-
present examples for maximal transfer situations as characterized by Theorem 2, 
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for these classes the lower time bounds are as stated by Theorem 4. As in the case 
of Table 7, if a function / into the set of m-tuples is globally or totally ¿/'-dependent, 
then the value d has to be replaced by d'/m in the lower time bounds given in 
Table 8, for obtaining the corresponding values for the global or total situation. 
Note that value m may be replaced by a value m0^m for special ON-NET systems. 

5. Conclusions 

In this paper we have given a general framework for the description of parallel 
processing systems, and explained how data flow may be used for analyzing lower 
time bounds in general. Note that this approach may be applied to supercomputers 
as well as to on-chip realizations. Problems connected with the technical features 

Table 6. Local, global and total data dependence measures 

Computational 
problem / n m 5V» 

MATRIX 
MULTIPLICATION 2N2 N2 2 N 2N2 2N3 

MATRIX 
INVERSION IP N2 N 2 N2. N2 N1 

DETERMINANT . N2 1 N2 

LINEAR 
EQUATIONS N2 + N N N2 + N N2 + N N3 + N2' 

TRANSPOSITION IP N2 ' N2 1 N2 N2. 

MATRIX Ti IP TV2 N2 

for 
2 

n^id 
N2 2N2-#{(i,n-: 

j) = (i, j)} 

2D—DFT 2 N2 2 N2 ï=2Ar2-4 
s2Ar2— 1 

2 N2 ' ^ 2 N" 
S4N1-2N2 

2D—WT N2 N2 N2 N2 Nl 

ROBERTS 
GRADIENT MN NM 4 MN 4MN-2M-2N-2 

CH SIPOL 2N 2N .. 2N 2 N ë2N2 — 8N+ 12 
S 4 N2 

VORONOI 
DIAGRAM 

2N 18 N- 33 2 N 2N ë \ 2 N — 30 
3 36JV2 —66iV 

PATTERN 
MATCHING N+M N—M+ 1 2 N M+N 2M(N-M+\) 

PATTERN 
SIGNALIZATION N+M 1 S max {2M, M+[N/M\), S.M+N 

SORTING N N N N2 



I' 

Analysis of data flow for SIMD systems 421 

of architecture elements were by passed by the selected level of abstract system de-
scription. Thus, in the discussion of parallel algorithms for a given model SYS6 
gSIMD we may have in mind quite different technical implementations, but we 
may discuss parallel algorithms for all of them at once using the abstract model 
SYS6SIMD. For example, an important problem is given by the necessary decision 
between different structures of parallel processing systems to ensure efficient algo-
rithmic solutions for classes of computational problems such as mentioned in 
Example 8 (matrix-type computations), 9 (two-dimensional transforms), 10 (geo-
metric problems), or 11 (combinatorial problems). According to our considerations 
in [4] the selection of parallel algorithms crucially depends on the given parallel 
processing system and comparisons between different SIMD systems on the basis 
of knowledge about optimal algorithms represents quite a hard task. Also, there 
are nearly as many different models for parallel processing as papers on this topic, 
making comparative studies of different parallel structures nearly impossible. In 
the present paper an attempt was made to propose a classification of special parallel 
processing systems which have been of widespread interest in the past. The proof 
of the practicability of the proposed exact definition of SIMD systems will be the 
subject of forthcoming papers; the first programs of the PARSIS project fit well 
into this framework. 

By using Tables 6, 7, and 8 the interested reader may obtain lower time bounds 
for different combinations of SIMD systems and computational problems, e.g., 
the lower time bound log2(Af2 +1) for the two-dimensional Walsh transform on 

Table 7." Lower time bounds for off-line systems in OFF-CLASS 
for computing a local ¿-dependent function 

CLASS P lower time bound < / = 1 2 8 d= 128« 

LINEAR 2 (d- l ) / 2 6 4 8, 192 

HEXAGONAL 3 9 105 

SQUARE or ILLIAC 4 ((2d-lW*-l)/2 8 91 

TRIAGONAL 6 ( ( 4 - 4 r - ) A 7 7 4 

DIAGONAL 8 (din — 1 ) / 2 6 6 4 

PS 3 logs W + 2 ) - 1 . 5 8 6 6 13 

BINTRE 
top node 

3 log2 (d+2)-1.586 
log2 ( d + l ) - l 

6 
7 

13 
14 

TRIANGLE 
top node 

5 t0 s l o g 2 (d-1S + 2f„ + 5) - 2.586 
l o g 2 ( < / + l ) - l 

5 
7 

12 
14 

QUADTREE 
top node 

5 log4 (3rf+2)— 1.161 
log* ( 3 < / + l ) - l 

4 
5 

7 
7 
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Table 8. Lower time bounds for on-line systems in ON-CLASS 
for computing a local ¿-dependent function 

CLASS P {'i, • ••,' ,} Lower time bound ¿ = 1 2 8 d= 128® 

LINEAR 2 {0} ( ¿ + D/2 65 8,193 

HEXAGONAL 3 {0,1} ((8d+ I)1'*- l ) /2 16 181 

SQUARE or ILLIAC 4 {0, 1,2} d1/2 12 128 

TRIAGONAL 6 {0, 1, 2, 3, 4} ((T'-T)"-OA 7 81 

DIAGONAL 8 {0, 1, 2, 3, 4, 6, 7} ((t"-T)'"-¥ 6 64 

BINTREE 3 {1,2} log2 ( ¿ + 1) 8 15 

TRIANGLE 5 {1,2, 3, 4} l o g s W + l ) 8 15 

QUADTREE 5 {1,2, 3 ,4} log4 (3 d+1) 5 8 

PS 3 {0, 1} / ( o + 2 = £ d + 2 for the 
Fibonacci numbers 
fo, f l , f , , • • • 

11 21 

ON-TRIANGLE systems. The characterization of data dependencies for computa-
tional problems as given by Definition 7 may be refined, e.g., by consideration of 
changes of function values not only by changing arguments in one position but in 
several positions. 

Abstract 

Starting with an exact definition of classes of SIMD (single instruction, multiple data) systems, 
a general approach to obtaining lower time bounds by data flow analysis is presented. Several 
interconnection schemes, such as the square net, the perfect shuffle, the infinite binary tree, etc. 
are analyzed with respect to their data transfer possibilities. For some types of computational 
problems the data dependencies are analyzed in a quantitative way. From both types of analysis, 
lower time bounds result for many combinations of SIMD systems and computational problems, 
for example, 0( log N) for on-line quadtree-net systems and the computation of Voronoi diagrams 
for N planar points, O(N) for off-line diagonal-net systems and the two-dimensional discrete Fourier 
transform, and for off- or on-line Illiac-net systems and sorting of N items. 
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On the number of zero order interpolants 

P . ECSEDI -T6TH* a n d L . T U R I * * 

1. Introduction 

Gur motivation for determining the set of all interpolants of arbitrarily-given 
sentences <p and i¡/ is twofold, both originating in computer science. 

Firstly, according to the well-known method of Floyd—Hoare in the theory 
of program verification, a program (or more precisely, a program schema) must be 
associated by so called assertions, which are, actually, first order open formulae. 
This association can be partially mechanized; the difficulty arises in associating 
assertions to loops. If <p is the assertion immediately before the loop and \j/ is the 
_one_ immediately _after it, then the assertion associated to the loop is not so easy 
to look for. One possible escape is provided by the theory of interpolation :< the 
assertion to be associated to the loop must be an interpolant of q> and ip; The 
celebrated model theoretic result of W. Craig states the existence of an interpolant 
if cp and are first order sentences and cp is a logical consequence of V- In. the 
above mentioned problem, however, one needs more than one (possibly, all of the) 
interpolants to support the choice of the loop-assertion, on the one hand, and then, 
obviously, he must generalize to open formulae. At the first stage of this process, 
we aim the investigation of the set of all interpolants of any two first order sentences 
<p and t¡J. Our method is traditional: we reduce cp and \p into the zero order 
language, where matters are very much smoother; Thus, algorithmic generation 
of the set of all zero order interpolants of any two zero order sentences, the topic 
of the present paper, is a part of our treatment of the first order case. 

Our second motivation can be paraphrased as follows: on the zero order level, 
an interpolant of cp and t¡/ can be considered as a generalization (or a relativization) 
of the well-known concept of "implicant". Indeed, taking cp as the false formula, 
the set of interpolants of <p and ij/ concides with the set of implicants of- \p. This 
observation provides us with the possibility to consider "implicants of ip. relative 
to cp", which, in turn, may yield to a better understanding of synthesis problems 
of truth-functions and automata. 

These considerations, however, will remain in the background in the present 
paper and will be published elsewhere. Our purpose here is much simpler: to 
investigate the case of zero order sentences and to present an algorithm which returns 
the set of all interpolants of arbitrarily given zero order.'sentences. 

7 Acta Cyberaetica VI/4 
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The method employed here is based on the isomorphism between the zero order 
Lindenbaum—Tarski algebra and the Boolean algebra of truth-functions associated 
to the equivalence classes of zero order sentences. 

By an interpolant of q> and ip, we mean a zero order sentence / which is an 
interpolant in the sense of Craig [1] and x is equivalent neither to (p nor to \jj; 
i.e. x is proper. According to this strengthening, Craig's Theorem on the existence 
of (proper) interpolants no longer holds without additional assumptions: it may 
well happen, that for fixed (p and ij/, no proper interpolant exists : i.e. any inter-
polant (which exists in the sense of Craig) is equivalent to either (p or t/i. 

To study the Boolean algebra of truth functions, we shall use trees. To every 
truth function, we associate a binary tree, the "valuation tree" of the function at 
hand. The valuation tree associated to a function is a compressed form of the truth-
table of that function. Being so, the tree contains every information (up to logical 
equivalence) about the function [2]; and since interpolants are defined by means 
of logical consequence, the trees associated to (the arbitrarily given) q> and ip 
contain every information about the set of their interpolants. On the other hand, 
the "geometrical content" of trees gives us the possibility of expressing semantical 
properties of functions, and in particular, of interpolants in a simple and "visualiz-
able" way. Additionally, an easy method is imposed to calculate the exact number 
as well as the number and length of maximal chains of equivalence classes of inter-
polants. The conditions under which proper interpolants exist are formulated in 
terms of trees; they have, however, a natural and easily comprehensible meaning 
for sentences, too. 

The organization of the paper is as follows. In the next section, we concretize 
our terminology and notations. In Section 3 we give conditions which are equi-
valent to the existence of proper interpolants. The method developed there will be 
applied to obtain our main results in Section 4 on the number of interpolants and 
chains of interpolants, respectively. We conclude a next to trivial consequence on 
the algebraic structure of interpolants in Section 5. Finally, we reformulate our 
results for sentences in terms of model theory, in Section 6. -

2. Preliminaries 

- Throughout the paper we keep fixed a countably infinite set S, which will 
play the role of sentence symbols when we are dealing with formulae, while in case 
of truth functions, S will be considered as a set of variables. 

2.1. Let F be the set of zero order sentences over S. Let = denote thé logical 
equivalence relation on F. Clearly, = is an equivalence relation indeed ; let us 
dénoté by [(p] the equivalence class containing <p (<p£ F). It is well-known, that 

F /= , A, V, - i , 0,1) is a Boolean algebra, the so called Lindenbaum—Tarski 
algebra of F, [1], where 0 denotes the class of unsatisfiablè elements of F while 
1 stands for the class of valid ones ; the operations being defined in the natural way : 

[<p]W]=[cpAil>), [<p]VM=[«pV./0 . 
2.2. Let B= \J Bn, where Bn={f\f: 2 " - 2 ; 2={0, 1}}, the set of Boolean 

functions of finite number of variables taken from S. By an assignment we mean 
an element of the set m2={<i0, ...>|£i€ {0, 1} for fÇto}. The value of f£B 
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under an assignment (in notation: /(£)) is obtained firstly, by substituting 
for all /6 co, the /-th component of £ for the /-th variable (£S) everywhere 
in f provided s,- occurs in / (otherwise the /-th component of £ has no effect 
on the value of / ) and secondly, by calculating that value. We say, that / and 
g(ZB) are equivalent, in notation: f~g, i f f f ( £ ) = g ( 0 for all It follows, 
that ~ is an equivalence relation over B\ the equivalence classes are denoted as 
those in F: i.e. for f£B, the equivalence class containing / is denoted by [ / ] . 
We shall use the symbols 0 and 1 in B, too: 0 = { / | / ( £ ) = 0 for all £€<°2} 
and l = { / | / ( 0 — 1 f° r all ^€"2}. For g,f£B, we can define the operations 
+ , - , and -(bar) as follows: for i € ^ , / ( f ) + g ( 0 = max ( / f t ) , * (£)} . / ( f ) - f ( f ) = 
= min {/(£,), g(£)} and f(£)=l— g(£), respectively. Since ~ is compatible with 
these operations, we can carry them over classes in : [ / ] = [/], [ / ] • [g] = [f -g], 
[ / ] + [g] = [ / + g]. What is-obtained is the well-known Boolean algebra = 
=(Bj ~ , + , - , 0 , 1). Obviously, J^ is isomorphic to 3ft. For the sake of simplicity, 
from now on, when we speak about functions, we shall tacitly mean the equi-
valence classes they do represent, and we shall omit brackets in notations, i.e. / £ SB 
is always to be understood as [ / ]6-8 /~ . Legality of this seemingly abuse of ter-
minology will be justified in Section 5, Theorem 14. 

2.3. By a full binary tree of level n (n£co) we mean an ordered pair T=(V, E) 
where V, the set of vertices is defined by 

^ U U W 
J = 0 fc=l 

and E, the set of edges is 
E={(Vjk, Vtl)\t.=j+.l, 1=2 -.k — P where 1}}. 

In particular, if n = 0, then V={V01}, E=0, i.e. the full binary tree of level 0 is 
a point. The indices /', k of a vertex VJk(z V mean that Vjk is the k-th point of 
T on the /-th level. We shall label the edge (VJk, F0+1)(2fe_/))) by Note, 
that the label does not depend on k. 

Let T = {V,E) be a full binary tree of level n. By a path p in T we mean 
a sequence of vertices V0ko,Vlkl, ..., Vnkn such that /c0=l andforall 1), 
(Vjkj* The set of paths in T will be denoted by PT. Clearly, 
card PT=2". If PQPT, then P determines in the natural way a subtree of T. 
If we write "7\ is a tree of level «", then we always mean, that 7\ is determined 
by a subset pf paths P of a full binary tree T of level n. Similarly, "7\ is a sub-
tree of T2" is to be understood, as both, Tx and T2 are determined by subsets 
Pj and P2 of a full binary tree T such that Px<gP2 (i.e. 7\ , T2 and T are of 
the same level). The set of all subtrees of a full binary tree T will be denoted by 
Sub T, and in each element of Sub T, the vertices will be indexed by the same 
indices as they were in T. If J ^ S u b J and T^T, then we write Txc.T. Similar 
notation applies to arbitrary binary tree. Obviously, if T is a full binary tree of 
level n, then card (Sub T)=22". 

Let T=(V,E) be a full binary tree of level n and (Voko, ..., Vjkj, ..., Vnkn) 
be a path of T. By FBT (VJk) we mean a subtree of T, the vertices of which is 
determined by the set 

kfi'-i 
{Kk0,-,VJkj} U U U {Vtr} 

7» 
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and the set of edges is defined in the natural way; in other words, FBT (VJk) is 
determined by those paths of T, the initial segment of which is (Kk0j •••, VJkj) 
and are continued in all possible ways allowed by T. 

2.4. Let n£u> and T be a full binary tree of level n. We can define a mapping 
Tx: BJ~ — Sub T by the following recurrence. Let sfi=si if af = l and other-
wise J?' = S(. 

(i) T1(O)=0, T1(1) = T . 
(ii) If /=j?> • ... then let p={V0l, ..., V„kJ be that path of T for 

which (VJkj,Vu+D(iy+1) is labelled by sf/^ for all j(0sj^n-l) and define 

(iii) Let g=/1+/2+ ••• +/m where each f} is of the form s/^ • ... • sjJ
n" and 

define 
m 

Tl(g) = U (/})• 
j = l 

t 
Since the cardinalities of BJ~ and Sub T are equal, and every g€2?„ has a form, 
determined uniquely up to the ordering of the variables, required by the clauses 
of the recursion, it follows that rx is one-one and onto. 

Let us define z0: BJ —'Sub T by T 0 ( / ) = T1(/) where Tx(/) denotes a subtree 
of T determined by all paths of T which is not contained in 11(/); i.e. by the 
complement of i x ( f ) with respect to PT. We have immediately, 

Lemma 1. For all f£BJ~ 
(i) Tp(/) = ! , ( / ) , 

(ii) t 1 ( / ) = T 1 ( / ) . 

Lemma 2 [4, Theorem 1]. Let Sub T and assume, that 7\ is determined 
by the set of paths {px, ..., pr) and let sly, ..., s"]J be the labels associated to the 
edges in p}. Then, 

r n 
We call T1

_1(7t
1)= 2 (II ^¡L") the function to which 7\ is associated. Using 

fc=i j=1 
Lemma 1 above, the dual of this assertion is easily obtained. In the sequel when 
speaking about associating a tree T to a function f^3S it will always mean the 
tree assigned by tx . (The duals of the assertions will not be mentioned because 
of being obtainable immediately.) 

2.5. L e t , W e say, that / does not depend on the variable Sj£S, in other 
words, Sj is dummy for / , iff Sj occurs in / and for all £ , ' ^2 for which 

= t j and if k ^ j we have f(£)=/(?')• It is easy to construct an 
algorithmic function <5, such that for all f£38, 5 ( f ) is the set of variables occuring 
in / which are not dummy for f Clearly, dummy variables do not effect the values 
of functions and thus they can freely be omitted or introduced when necessary. Let 
Pi=(vok0, Vjkj, V(J+i)kjtl, KO a n d />2=<*o*„, Vjkj, Vu+1)/j+1, . . . , FnJn) b e 
two paths in a full binary tree T. We say, that px and p2 are amicable paths 
w.r.t. j iff all pairs of edges of the form (Vrkr, V(r+1)kr+1) and (Vrlr, F(r+1)(r+1> 
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are labelled by the same label (which, of course depends on r) provided r^j 
and either lj + 1 = k:+1+l or kJ + 1 = lJ+1 +1. 

A path p=(V0ko, ..., VLkj, ..., V„ikn) goes through Vr<kr iff for some 
./ (0=j =n) r=j. 

By definitions, we have 
Lemma 3 [2, Special case of Theorem 15]. Let / 6 and assume that T1 = 

=(Vi, E,) is the tree associated to / . Then, for some j (1 ̂  Sj is dummy 
for / iff for all k such that V(j-i)k£Vi, all amicable paths w.r.t. j— 1 going 
through V(j-1)k are paths of 7\ . 

2.6. Let f,g^3§. We shall use,the. following notations: Afg for <5(/)fl<5(g), 
the set of variables which are not dummy in both / and g. Let <Pfg=d(f) — Afg 
and rfg = d(g) — Afg, the sets of variables which are not dummy for f but do not 
occur in g and for g but do not occur in / , respectively. For the sake of con-
venience, we shall denote the elements of ASg by x0, ..., the elements of i>/9 
by y0, y}, ... and the elements of f f g by z0, zx, ... throughout the paper; e.g. 
any appearence of x} will always be meant as an element of AfgC\S e.t.c. Moreover, 
we tacitly assume that an ordering is fixed on these sets. 

Since for given the case when Afg—& is of no interest from our 
point of view, i.e. from the point of view of interpolants, we shall suppose that 
Afg^& and distinguish the following four cases: 

Case 1: <Pfg=rfg = $. 
Case 2: 4>fg^Q, r f g = d. 
Case 3: 4>fg = 0, rfg^Q. 
Case4: $fg?i<d,rfg7i®. 

~ - Let We shall supply both / and -g with all variables from Afg{J<PfgU 
U rfg. One can distinguish the functions obtained in this way by / and g, however, 
such distinction is not necessary. Indeed, by definition, the variables of <Pfg will 
be dummy for g (and that of rfg for / ) , hence / and / (similarly, g and g) 
do represent the same equivalence class, thus, by our agreement on terminology, 
we can choose / as the representative of that class. In fact, we shall do, and simply 
write / for / (gfor g). We shall fix an ordering of the variables occuring in / and 
g as follows: all elements of Afg precede all elements of <Pfg which, in turn, 
precede all elements of r f g while we keep the previously fixed orderings inside 
Afg, <Pfg and r f g . By this fixing of ordering, the construction of trees associated 
to / and g will be definitive. 

Let n=card(AfgU<P/gL)rfg) and /=card Afg (recall, that A/g^0, hence 
1 ^ / S n follows) and consider a full binary tree T of level n. For / , let Tf = 
= (Vf,Ef) be that subtree of T which is associated to / . We introduce the follow-
ing notations: 

n f ) = {Vik\VikdVf,lsk^2% 
® ( f ) = {Vik\Vikmf) and FBT(Vik)iSubTf, I ^ k ^ 2'} 

M N = L R ( F ) ~ ^ ( F ) PR O V I D E D 1 ^ (J> \ - r ( f ) otherwise. 
In the rest of the paper we shall keep the reference of the (lower case) letter 

i fixed, namely, /=card Afg and every occurence of i not in English words will 
always refer to this cardinality. 
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3. Existence of interpolants 

3.1. Let f,g£3&. We write f ^ g iff and for all &a2,f(£)=\ entails 
g(i)=l; and iff f ^ g but / V g . The following assertion is immediate 
by definitions. 

Lemma 4. Let f,g£8& and assume that 7} and Ta are the trees associated 
to / and g, respectively. Then f ^ g iff 7}£Sub7^; in particular, / < g iff 
TfczTg. 

From now on, we shall fix (arbitrarily) f ,g^3S such that g ^ 1. 
All assertions in the rest are valid under these assumptions only, but, for the sake 
of being short we shall omit them everywhere when stating lemmata or theorems 
formally. Accordingly, every formal assertion is to be read as "If / , g£88 , f<g , 
f ^ O , g ^ l then" followed by the assertion written as such. This remark applies 
also for definitions. 

First we set -Ifa={h\k£@,f^h, and 5(k)QAfg}. We say, that 
is an interpolant of / and g iff h£Ifg. By Lemma 4, we have 

Corollary 5. Let and 7}, Tg, Th be the trees associated to / , g, h, 
respectively. Then, 
(1) h£lfg implies TfczThczTg, and 
(2) TfczThczTg and W{H)=-V(K) together imply h£lfg. 

The following two lemmata readily follow from definitions by Lemma 4 and 
Corollary 5. 

Lemma 6. Let and h£I f g . Then, 
(1) nmnh), 
(2) iV~(f)ciiV(K), 
(3) r(h)=ir(h), 
(4) iT(h)Qir(g), and 
(5) f № c f ( g ) . 

Lemma 7. Let If 
(1) tr(f)<z1T(h), 
(2) •T(h) = W(h), and 
(3) ^(A)ciT(g). 

are satisfied, then h£I f g . 
3.2. Recall that <Pfg=rfg=<d in Case 1; rfg=0 in Case 2; <Pfg=&, 

r f g ^ Q in Case 3; and <Pfg^0, r f g ^ Q in Case 4. 

Lemma 8. 
0 ) ® ( / ) = ® ( s ) = 0 in Case 1. 
(2) tec in Cases 2 and 4, 

® ( / ) = 0 in Case 3. 
(3) in Cases 3 and 4, 

4f(g)=0 in Case 2. 
(4) ifr{g)=r(g) in Cases 1 and 2. 
(5) iV{f)=nf) in Cases 1 and 3. 
(6) iV(g)--r{f)7±<d in Case 1. 
(7) in Cases 3 and 4. 



On the number of zero order interpolants 431 

Proof. All statements exept (7) in Case 4 readily follow from Lemma 3 by 
definitions. 

For proving (7) in Case 4, let us suppose, that ^{g) —T^"(/) = 0 and let VijdW (g). 
We have either V^C^tf) or V ^ i V i f ) , immediately. Let us suppose first, that 
Vij£<%(f) and let fc=card <Pfg. Since / does not depend on elements of r f g , 
there exists an I ( l s / s 2 i + * ) , by Lemma 3, such that FBT(^ i + f t ) 1)^Sub 7} 
(where 7} is the tree associated to / ) . On the other hand, since g does depend 
on elements of r f g , it is impossible, again by Lemma 3, that the same is true for 
Tg (Tg being associated to g); i.e. there exist some vertices in FBT(V(i+k)l) which 
are not contained in Tg. It follows, that 7} <£ Tg, a contradiction to Lemma 4. 
If Vijd'W(f) then, using a similar argument, the assertion follows. 

The next theorem gives necessary and suificiant conditions under which proper 
interpolants exist. 

Theorem 9. Ifg^0 iff card (iV(g) —"V(fwhere a = 2 in Case 1, a = l 
in Cases 2 and 3 and a = 0 in Case 4. 

Proof. Let 7} and Tg be the trees associated to / and g, respectively. 
For Cases 2 and 4, let 7i be the tree obtained from 7} by adjoining. FBT 

(Vij) for all VifJUif) to 7}. By Lemma 8 (2), we have ^ ( / V - 0 and hence, 
T}c-Tx in both cases. In Case 4, TxaTg follows from Lemma 8 (7). In Case 2, 
1fr(g) — 'V~(f)?iV> by assumption, thus 7ic7^. Let h be the function to which 
71 is associated. By the construction of 7i, we have iV{h)=ir(h), hence h£Jfg, 
by Corollary 5 (2). 

For Cases 1 and 3, let 7\ be constructed from 7} by adding to 7} the tree 
FBT(^j) for some Vij^ir(g)-"r(f). Since iV(g)-Y{f) is not empty by as-
sumption, we have immediately, that 7}c7 i (recall, that F B T ( ^ ) is the path 
ending in Vij in Case 1). In Case 3, Tx<^Tg is obtained by Lemma 8 (7), while 
in Case 1, this proper inclussion is entailed by the assumption, namely, by the fact, 
that if(g)—T^X/) — {Vij} (where Vy is the vertex used in the construction 
of 7Y). Again, denoting by h the function to which T1 is associated, h£lfg 
follows from Corollary 5 (2) since iV(K) = ir(h). 

To prove the converse, let //¡,5^0 and assume that h£lfg. 

Case 1. card ( " T ( g ) - r ( h ) ) S 1 and card {T(h) - -T{f)) S 1 thus card (W(g) -
- l T ( / ) ) s 2 by Lemma 8 (4). 

Case 2. ir(f)<^ir(h) = i(r{h) by Lemma 6 (1 and 3); -r(h)czf(g) by Lemma 6 
(5) and y(g)=^iii(g) by Lemma 8(4). Summarizing up, 'f(f)c:Hr{g) and hence 
card ( i T ( g ) - T r ( / ) ) s l . 

Case3. V ( f ) = W(f) by Lemma 8 (5), iV(f)zLiV{h) = Y(h) by Lemma 6 
(2 and 3) and finally, W(h)^iT(g) by Lemma 6 (4). We have then Y~{f)czir(g) 
which implies card ( 7 r ( g ) - f ( / ) ) = 

3.3. We present here some counterexamples thus illustrating the very nature 
of proper interpolants. 

Let the following functions be given: f1=xl-x2, g1=x1-x2+x1-x2; f% = 
=x1-'x2- g2=x x-x2, and f3 = x1-x2, g3=x1- x2 + xt - x2 - zx. The trees associated 
to these functions are indicated in bold line by Figs 1, 2 and 3, respectively. 
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Fig. I 

Fig. 2 

Fig. 3 

It is clear, that 4 > f i g = r f i g = 0 - r ( g x ) ~ ^ ( f , ) = and 
card gi)—T^C/i)) = 1, nevertheless / / l 9 l = 0 . Similarly, <Pfl9={yx}, r / 2 j 2 = 0 
and n g 2 ) - n f 2 ) = i n g J - n f 2 ) = 9 and I f292 = Q. Finally, 4 > f 3 g = 0 , r f J 3 = { Z x } 
and i n g 3 ) ~ n f 3 ) = 0, thus 7/sffs = 0. /S9S 
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4. The number of interpolants 

4.1. -

Theorem 10. Let m=card (iT(g)-Tr(/)). Then, 

card (Ifg) = 2m-a 

where a=2 in Case 1, a=l in Cases 2 and 3 and a = 0 in Case 4. 
Proof. Let M='W(g)—ir(f). In all cases, if A/V0 (M=0 can occur in 

Cases 2, 3 and 4 only, by Lemma 8 (6)), then the whole set I f g can be constructed 
by the following recurrence. 

Let us denote by 7\ the tree obtained by adjoining FBT (Vik) to the tree 2} 
associated to / for all Vik£<%(f). Obviously, TfQTt. 

Let T2 be a tree such that TxQT2QTg and T2 is associated to an inter-
polant h2 of / and g (or, to / if T2=TX = TS) and suppose, that Let 
T3 be constructed from T2 by adding FBT (Vi}) to T2. Clearly, Tf<^T3QTg 
and, for the function h3 to which T3 is associated, /W(h3)=ir(h3). It follows 
from Corollary 5, that h 3 £l f i iff T3czTg, and from Lemma 4, that h 2^h 3 . Let 
MX=M— {Vij} and repeat this procedure with Va^Ml and with T3 (in place 
of T2) until M is emptied. 

Summarizing up, starting from 7\ and taking in all possible ways one, two,..., m 
distinct elements from M (provided A/V0) and proceeding as described above 
we can produce a set of functions / = ..., ir} and it follows from the construc-
tion, "that 7U{/, g}=/ /0~U{/, g}, i.e. any function which can be constructed in 
this way is either an element of I f g or of {/,g}. Since one, two, ...,m distinct 

( f f i \ (m\ m 

lJ' (2 J ' 'lwJ Po s s^ e ways'an<^ y 
= 2 m - l , we have card l~2 m . 

It remains to investigate whether / and g do or do not appear in I. This 
will be done case by case. 

Casel. We have ®( / )=0 by Lemma 8 (1), hence Tx = T f , i.e. / € / . On 
the other hand, taking all elements from M, we obviously obtain a tree identical 
to Tg, thus All the other elements of I are proper interpolants, indeed, that 
is Ifg=/- {/, g). It follows, that card (Ifg)=2m - 2. 

Case 2. By Lemma 8 (2), which entails 7}c7 \ , i.e. the function 
to which 7\ is associated is in I f g (cf. the proof of Theorem 9). Taking all elements 
from M in the procedure above, we arrive to Tg by Lemma 8 (3), hence g€/. 
We have Ifg=I-{g}, hence card (7 / 9 )=2 m - l . 

Case 3. W(f) = 0, by Lemma 8 (2), which implies 7\ = 7} and thus /£ / . 
Let Tr be the tree obtained by the procedure using all elements of M. Then by 
Lemma 8 (3) T,czTg. That is g$I, I f g = I - { f } and we have c a r d ( I f j ) = 2 m - l . 

Case 4. Since by Lemma 8 (2), we have 7 > c r 1 , i.e. / $ / . On the 
other hand, taking all elements in M and constructing the tree Tr by the procedure, 
by Lemma 8(3), TrcTg holds. We obtain, that and so IIg=I. 
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4.2. By a chain of interpolants we mean a finite sequence of distinct functions 
h0, ...,h, such that the following clauses are satisfied: 

(1) h0=f,h,=g, 
(2) hj£Ihj_ l h j + 1 for 1 < / < / . 

A chain h0,...,h, of interpolants is maximal iff for every j (O^j-^t), Ihjhj+i = 0. 
Corollary 11. Every maximal chain of interpolants of / and g has length 

ca rd(TT(g) - i r ( / ) )+ /? where /5=1 in Case 1, p=2 in Cases 2 and 3 and 0 = 3 
in Case 4. 

Proof. Immediate by the proof of Theorem 10. 
Fig. 4 below indicates all of the four cases. h t stands for the function obtained 

from T1 in the proof of the previous theorem, and hM denotes the function which 
is constructed by using the whole set M. 

Corollary 12. The set of all maximal chains of interpolants of / and g has 
cardinality given by 

(card ( - r ( g ) - T r (/)))!. 
Proof. The second (in Cases 1, 3) or the third member (in Case 2, 4) of a parti-

cular maximal chain is obtained by using exactly one element from the set M = 
= 'Mr(g)—"tr(f)', this element can; be taken in card Ai different ways. The next 
member of the chain can be taken in card M—1 different ways, and so on. The 
assertion follows by induction. 

h M = h t = g V V « h t - g 

M 

h t - g 

M 

¿ h 0 = h l = f 

<i h 

h o = f 

,, h . 

i h o = h i = f 

ih, 

l V f 

Case 1 Case 2 Case 3 

Fig. 4 

Case 4 
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5. The algebra of interpolants 

Theorem 13. The algebra J=(Ifg\J {/, g}, • , + , / , g) is a distributive sub-
lattice of the Boolean algebra ¿% = (B/~, • , + , " , 0, 1) with zero element/and unit 
element g. 

Proof. The only thing to be proved is that Ifg U {/, g} is closed under + and • . 
This is, however, obvious from the construction outlined in the proof of Theorem 10. 

It is relatively easy to show using Lemma 1 and the construction of l f g , that 
lfgU {/,. g} is not closed under negation: the algebra J is not a Boolean algebra. 

Theorem 14. Let h0, / i ^ / ^ U {/, g}. Then in the Boolean algebra 3$, the 
two equivalence classes [/i„] and [/Jx] are identical iff their representatives h0 and 

are such; i.e. [/i0] = [^i] iff h0=h1. 
Proof Obvious, by Lemma 2 and the construction of If9. 

By using the isomorphism between J5" and to every (p f^ , there cor-
responds a class in 0& denoted by f , , and conversely, for f£3S one can associate 
an element <pf in 

By a zero order model A we simply mean a subset of the set of sentence sym-
bols S. Observe, that every assignment represents a zero order model in 
the sense of [1]: let A(= {ji|ji€»S' and £¡ = 1} where is the/-th component of 
The converse is also valid: every model AcS can be associated by an assignment 
£A defined by 

Clearly, for every cp and A, we have A\=cp iff / 9 ( ^ ) = 1 . We set Av= {A\AaS, 
A\=(p}. 

Let £ and £ be two assignments and We say that the models 
and A; are (^-equivalent with respect to a subset A of 5 ( f ) , the set of nondummy 
variables of f , iff Aif]A=A^i]A. This is indeed an equivalence relation and being 
so we can set for AczS, cp^ and A<^5(f): 

[A]* = {B\BaS and' B is (^-equivalent to A with respect to A}. 
Notice, that by choosing A=5(f), the class [A]^(fv) is represented by one 

path in the tree Tfv associated to fv. 
Let f,g€.88 and consider the sets of variables, Afg, <Pfg and r f g . Then, 

clearly, ca rd^( / )=card({M]^ 9 }) and similarly, card ^ (^ )=ca rd ({[A]*'/}), 
that is, r ( f ) and i^(g) identify all ^-equivalent and <pg-equivalent classes of 
models with respect to the common set of nondummy variables of / and g, Afy, 
respectively. 

By definition, ® ( / ) i l i r ( / ) = 0 , iT(f)=-T(f) and similar equations 
hold for g. If for some k, Vik£iT(g), then FBT (Vik) is a subtree of the tree Tg 
associated to g, and all paths of FBT (Vik) represent the same (^-equivalence 
class of models with respect to the set of all nondummy variables of g, 5(g), while 

6. Conclusions 

0 otherwise. 
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if Vik$if(g) and hence Vik£<%(g), then the paths of TB going through Vik will 
represent different classes (with respect to 3(g)). We say that A is a respectable 
model (for q>g) iff 

[Afy = 
Since interpolants of / and g (hence of <pf and <pg) can depend on the variables 

of A fg only, respectable models for cpg are exactly the ones which are of interest 
from the point of view of interpolants. 

The «^-equivalence classes of respectable models for <pg, however, are identified 
by elements of i ^ ig j , according to the remark above. 

Let us introduce the following notations: 
K?={[K'9°\ ^ is a respectable model for g) and A 9 = $ A $ p \ A£A9a). 

Then, the set i^'{g)—ir{f), playing a central role in our investigations, identifies 
those respectable model classes for q>g which are not models of q>f, and 
card(•W(g)—ir(f))=card(Av*p—Ay,) hence a reformulation of Theorem 9 in 
model theoretic terms can be easily obtained. 

Summing up the results of the paper, for any two zero order formulae cp and 
ip such that (pt=4>, ~i <p, ¥= we can decide whether does or does not exist a proper 
interpolant for cp and \j/ and if the answer is affirmative, we can give the number 
of equivalence classes of proper interpolants immediately, or we can construct the 
whole lattice of equivalence classes of interpolants when necessary. The method 
developed in the paper is much more effective (even if it is considered as inefficient 
in the more strict sense of [5]) than the one presented in [3]. 

Abstract 

The number of equivalence classes of interpolants for arbitrarily given two zero order sentences 
are calculated using tree-theoretic arguments. As a by-product, the number of maximal chains 
and the algebraic structure of equivalence classes of interpolants are determined. 
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