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KALMAN LISSAK
(1908—1982)

Professor Lissdk, the doyen of Hungarian physiologists and member of the
Academy of Sciences died on 22 June 1982. He started his scientific career in 1933
at the Institute of Physiology of the Medical School in Debrecen, in 1943 became
the director of the Institute of Physiology in Pécs and kept this post until his retire-
ment in 1978. The establishment of the highest standards in the education of physio-
logy and the introduction of modern neuro- and electrophysiological research
methods in his country belonged to his dearest endeavours which he accomplished
with much success. As a coworker of W. Cannon in 1938—39 Dr. Lissdk was
fortunate to become a witness of the historical discussions among Rosenblueth,
Wiener and Bigelow which finally led to the foundation of cybernetics. Dr. Lissdk
became an early and arduous supporter of cybernetics in Hungary and faithfully
served its cause until his death.
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On certain partitions of finite directed graphs
and of finite automata

By A. ApAM

1. Introduction and basic terminology
§1.

The main aim of this paper is to study the partitions n of the vertex set of
a finite directed graph G such that n satisfies the following condition: if the vertices

a,b are in a common class modulo = and the edges ac, bd exist in G, then
¢,d are also in a common class. These partitions will be called partitions having
property P in-the paper.

My attention was called to studying these partitions by the antomaton-theoreti-
cal articles [7], [9], [10). The majority of the present paper is written, however,
from a graph-theoretical point of view.

Sections 3—5 are devoted to introducing the notions which are basic for the
paper, and to exposing a few simple consequences of the definitions.

In Chapter II a description of the P-partitions of functional graphs will be
given. The results of Chapter II will be generalized in Chapter III into an overview
of the P-partitions of all (finite, directed) connected graphs in which no vertices
with out-degree zero occur.

Chapter 1V contains comments of several types. The extension of the former
results to non-connected graphs is sketched, their extension to graphs with sinks
is questioned and examples answering some arising questions will be given. §12
is an appendix to the paper; it starts with lemmas on a sequence of partitions of the
state set of a Moore automaton, later these facts lead to a proof solving a problem!
on the complexity and state number of Moore automata.

t Conjecture 1 in [4].

l.
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§2.

The idea of studying the P-partitions by graph-theoretic methods was suggested
by the articles [7}, [9], [10] of Gill, Flexer and Hwang. They have dealt with questions
concerning automata. The mentioned partition type is the same as the “partitions
with substitution property” in their papers.?

Gill, Flexer and Hwang discussed mainly the partitions of the state set of an
automaton such that the factor automaton (modulo the partition in question)
exists and is a cycle. It turns out from their articles that the overview of these parti-
tions has a certain technological significance.?

Yoeli and Ginzburg [14] introduced the P-partltlons under the name ““admissible
partitions”. They investigated chiefly the-atoms?* in  the lattice of these partitions.

Dvotak, Gerbrich and Novotny deal in their most recent paper [5], essentially,
with connected directed graphs in which no out-degree exceeds one. They describe
all the possible homomorphisms (if there exists any) of a graph onto another.

The question, to whose solution Chapter II of the present paper is devoted,

is the same (apart from terminological differences) as the problem of describing
the congruences of connected finite unary algebras with one operation. The papers
[11], [15], [16], [17]) of Kope&ek, Egorova and Skornjakov deal with somewhat
related questions.
.. . The autonomus semiautomata (possibly infinite. ones) which are investigated
by Machner and Strassner-in [12] are essentially the same as the functional graphs
in_our terminology. Fheorem 3 and Corollary 6’ in [12] concern to finite functional
graphs, these results correspond to certain considerations in our Chapter II. The
mentioned results are derived by Machner and Strassner as consequences of their
investigations dealing with the infinite case.

§ 3.

By a graph, we mean a. connected directed finite graph. Parallel edges with the
same. orientation are not permitted. We allow, however, loops and oppositely
oriented parallel edges. Sometimes we regard a graph G as a relational structure,
this means that we say “the relation ocG(a, b) holds” instead of saying ‘““the edge
from the vertex a to the vertex b existsin G5

The most familiar notions of the theory of directed graphs are supposed to- be
knqwn especially,. the notions. of path and cycle. These are understood always
in, directed: sense, and' with pairwise different vertices. (Of course, the first vertex
of-a cycle and the last: one are the same.)

The notion of circuit originates from the notion of cycle by: the modification
that the edges are considered as non-directed ones.

2 In [7], [9], [10] automata without output signs are considered. Actually, the graph of an
automaton is studied rather than the graph itself.

3 See the middle of Section 1 in [7] and Section VII of [9].

¢ is called an atom if 750 holds and #22'De implies n=n" (where =&,n’ are
P-partitions).

5 The subscript G is possibly dropped in a¢ if its absence cannot cause a misunderstanding.
Similar notational simplifications may occur in other cases, too.

. l\ij
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A vertex with in-degree zero is called a source. A vertex with out-degree Zero
is called a sink.

The lattice of all partitions of the vertex set ¥V of a graph G is denoted by
L(V); as usual, ;<& Ty means that (€ L(¥)) is a (proper or non-proper) refine-
ment of 7,(€ L(V)) 1 is the partition having one class only, and o is the partition
each class of which consists of a single element.

Consider a partmon n(EL(V)) We say that 7 possesses the property. P (or
simply, that = is a P-partition) if

(@ = b(mod m) &a(a, ¢) &a(b, d)) = ¢ = d(mod n).

holds universally (i.e., for every choice of the vertices a, b, ¢, d). ‘
~ Denote by [4], (or s1mp1y by [a]) the class (modulo ) containing a vertex a.
The factor graph G*=G/n is defined in the following manner:

the vertices of G* are the classes of ¥ modulo =,

a*([a], [b]) bolds® if and only if there exist two vertices a’(€ V), b'(eV) such

that a’¢[a), b’€[b] and ofd, b').

It is clear that G/m can have loops even if G is loop-free.

We end this § by asserting two obvious statements concerning the above notion
of the factor graph. The first of them is an analogon of one of the general isomorphism
theorems of universal algebras.

Lemma 1. Let 7, n, be two partitions of the vertex set V of a graph G.
Suppose T, S my; denote by w; the following partition of the vertex set of Gfm,:
[a}., =[b],, (mod ) if and only if a=b (mod m,). Then G/ﬂ:2 and (G/n)/=§ are
isomorphic.

Lemma 2. Let n be a partition of the vertex set of a graph G. If there is no
source (or no sink) in G, then there is no source (or no sink, resp.) in Gl=n, too.

§4.

A graph G is called a functional graph if the out-degree of each vertex of G is
one. A simple structural description of the finite functional graphs is due to Ore (see
[13], § 4.4; [1], Chapter I); his theorem states that a connected graph G is functional
if and only if

G has preczsely one circuit,

the circuitin G isa cycle, and

each other edge of G is directed towards the cycle : :

By its definition, a functional graph G does not contain a sink: G contams
at least one source unless G is a cycle.

The vertices and edges of the cycle of a functional graph G are called cyclic.
Each other vertex and edge of G is said acyclic. (A source is always acyclic:) .

If a is a vertex of a functional graph G, then we denote by ¢ (a) the (uniquely
determined) vertex b for which ag(a, b) is true. We define ¢'(a) by ¢'(a)=
=¢(¢'~(@)) recursively; we agree that ¢°(a@)=a.

¢ We writ¢ o* instead of ag,.
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Let a,b be two vertices of a functional graph. If there is a number i(=0)
such that ¢‘(a)=b, then we denote by x(a, b) the smallest of these numbers.
Let a path in a functional graph G be considered whose vertices are

a,, g, ...,as (s =2). .1

If a,,a,, ..., a,-, are acyclic vertices and a, is cyclic, then we call (4.1) a principal
path. To each acyclic vertex a,, there is exactly one principal path starting from a,.

Let B be a subset of ¥ such that every element of B is an acyclic vertex.
B is called a basic set if, to each b(€B), the principal path starting with b contains
no other element of B than b. The empty set is regarded to be basic, too. (Thus
each functional graph — even a cycle — has at least one basic set.) The set of all
sources of a functional graph is always basic. For any basic set B, a principal
path may contain at most one element of B.

Consider a basic set B of a functional graph. A vertex a is called outer with
respect to B if a is acyclic and the principal path starting with a contains an
element of B. The remaining vertices are called inner (with respect to B). The
following lemma is obvious: . :

Lemma 3. Let B be a basic set in a functional graph. Then

(i) each element of B is outer with respect to B,

(ii) each cyclic vertex of the graph is inner with respect to B, and
(iii) if a is inner with respect to B, then @(a) is also inner.

In the last assertion of this § we state a connection between the P-partitions
and a slight extension of the class of functional graphs.

Proposition 1. Let G be a graph and ©n be a partition of its vertex set. n has
the property P if and only if each out-degree in the factor graph G[rn is either zero
or one.

Proof. The out-degree of a vertex [a] of G/m is at least two if and only if
there exist four vertices by, by,'c,d in G such that b,€[a), by€[a), a(b,, ¢), a(bs, d)
and c¢#d (mod ). This condition is precisely the negation of the property P:

§ 5.

In this last section of Chapter I, a few concepts of the theory of automata will
be recalled or introduced. These notions are referred to in § 2 and § 12 only.

The notion of the Moore automaton is well-known, we denote such an auto-
maton by A=(4, X, 7,4, A).

Leta, b be two states; the length of a shortest (input) word p such that 1(6(a, p)) =
#A(5(b, p)) is denoted by w(a, b). The maximum of w(a,b) -(taken for pairs
of different states) is called the complexity of A.

Let us define the partitions” #, in its state set A4 in such a manner that a=b

? It follows from Proposition 16 of [2] that each #, is really a partition. In [2], I have written
Ry, instead of 7.
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(mod #,) holds exactly when w(a, b)=k. It is obvious that
ME2m=2mn2n=2... .1

and 7, equals the maximal partition of A. _

If we consider an automaton A such that the output set Y and the output
function A are not taken into account, then we speak of an automaton without
output signs.

Let A be an automaton. Let us construct a directed graph G in the following
way:
the states of A are the vertices of G, and

ag(a, b) holds if and only if there is at least one x(€X) satisfying é(a, x)=b.

Then G is called the graph of the automaton A. (It is clear that we have re-
garded A as an automaton without output signs in this definition.)

II. Partitions having the property P in functional gl?iélphs

§o.

Construction I. Let G be a functional graph, B a basic set in G and d
a divisor of the length of the cycle of G.
We form an augmenting sequence .

G,,G,, ..., G, (6.1)

of induced subgraphs of G such that : :
(o) the vertex set ¥, of G, equals the set of inner vertices (with respect to B),
(B) the vertexset V; of G; consists of the vertices a which satisfy @ (a)€V;_,
(V;-1 is the vertex set of G;_;; 2=i=¢),
(y) the sequence (6.1) terminates when we reach G (in the form of G,).
Let us construct a sequence '

My, My ..., M = T . (6-2)

(of partitions) according to the following rules (A)—(F):
(A) =; is a partition of ¥, (where 1=i=t).
(B) (Initial step) Choose a cyclic vertex ¢ of G. Let

a=b (modmr,)
hold for a(€V,) and b(€V,) exactly when
x(a, ¢) = x(b, c) (mod d).

{C) Suppose that the partition =#;_ (of V;_;) has already been defined (where
2=i=t). Denote by t; the following partition of V;: a=b (mod ;) precisely if

either a=b,

or a€V;—V;_1,beV;—V,_, and ¢(a)=¢(() (modr;_,).

8 It is clear that V,=BU V;.
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(D) Assume that the partition =;_, (of V;_,) has already been defined (where
2=i=t). Denote by n; the subsequent partition of V;: a=b (mod n{) exactly if

either a=b,

or a€V;_,,beV,_, and a=b (modnm,_,). -

-(E) (Ordinary step) Choose an arbitrary partition =nf of ¥V, such that

nf €1,. Form the union n}U=; and denote it by =;.

(F) The construction of the sequence (6.2) contains an mltlal step and t~1

ordinary steps.

Remarks. If a€V;., and beV;—V;_,, then aZb modulo any of the parti-
tions m;, Miyq, ..., ,(=1). — If a€V; and beV;, then either the congruence a=b
is true for all of the partitions | #;, T;4,, ..., T, or it is false for all of them. — The
following three assertions are equ1valent (for a performance of Construction I):

(1) B is empty,

(2) every vertex is inner and the construction collapses to the initial step,

(J) Gjr is a cycie.

If G is a cycle, then the assertions (1), (2) €)) are true. — If B is empty and d=1,
then n equals the maximal partition 1 of V. — If B is chosen as the set of all
acyclic vertices a fulfilling the statement that ¢(a) is cyclic, the number d is
chosen as the cycle length of G and each n is the minimal partition of ¥;, then
% équals the minimal partition o of V. :

Lemma 4. The initial step of Construction I is independent of the choice of the
cycItc vertex c.

Proof. Apply the initial step with c(” and . ¢®, resp. (instead of c¢). Denote
x(c®, c®) by g. Let the originating partitions be n(l) and n{®.
Suppose a=b (mod n{V). Denote .

x(a, cW)—x(b, V)
d

by k and p/d by m where p is the length of the cycle of G. It is easy to see that
x(a, c®) equals either y(a, cP)+q or y(a,c®)—(p—q) and a similar assertion
holds with & (instead of a). A discussion shows that x(a, ¢®)—yx(b, ¢®) is equal
to one of kd,(k+m)d, (k—m)d. Hence x(a,c®)=x(b, c®)(modd) and a=b
(mod =n{¥).

An analogous inference shows that a=b (mod n{¥) implies a=b (mod (™).

Proposition 2. Consider two performances of Construction I for a graph G;
suppose that we start with the pairs (B"Y, d%) and (B®, d™), respectively. Denote
the obtained partitions by 7'V and n®. If nW=2®, then BWD=B®, M =g®
and the 'two performances are stepwise’ coinciding. ' ’

'

Proof. We verify the statement indirectly.

If B®<B®  then there is a vertex a which is inner with respect to one of
BY B® (eg to B“)) and outer with respect to the other one. Thus a=b (mod nV)
is satisfiable with at least one cyclic vertex b, but a=b(mod n®) is not satisfiable
by any cyclic b.
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Let d,d® be different, we can suppose dV<d®, Choose a cyclic vertex a.
a and @4 (a) are congruent modulo n® but they are incongruent modulo 7,

Finally, we consider the case when BW=B®, gD =¢g® and the two perfor-
mances of Construction I differ from each other. The first difference between them
will appear in the following manner: in two ordinary steps (corresponding to each
other in the performances), nf®, n}(® act differently on the set V;—V,_;. It is
evident (by the second sentence of the remarks above) that the partitions n", n®
act on V;—V,_, in the same manner as n}® and #n}®, respectively.

We have got nW=7® when the two performances do not agree with each
other completely. : .

§7.

Theorem 1, The following three assertions are equivalent for a partition n of
the vertex.set V' of a functional graph G':
() G/n is a functional graph,
(1) n has the property P,
(II1) = can be obtained by Construction 1.

Proof. The equivalence of (I) and (II) follows immediately from Proposition 1
and Lemma 2. In what follows, we strive to show the equivalence of (II) and (III).

(ID)=(III). Let us start with a P-partition # of V. Our aim is to determine
a performance of Construction I such that = is obtained by this performance.
In details the determination of the performance w111 consist of the following phases
(0)—):

(«) we determine a basic set B,

" (B) we determine a divisor d of the length of thc cycle of G,

(y) we prove that if we choose two vertices a,,a, and two elements by, b,
of B such that the numbers y(a,, b;) and x(a,, b,) are deﬁned and they do not
coincide, then g, # a, (mod 7),

(6) we determine the partitions Ty Mgy Moy -es

(2) we show that each =] is a refinement of 7,.

We turn to elaborate the parts of the proof (of (I1)=(111)) exposed above.

(«) Denote by C the set of all vertices a of G such that [a], contains at
least one cyclic vertex. Denote by B the set of vertices b such that be{C and
@(b)cC are valid. It is clear that B consists of acyclic vertices. We are going to
show that to any b(€B) no positive i can satisfy b=¢ (b) (mod m). Suppose
the contrary. It is easy to see (by the property P) that b, ¢'(b), @¥(b), 9%(b), ..
belong to a common class modulo =, this is impossible since [b], cannot contam
a cyclic vertex.

(B) Let a be an element .of C, denote by #5(a) the smallest positive integer
i such that a=¢'(@) (mod 7).

Consider a vertex a(€C), let i be the (minimal) number occurring in the de-
finition of #(d). Then

(@) = 9(¢'(@) = ¢'(¢(a)) (mod ),
n(a) = n(e(a)). ()

hence
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If (7.1) is applied for the vertices of the cycle of the graph, we get easily that
n(a) is common for the cyclic vertices. Denote this common value by d and the
cycle length by p.

Our next aim is to verify that d is a divisor of p. Let k be the smallest integer
such that kd=p. Since the deduction

¢ = ¢%(c) = p¥(c) = ¥(c) =...= ¢*(c) = ¢*¥~?(c) (mod n)

holds for an arbitrary cyclic vertex ¢, we have kd—p=n(c)(=d) by the minimality
condition in the definition of #. On the other hand, the minimality condition in
the definition of k implies kd—p=d. Consequently kd—p=d, thus (k—1)d=p
and d|p.

Consider now an acyclic vertex a(€C), let ¢ be a cyclic vertex such that
a=c (mod n). We have ¢'(a)=¢'(c) (mod ) for every i, this fact implies
n(@=n(c)=d.

/,) We can suppose x(al, b1)<"’(az, b4) Wlth()ut an essentlal reStrlCtlon of
the generality. Denote x(ay, by) by j. Itis clear that ¢/*1(a,)€C and ¢@/+1(ay)dC,
hence a,# a, (mod =).

(6) Denote by V; (where i =1) the set of vertices g satisfying ¢'~(a)€C.
(It is clear that V;2V,_; if i=2)) Let nf be a partition of V; defined by what
follows: a=b (mod =n}) (where a€¥V;, beV)) if and only if

either a=1»5
or a4Vi_1, b¢V;_, and a = b(mod r).

(g) is obviously true with the above definition of the partitions iy

We have completed the determination of the “parameters” B, d and Tiay Tas o
occurring in Construction I. A routine inference shows (together with (y)) that
we obtain just n if we perform the construction with these “parameters™.

(IID)=(11). Consider a partition = which has been obtained by Construction 1.
Similarly to the preceding part of the proof, we denote by C the set of those vertlces
a for which [a], contains a cyclic vertex.

Suppose a=b (mod n) where a=#b.

If acC, then clearly b€C. Let us choose an arbitrary cyclic vertex ¢. Either

(e (@).c) = x(a,0)—-1

we(@),c)=p—1=—-1=yx(a,c)—1 (modd)

(according as a#c or a=c), and the analogous statement holds for b (instead
of a). Therefore we have

1(@@), c)=x(a, )—1=y(b,0)—1 = x(¢(b), c) (modd),

thus @(a@)=¢@(b) (mod ).

If @ and b do not belong to C, then they are necessarily contained in the
same difference set V;—V,;_,. a=b is valid modulo each of n=n=,, n,_,, 7,_s, -.-
v T, and T (by the construction). We get ¢(@)=¢(b) (mod n;_,) by the
rule (C), hence the elements ¢(a) and ¢(b) of V;_, are congruent modulo each
of 7y, Myeqs ..., M=m, tooO.

or
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The fulfilment of the property P is proved.

The next assertion is an easy consequence of the procedure described in Con-
struction I and of the notion of factor graph:

Proposition 3. Let G be a functional graph and n be a partition (in G) pro-
duced by Construction 1. The cycle length of the factor graph G|rn equals d. G/n
is a cycle if and only if B is empty.

III. Partitions having the property P in arbitrary sink-free graphs
§8.

Let G be a directed graph. We introduce a quaternary relation » and some
binary relations in the set ¥ of vertices of G.

Let x(a,b,c,d) hold for the (not necessarily different) vertices a,b,c,d
if there is a positive integer k and there exist 2k vertices f1, fas «--» fi> 815 825 ---s 8k
such that the equalities .

a=fi,b=fi,c=g,d=g (8.1)

and the 2k—2 relations
“(,fi,.f2) “(.f29.f3) L] d(ﬁ‘ lsﬁ)’ (82)
OF(gu g2)9 a(gZ’ gs), sres a(gk—ls gk) . (83)

are true. x(q, a, c, c) is regarded to be always valid (with the choice k=1) both
when a=c¢ and when as%c. It is clear that x(a,b,c,d) and x(c,d,a,b) are
equivalent.

Let o(a,b) be true if there is a ¢(€V) such that x(c,a, ¢, b). Denote the
transitive extension of ¢ by e.

In Chapter 1II, our aim is to characterize the P-partitions of the sink-free graphs
by use of the partition e.

Remark. If G is a functional graph, then e=o.

§9.
Lemma 5. If n, and =, are partitions with property P, then m;Nn, is a
P-partition, too.

Proof. If a=b (mod n;MNn,), a(a,c) and a(b,d) are true, then both of
c¢=d(mod ), c=d (mod n,) hold.

Proposition 4. There is a (uniquely determined) P-partition n* such that n*Sn
for each P-partition. :

Proof. G is a finite graph, hence the intersection n* of all P-partitions possesses
property P by a successive application of Lemma 5.
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Proposition 5. We have n*2e.

Proof. Let a,b be two vertices such that g(a, b). There is a vertex ¢ such that
x(c, a, c,b). Consider the 2k vertices occurring in (8.2), (8.3). (These vertices
fulfil now c=f,=g,, a=f;, b=g, instead of (8.1).) Since =n* has property P,
fi=g; (mod =*) follows inductively; especially,

a = f, = g, = b(mod n*).

We have shown that ¢(a, b) implies a=b (mod n*). Consequently, a=b (mod ¢)
implies a=b (mod n*) (because & is the transitive extension of ).

Lemma 6. If G has no sink, then ¢ is a P-partition.

Proof. Assume po(a, b), a(a, ¢) and a(b,d) for some vertices a, b, ¢, d. Then
there is a vertex h such that x(h, a, h, b), hence x(h, c, h,d), thus o(c, d).

Suppose a=b {(mod g}, ala, ¢), a{b,d) for an arbitrary quadrupie a,b,c,d.
There exist vertices ay, a;, ..., a, such that g(g;-,,a;) for each i 2=i=k) and
ay=a, a,=b. We can choose k—2 vertices c¢,, g, ..., ¢,—1 Such that a(a;, c)
holds (2=i=k-—1). By the beginning sentences of the proof, g¢(c;—;,c;) if
3=i=k-1; furthermore, ¢(c,c,) and g@(ck—y,d). Therefore &(c,d).

Proposition 6. If the directed graph G has no sink, then n*=e.

Proof. n*2¢ was stated in Proposition 5. n*C¢ is an immediate consequence
of Proposition 4 and Lemma 6.

Propositions 1,6 and Lemma 2 imply
Corollary 1. If G has no sink, then Gle is a functional graph.

Construction II. Let G be a graph without sinks. Denote the factor graph
G/e by G*. Choose a partition n’ of the vertex set of G* such that a’ is obtained
by Construction I. Define a partition. = in the vertex set ¥ of G in the following
manner: a=b (mod ) holds for a(€V), b(€V) exactly when [a],=[b], (mod ")

Theorem 2. Let G be a directed graph without sinks. The following three
assertions are equivalent for a partition 7 of the vertex set of G: )
(i) G/n is a functional graph,
(ii) = has the property P,
(iii) 7 can be obtained by Construction II.

Proof. The theorem becomes clear by comparing the following earlier results:
Theorem 1, Propositions 1, 4, 6, Corollary 1, Lemmas 1 and 2. (Now Lemma 1 is
applied for ¢ and = instead of =; and m,, resp.)

Proposition 7. Let G be a graph without sinks. The length p of the cycle of the
Sfunctional graph Gle divides the greatest common divisor p* of all cycle lengths
of G. . .

Sketch of the proof. Choose an arbitrary cycle Z; in G, denote the length
of Z’ by p’. Let us start with a vertex of Z’ and pass through all the vertices of
Z’; consider the corresponding vertices of G/e. We have passed through the
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cycle Z of GJe either one or more times; in any case, the number of surround-
"ings of Z is an integer. Thus p|p’.
Since the same assertion holds for each choice of Z’, we have p] p*.

Corollary 2. Let G bea graph without sinks. Then the following two numbers
are equal:

(a) the number of partitions © such that Gin is a cycle,

(b) the number of divisors of the cycle length p of Gfe (including 1 and p).

Proof. Recall "Construction II Theorem 2 and Proposition 3. It is clear
that G/n is a cycle if and only if =" is constructed (in G/e) by such a performance
of Construction I that B is empty. This means that we have (premsely) the
freedom of choosing a divisor of the cycle length of G/e arbitrarily.

V. Remarks, gxamples; an appendix
§ 10.

1. In the previous sections, a complete description of the partitions having
property P of connected finite directed graphs without sinks was obtained. In
the present remark, we shall outline how this description can be extended to non-
connected graphs.

Let ‘G be a non-connected directed graph containing no sink. Then G can be
represented (in at least one manner) as the disjoint. union of two graphs® G, G,.
“Consider a partition 7 -of the vertex set. V' of G; denote by =; (where i can be
1 or 2) the restriction of 7 to the vertex set V; of G;. Let [a], be an arbitrary
n-class; evidently, either [a},=[al,, or [a],=la],, (where necessarily acV; or
acy,, resp.) or [al,=[b1].,U[bs],, Wwith suitable vertices b;(€¥;) and by(€V,).
It is easy to see the validity of the following assertion :

Proposition 8. A partition n of V has property P zf and only if

., Ny are P-partitions, and

whenever a(a, b) holds in G and [a), is the union of a w-class and ¢ a ny-class,
then the same statement holds for [b],, too.

The above idea can be utilized in such a way that first we form G/e (which is
clearly the disjoint union of G,/e and G,/e), we apply the proposition for G/e,G,/e
and G,/e (instead of G, G,, G;, resp.), and we form the P-partitions of G by
using the P-partitions of G/e (analogously to Construction II)..

2. The exposed theory admits a dualization with respect to reversing the orienta-
tion of edges. (The dual of a functional graph is a graph in which all in-degrees
are one. Sources and sinks are dual to each other. The duals of the P-partitions
are the partitions satlsfymg

L e= d(mod n) & a(a, ¢) & a(b, d)) = a = b (mod ).

® Bach connected component of G is either a connected component of G, or a connected
component of G,
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The dual of g¢(a, b) is true exactly if there is a ¢ such that x(a,c, b, ¢) holds.
And so on.)

3. It can be shown that the P-partitions of a sink-free graph form a lattice.
The maximal element of this lattice is 1, its minimal element is &.

4. In [7], [9], [10] also “input-independent partitions’ have been studied. This
notion is a slight modification of the concept of “partition with substitution prop-
erty” (i.e.,, with property P). In our terminology, a partition = is called input-
independent when

(«(a, ) & a(a, d))=c = d(mod )
is universally true.
It is easy to see that this property is satisfied exactly when n2¢* holds where
is the transitive extension of the following relation o*: ¢*(a, b) is valid if either
a=b or there exists a ¢ such that «(c, a) & a(c, b).

8*

5. We finish the section with exposing two open questions.

Problem 1. Let an overview of the P-partitions of the finite directed graphs
containing sinks be given.

Problem 2. When does p=p* hold in Proposition 7?

§ 11.

In this section, we shall see some examples. The first example is used for
illustrating how Constructions I, II are performed. This example and the two
subsequent ones will serve for deciding the following questions:

(A) Is the relation ¢ always transitive, or is it really needed that it should be
extended transitively? (Cf. § 8.)

(B) Can it happen that n>e for a sink-free graph, but = does not possess
property P? (Cf. Propositions 4, 6.)

(C) Is the condltlon that sinks are not allowed indispensable in Proposmon 6?

(D) Is p<p* possible in Proposition 7?

First, let us consider the graph G, seen on Fig. 1a. Since ¢(c, f) and o(f, &)
are valid but g¢(c, g) does not hold, the transitive extension is a proper step when
¢ is formed. The classes modulo ¢ are:

{a}’ {b’ d}’ {c’f; g}’ {e}

D™
Qe
N

™

®)
Fig. 1.
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Fig. 1b shows the factor graph G,/e. (We write e.g. @ instead of [d],.) In G/,
there is only one choice for d, namely d=1. We have six possibilities for choosing
B, and Construction I can be performed in eight manners, the resulting partitions
are seen on Table 1. (If [B]=2, then we have two possibilities for the choice of
n;, because 7, is the maximal partition of B.) The vertex set of G,/e has fifteen
partitions; the remaining seven ones — among these,

{a, e}, {}, {ep) (11.1)
— do not have property P.
Table 1.
The elements The classes modulo
of B n
— {4,b, ¢ &)
a {a), {b, ¢, &)
b {a}, {b), {¢, &
é {a, b, ¢}, {e'}
{a}, {e}, {&, ¢}
a e
T V V {a_’ e-}’ {b’ E}
| N @, 6, (@), )
’ @, 6.3, &

Let us apply Construction II (with the partitions = of G,/e in the role of 7’),
we get that G, has eight P-partitions (from among the 15 partitions 7 fulfilling

n2¢). E.g,
{a}, {b.c,d.f, g}, {e}
is a P-partition of G, (obtained from the fifth row of Table 1), but
{a,c.f 8} {bd}, {e}) (11.2)

(got from (11.1)) is not a P-partition; in fact, a(a,b), a(c,¢) hold and a=c but

b#c modulo the partition (11.2).
The relation & for the graph G, in Fig. 2 (containing three smks) has the

following equivalence classes:

{a}, {b}, {c. d. e}, {f}, {g}-

¢ does not possess property P because c=e but fZg (mode¢). Therefore e=n*
in G,.
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Fig. 2.

Consider the graph G, in Fig. 3a. ¢ has (on G;) the equivalence classes

{a}, {b,c,d,e.f, g}.

G,fe is seen in Fig. 3b. We can observe that p=1<6=p* (with the notations of
Proposition 7).

a D

®)

Fig. 3.

Summarizing, the examples show that the answers to the questions (A), (B),
(C), (D) are: “the transitive extension is really needed”, “yes”, *“‘yes”, ‘“‘yes>,
respectively.

Each counter-example given above contains a source.

Problem 3. Do the above answers to the questions (A)—(D) remain unchanged
when we restrict ourselves to graphs without sources?

§ 12. (Appendix)

In this section our aim is to give a simple proof® for Conjecture 1 posed in [4].

Lemma 7. Consider the sequence ny,M;, "z, ... of partitions of the state set
A of a finite Moore automaton A=(4,X,Y,6,2). If m_,=n; for some positive
i, then n;=M1.

1o Tt should be noted that the idea of the present considerations is similar to a thought occurring
in [8], p. 14.
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Proof. Suppose #; D114, we are going to show..n_;>n;.. . The supposmon
means that there are two states a, b such that w(a, b)=i. We have i

a)(é(a x), 6(b x))_ =i-1 : .7 (12 1)

for each choice of x(€X ) and there is an x*(eX) for which equahty holds in (12 1)
The state pair 6 (a, x*), 6(b, x*) is congruent modulo ;-1 but mcongtuent
modulo ;. A

“The next assertlon is an easy .consequence of Lémma 7,

" Lemina 8._Let A be ds in the preceding lemma, denote |4] by v. Let m
be the smallest number such that N =MNm+1- Then m=v—1.

Lemma 9. Let A,v,m be as in Lemmas 7,8. If two states a,b satisfy
w(a, by=v—1, then w(a,b)=-e

Proof. Assume that a,b are congruent modulo 7,_;. They are congruent
modulo 7, by Lemma 8 and (5.1); consequently, by the definition of m and
Lemma 7, they are congruent modulo each of 7,41, fm+2s m+3s --- (ad infinitum).

Proposition 9 ([4], Conjecture 1). Let A be a finite Moore automaton such
that the number v of its states satisfies v=2. Denote the complexity of A by k.
If k is finite, then k=v-2.

Proof. By the finiteness of k, w(a, b) is infinite (if and) only if a=b. Lemma 9
assures (a, b)=v—2 whenever a=b.

Corollary 3 of [3] shows that Proposition 9 cannot be.sharpened..
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On injective attributed characterization of 2-way deterministic finite
state transducers

By M. BArRTHA

Definitions and notation

_ A 2DFT starting from the left (right) is a 7-tuple T=(0,X,L,R,Y,34,q,),
where : -
(i) Q is a finite, nonempty set of states;

(ii) X is a finite, nonempty input alphabet

(iii) L (left endmarker) and R (right endmarker) are dlstmgmshed symbols
not in X;

(iv) Y is a finite output alphabet; -

(v) 8: OX(XU{L, R)~OXTYX {left, nght} is a part1a1 functxon

(vi) g,€Q is the initial state.

tuformally T functions as follows. . The input word is surrounded by the two
endmarkers, and T starts from state g, with its tape head reading the left. (right)
endmarker. The moves of T are described by the transition function é in the usual
way (cf. [1]). The transduction terminates successfully when T moves right of
R or left of L. It is obvious that the left or right start of T is only a technical
question. T is called an IDFT if & allows it moving in only one direction, = . -

Let 4 be a finite, nonempty set such that 4=4.,UA4; and 4,N4;=0. The
elements of A, and A4; are called synthesized attributes (s-attributes) and inherited
attributes (i-attributes), respectively. Define the monoid M(4, ¥) (Y .is a- finite
alphabet) as follows. M(4, Y) consists of all partial functions .of 4 into AXY™*.
D1SJom1ng (eM(A, Y) into four parts we can represent it by the followmg dlagram,

A, -~ A, XY*
4 .
é: - -gtl IE’
AXY* « A;

where é= E UE Ué, Uf and Es, &> &5 & have pa1rw1se d1s_|omt domams To make

this kind of diagrams composable we rather consider ¢ as a partial function
& AXY*~AXY* where &(a,w) (acA, wEY*) can be obtained from -&(a)

2+
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by prefixing its second component with w. For simplicity we use the abusing
notation ¢ =¢, and do not indicate the factor Y* in the diagrams. For a€ A4,
the first and the second component of &(a) will be denoted by atir (¢, a) and
out (£, @), respectively. attr (£) will denote the partial function {(a, attr (¢, a))|ac A}.
If Y=0, then we identify ¢ with attr (). ¢ is called injective if such is attr (&).
Now if &, n€M(A,Y), then Eon={ can be constructed as follows.

A o4, T 4

e e ¢ ‘.“_ L g’.l’_" . "l . . R
- Tl . A

Ai ;...Ai,

-

ta

= anJo (Es o (ﬁl o és)" ° ﬁs)'; - <Z; = El U (."LEJO (Es o ('_]l o _s)" o ﬁi o é;))
= ,.szo (’_1; o (§s oif;)" °§i) 5 ':€5.= Q's.U'.(ntsz (’_1. o @s of)"o és o '_ls))

_ ¢ is-well defined, since in each case those: partial mappings, the union of which must
be taken have pairwise disjoint domains. It is easy to verify that this composition
is associative, preserves injectivity, and the unit element of M(4, ¥) corresponds
to the identity map of AXY* For acA, path- (¢on, a) will denote the sequence
of atttibutes reached in the above composite diagram during the computatlon of

Eon(a).

Definition. ‘A simple deterministic attributed strmg transducer (SDAST) starting
from the left (right) is a 7- -tuple A=(4, X, L, R, Y, h,a,), where ..

(i) A=A4,U4; is the finite, nonempty set of attributes, A,MNA4;=0;

@) X, L, R ‘and Y -are as in the case of a:2DFT;
i (iii) h is:a'mapping of X(L, R)=XU{L, R} into M(4,Y);

- (iv)-if A starts from the left, then a,€ 4, else aj€A4;.

Denote the extension of h to-a homomorphlsm of - X(L, R)* into M(A Y )
also by k. “Then the transform of wéX* by A is out(h(LwR), ao) Ais called
m_]ectlve 1f h(x) is mJectlve for every-x€ X(L, R).

. Lemma 1. 2DFT and SDAST are equ1valent 1e they define the same class
of mappmgs

- Proof Let T=(0,X,L,R;Y,9, qo) be a’ 2DFT, and define the SDAST
A= (2Q X, L, Ry Y h, ay) as follows A, and A4; are two (dlSjOlnt) isomorphic
copies of Q. Let g, and ¢; denote the correspondmg s-attribute and i-attribute
of a state g€ Q, respectively. Then for x€X(L, R) and g€Q, h(x)(q,) and h(x)(q;)
are defined iff 8(g, x) is defined, and in this case ,

@@ =hoe= ({2 ) w] i 569 = (e {Zf;,’”}]

ao—(qo), if T starts from the left, otherwise ao—(qo), It is easy to see that T and
‘A ‘are equivalent. .
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Let A=(4,X,L; R, Y, h,;a5). ' be an SDAST and.define the 2DFT T=
=(4,X,L, R, Y,5,a,) as follows. For xEX(L R) and aEA 5(a, x) is defined
1ﬁ' h(x)(a) is defined, and in this case

5(a ¥) = ( {;’%”}] if - h(x)(a)—(b W) with be{ }

The equivalence of T and A is agam ev1dent. Now we prove a lemma-similar
to Lemma 1 in [2]. Y ’ C

Lemma 2. Every SDAST mapping is.the composition of two IDFT mappmgs
and an lnjectrve SDAST mapping. '

Proof. Let A=(4,X,L,R,Y,h,a,) be an SDAST startmg from the left,
w€X*, and suppose that LwR=w,xw, for some x€X(L, R), w,€X(L, ‘R)* (i=1,2).
The tr1p1e a=(w,, X, w;) indicates an x-labelled node in LwR. Let ¢=attr (h(wy),
n=attr (h(xwz)) called the left and right dependency graphs of ox, respectlvely,
and define the subsets 4{” and A® of A4 as: :

(i) if h(LwR)(ay) is undeﬁned then A(")—A(")—ﬂ

(i) else A""— (E °(n.0€s) (ao))

AW = U G o(m0~f) on.(ao))

AM(A) is the set of useful s-attrlbutes (1-attr1butes) at node a, ie. only these
- attributes of a take part inthe transduction of w. Our goal is to mark each node
of LwR with a set 4,S A4 which consists of the useful s-attributes of the node and
the useful i-attributes of - its right neighbour. (Take A(")—ﬂ at'the “right neighbour
of (Lw, R, 2)”.) This can be achieved by the successive application of two IDFT
as follows. The first 1IDFT T, starts from the right and marks each node with
a pair consisting of the right dependency graph of the node and that of its right
neighbour. The set of possible right dependency graphs is finite, so it can be used
as the set of states for T,. The second 1DFT T, starts from. the left, and at each
node first computes the left dependency graph of the node and that of its right
neighbour, then from the mark put by T, it is able to.compute: 4, and write it
out as a new mark.. -

Let. X' S X(L, R)XP(A) denote the alphabet of those marked symbols that
can be achieved by the above marking process, and let A’= (A X, L, R Y, W, ao)
be the following SDAST (starting from the left).

(i) W(L) and H(R) are equal to the unit element of M(A Y);

@) if (x, 4,)€X’, then K((x, 4,)) is the restriction of h(x)‘to 4,.

A’ is injective, because any duplrcatlon wouild imply a circular. dependence among
the useful attributes, which is impossible.. (Note that if - (x, ‘4,)€X’, - then there
exist wy, we€X(L, R)* such' that w,xw,=LwR - for some wecX*, and:the set
of useful attributes at the node (w,, x,w,) and its right nelghbour is A;) Itis
also clear that the composite-application of T,, T, and A’ defines the same mapping
as A. The case of a right start can be treated symmetrlcally I

ot
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Simulation of 1DFT by injective SDAST

Let T=(Q,X,L,R,Y,d3,q) be an 1DFT starting e.g. from the left, Q=
={q,, ..., 4,}- It can be supposed without loss of generality that & is completely
defined on: QX X. We shall use the following attributes to simulate T.

AP = {s(i, Nl =i j = nfU{s@)li€[n])
as synthesized attributes, and

SR AP ={iGHl=ixj=n)
as inherited ones.

For A,=AMUA™ let HSM(A4,,0) be defined as follows. ¢€H iff it
satisfies the following three conditions. : :

(i) for every 1=j<k=n {£(i(j, ), &k, N))=1{s(, k), sk, )3
" (ii) there exists an i¢[n] such that

a) &(s(1))=s(), and :
b) £(i(i, j))=s(min (i, j), max (i, j)) for every ji;

(iii) for every 1=jsk=n and i#l, &(s(j,k)) and &(s({)) are undefined.

It is easy to check that the elements of H are injective. We can define an equi-
valence relation on H as follows. £=y iff &(s(1))=n(s(1))..[Let #; (i€[n]) be an
arbitrary representant of the equivalence class characterized by #,(s(1))=s(i).

Lemma 3. For any mapping f: Q—Q there exists an injective ¢&,€M(A,, )
such that o : .
f(g) = q;(, j€[n]) implies n; o, =1;. @

Proof. We follow an induction on n to construct ¢,. The case n=1 is
trivial. Let n=p+1 for some p=1, and suppose first that f is injective. Then take

Es@)=s() if flg)=gq;
¢ 8GN =s,j) if (flg), f(a) = (gss 45,
6j(i(l9])) = i(l,’.”) if (qi, q;) = (f(ql'), f(q_]'))

It is clear that (1) is satisfied this way. If f is not injective, then interchange the
subscripts of the states so that f~*(g,,,)=0 should hold. Let g=7|0\{gp+1}
and constrict £,€M(A,,0) to satisfy (1). This goes together with a reordering

Of Q\{qp+1} tl‘!at we fix from now on. Let f(qp+1)=qm and g_l(qm): {qmp ceey qu},
where m;<m; if 1=i<j=k. We construct £, in two steps.

Step 1. (i) for each j€[k] -
- ) Ep(s(my)=i(m;, p+1), &p(s(my, p+1)=¢,(s(m))),
b) &,(s(p+1, m,)) is undefined; -

(ii) &,(s(p+1))=if k=0 then s(m) else i(p+1, m);
-+ (iii) for each je[k—1, & (s(my, m))=i(p+1,m));
. ( )(iv)g f(or) any other a€{s()|i€[pl}U{s(i, H|1=i=j=p and f(g)=f(g))}

a)=¢,(a).

! It isg easy to see that (iii) is in fact not a real modification of &,, because
&,(s(my, m;)) is undefined. (i)/b assures the same situation for &,. It is also clear
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that the segment of £, defined so far is injective. After descrlbmg the ﬁrst step
of the construction we can prove that if f(g;)=gq;, then . ) :

n.off(s<1))—so) e

If j#m, then we only have to observe that path (mot,, s(l)) path (n,oﬁ,, s(1)).
The abusing notation #; can be used on- both sides” of this equation provided
mE€M(A4,,0) on the rlght hand side is the restriction of n,€M(4;.,,%) - on the
left hand side. Let j=m, q;€g7*(g), path (n,oég,s(l)) S(l)XOC, where «is an
appropriate sequence of attributes ending with s(m) Then, using. (1)/a 2) follows
from the equahty B . o

path (n,ogf,s(l)) (S(l) 1(z,p+1),s(z,p+1))><oc .

Finally, if i=p+1, then for the first sight it seems possible that the last attribute
of path(n;0é,, s(l)) is s(p+1,r), where g,€27%(q,). (By (i)/b ¢, is undefined
on these attributes.) However, this' would imply ‘that the tail of this path should
be (s(r), i(r, p+1),s(p+1,r)), which is impossible. Thus, the last attribute of the
path, must be . s(m), which is the only way out of the circle it has entered (1 e.. of

the set {s(r), s(r; 5), i(r, 5) |r s, {q” a }cf 1(qm)})
. Step 2. (i) for each ic[p] o

7 (8,GG, p+1)) f,(x(p+1 ) = (s(: p+1) s(p+1 0);
(i) if f‘l(q,) 9. for some IE[P+1], then

----- (f,(l(m 1)), éf(l(z m))) (s(mm (m; i); max-(m, 1)), s(max (m, 1) min (m, l)))
(111) if lE[p],l;ém and f7Yg)= {4,> -5 g, for some [=1; then -
a) éf(l(ma l))_l(llap+1), a A
b) &p(s, p+1))=¢,(i(m, D),
0) &(sG p+1)=i(p+1,52y) if 1<ksl
d) &;(s(p+1, i) =i(s1, p+1) if 1=k=<l,
e) &(s(p+1,ip))=s(min (m, i); max (m, i)); - -
f) &p(¢; Y (s(min (m, i), max (m, i)))=i(p+1, i)); , ’ v
(iv) for any other ac{i@i,H|l=i=j= p}U{s(z j)]1<1;éj<p and f(qi);é
¢f(q1)} éj(a) ég(a)
.. Again, let i, j€[p+1]), f(g)=g;. Weprove.that . . S
a) for every 1=r#s=p+1" e (3)

ot (986 ) = (56 s M), and
B fore s SN
. moé;(l(], s)) = s(mm(J s), max(; s)) L

(3)/a Follows from the fact that all the attr1butes but the last oné of path (nio é 7 1(r, s))

are in the set {s(i, ), i(i, HI{f (@), f (g)}= {q,, g,}} and there are only two ways
out of this circle which lead to.'s(r; s) and- s(s, r).. To prove'(3)/b we dlstlngulsh
three cases.
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1) i=p+1.
a) f~Ygq,)=9: consider (ii),
b) f~4q)=1{qys> ---» 45} for some I=1:

path(r],OC,,i(j,s)) (i(sl’ +1)a S(p+1 S]_) al(sl9p+1)o_
s(p+1, ), s(min (m 5), max (m s)))

2) 1¢p+1 and s#m.

. a) s=p+1: consider (i), :

b) s#p+1: path (n,0¢,, i(J, 5))=path (mOE,, l(J, s))
3)i2p+1 and s=m.

Let f~g)={qi; ---» g} (=1), i=i; for some 1=k=l:and
3 S Copath(mody,i(m, ) =e. ot
Then =~ "~ PR

L " o "~ path ('li°ff,1(m N)= BX“ L
where B=(i(i, p+1), .. 51, p+1), s(l,,p+1), s s(ll,p+l)) for some r=k;
Since the last attribute of @ is 's(max (m, j), min (m, j)); (2)/a implies that
&,(i(j, m))=s(min (m, j), max (m, j)). Finally, (2) and (3) imply (1).

It must be noticed, however, that (1) holds only under one particular ordermg
of Q. Let us fix an arbitrary order, i.e. suppose that Q=[n]. Then:by steps 1 and
- 2 we in fact construct &;, where f'=p ofop for some bijection ¢. Since
f=gof’op™}, we can take é, E,08 0é,-1. (Recall that n; is an arbitrary
representant, and the construction of e and &,-:..can be carried -out directly.)

Now define h: X(L, R)~M(A,,Y) asfollows. For x€X consider the mappmg
f:[n]—~[n] for which f(iy=j if 6@, x)=(j, w). Let"~ -

() attr (h(x))=¢&;;
(ii) for each i€[n]
out(h(x), s()))=w if 6(i, x)=(, w)
(iii) foreach 1=i#j=n
out (h(x), s(i, 7))=out (h(x) G, ) =4 : ’

Extend h to a homomorphlsm of X* into M(A,,, Y ) An easy 1nductlon shows
that for any u€X™ 6(i, )=(j, w) 1mphes that .

.a) attr (moh(W)=n;:. . . o

" b) out(n; oh(u), s(1))=w. .

Thus, to make T and the lnjectlve SDAST (4,, X, LR Y,h, , Go) equlvalent we
only have to set:

() g=s(1);- .

(i) if g=i and 6(1 L) ( 7, w), then h(L) n, ‘with  the modiﬁcation
out (h(L), s(1))=w;

(iii) A(R)(a) is defined iff a= s(l) (lE[n]) and 5(1 R)( 3, w)) is deﬁned In
this case h(R)(S(l))—(S(I),
¢+ In [3] we proved that mjectlve SDAST mappings are closed under composxtlon
Thus, using,Lemmas 1 and 2 we get the followmg result

t

' Theorem. SDAST; ‘injective SDAST and 2DFT deﬁne the ‘same- class of
mappmgs
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Corollary. ([1],[2]). 2DFT mappings are closed: under composition. Other
results of [1} and [2] concerning 2DFT with regular lookahead (which are called
quasideterministic in [2]) and the reverse run of 2DFT can also be derived from
this theorem.

Abstract

The result indicated in the title is achieved as a corollary of the following four statements.

1. 2-way deterministic finite state transducers (2DFT) and simple deterministic attributed
string transducers (SDAST) are equivalent.

2. Every SDAST mapping is the composition of two 1DFT mappings and an injective
SDAST mapping.

3. 1DFT mappings can be defined by injective SDAST.

4. Injective SDAST mappings are closed under composition.
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On some extensions of russian parallel context
free grammars

By JURGEN Dassow

1. In the last years some authors have studied the effect of mechanisms regu- .
lating the derivation process to the generative capacity. The matrix grammars,
programmed grammars, random context grammars, and periodically time-variant
grammars belong to the most investigated mechanisms. A, Salomaa, O. Mayer,
and M. V. Lomkovskaja, and others have given the results in the case of context
free grammars (see [11], [5]); eoncerning L systems investigations have been done
by S. H. von Solms, G. Rozenberg, and P. J. A. Reusch (see [12], [8], [6]); the author
_ has considered _extension of indian parallel context free grammars ([1]).

In this note we will complete these results and study the generative capacity
of extensions of russian parallel grammars introduced by M. K. Levitina [3]. Already
Levitina regarded the extension by the matrix mechanism and proved that the as-
sociated family of languages coincides with the family of programmed context free
grammars. We will show that also the extensions by the mechanisms of programmed
grammars, random context grammars, and periodically time variant grammars
generate the same family of languages.

2. For sake of completeness, we will recall some definitions shortly. For detailed
information see [11], [3). A russian parallel context free grammar is a construct
G=Wr, Vy, P, S) where

) Vr and Vy are disjoint nonempty finite sets, V=VyUV7r,

il) P is a finite set of pairs (p, i) where i€ {1, 2} and p is a productlon
A—-w with AeVy, weVt,

iii) S€Vy.

The derivation x=y, x, ye V' *+, is defined by
1) x=2x; AXp, y=X1 WXy, X1, X2 V¥,
i) (4—w, DEP -
or by
1) X=X, AX3 AX;3 ... Xy AXyy P=XyWXgWX5 o0 X1 WXy X15 Xz -0 X E(V\{A})*
i) (A—-w, 2)EP. .

% denotes the reflexive and transitive closure of =. The language L(G) generated
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by G is defined as
L(G) = {w: S5 w, we v}

Now we will give some mechanisms regulating the derivation process.

Programmed grammars: Each rule has the form (/:(A-w,i), F,S) where
1 is the label of the rule, F and S (the failure field and the success field) are sets
of labels. If A4 occurs in x, we rewrite x (as in a russian parallel grammar),
and in the next derivation step we have to apply a rule with a label in S. If A does
not occur in x, we apply a rule with a labelin F.

Random context grammars: Each rule has the form ((4-w,i), U, T) where
U and T are subsets of Vy. The production (4—w,i) is applicable to x if
and only if any symbol of U occurs in x and no symbol of T occurs in x.!

Periodically time variant grammars We assoc1ate a subset ¢(i) of P with
an integer i=1 such that, for each k, o(n+k+j)=¢(n+k) for some n and j.
The rule applied in the i-th step of the derivation has to be choosen from the set ¢ (i).
‘For these three type of grammars, the generated language is defined as above.

Matrlx grammars A matrlx m=[ru Ty - r, ] is .an ordered sequence
of rules r;, j€P. The applrcatron of. a matrix m; to a word x is defined as the
apphcatlon of the rules.r; in the given order.. The _generated language consists
' f all words over ¥; which.can be derived from S by apphcatlons of matrices.

- We use the following notations:; -

.9*’ (PRP) — family of programmed russian parallel languages

F(RCRP) — family of random context russian parallel languages,

F(TVRP) — — family of russian parallel periodically time- variant languages

F (MRP) —family of russian parallel matrix languages.

. If i1 (i=2) for all rules (A-w, i) of P, we get the context free grammars
'(1nd1an parallel context free grammars, 1ntr0duced by K. Krlthlvasan and R. Siro-
moosey) and its assoc1ated extensions. We will use the letters CF or IP instead of
RP to denote the corresponding family of languages. . It is known that

F (PCF) =% (RCCF) = F (TVCF) = # (MCF),

 F(PIP) =% (RCIP) =  (TVIP) = F (MIP),
and T
- 'F XIP)C F(XCF) | for Xe {P,RC,TV, M}.

- 3 We will prove analogous relat1ons for russian parallel versions, too
Theorem. #(PRP)=F(RCRP)= f (TVRP) F (MRP) .?"(PCF)

Proof 1) By definition, f(XCF )C?(XRP) for Xe¢ {P RC, TV, M } There-
fore we have to prove F(XRP)SF(XCF) only.
iiy #(PRP)C #(PCF).

<ty oA

1 This deﬁmtlon is due to Lomkovskaja and differs sllghtly from van der Walt’s deﬁnmon
‘The difference has no etfect to the generatwe capac1ty By the parallel rewriting (if i=2), the above
definition. is-more useful;

Tt
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" Let. L=I(G) for the programmed russian parallel grammar G=(V7, Vy, P, S).
We will construct a programmed context free grammar G’ which simulates:the
application of rules (4-w,2) by a set of usual context free productions (in the
construction we will write only B—v instead of (B—»u, 1)). We put

V' ={4;:(1:(4 - w, 2), F, S)c P},
={(:4A - w, F, 8):(I:(4 - w, 1), F, S)c P},
={U:4 — 4y, F, {I)):(1:(4 = w,2), F,.S)eP),
Ps = (A ~ A, {7}, (VD) (: A—-w2),F, s)ep
={(": A4~ w, S, {I"):(l:(4 ~w, 2), F, S)eP}

and G'=(l;, I/;vUV’, P,UP,UP,UP,,S). - Obviously,. G'. is .a programmed
context free grammar with L(G")=L.

iil) F(RCRP)SF (RCCF ).,

Lét" LEF(RCRP) and L=L(G) for some random context russian parallél
grammar G=(, Vg, P, S). We introduce new alphabets ¥; and. ¥ .by

={A;: A€Vy}, i=1,2, and define the homomorphism h on ¥ by h(A) A,
for AcVy and h(a)=a for aEVT Further we put - .

{(A—»w,UTUI/lUVZ) (4 ~w, 1), U;T)eP}, . L
Py={(4 ~ 41, U, TURUDNAD):(4 ~ w. D, U, T)El’}e. ,
= P={(Ay~ h(w), (UN{ADU {4}, (TU {3 U N ():
| bz((A ~w,2), U, T)eP), -

{(Az e A AR NIAR

and
= (I, WUhU¥, PIUP2UP3UP4, S)

If the production (4-w,1) is apphcable to x in G, then the 'coi'r"esponding
production of P, is applicable in G’, and we derive.the same word in both gram-
mars. Now let (A-+w,2) be applicable to 'x in G and derive the word y:" Then
A4, is applicable to x in G’, and then we have to'apply 4—~4, on-all occur-
rences of A4 in x. Now we can apply only 4; —~h(w), and we have to do this substitu-
tion at all occurrences of 4,. Then we have to use the applicable rules of P, and we
get also the word y. Therefore L(G)CL(G’) The other inclusion can be proved
by analogous arguments. Thus we have constructed a random context (context
free) grammar G’ with L=IL(G").
iv) F(TVRP)SF(TVCF).

. Let - LEF(TVRP) and L=L(G) for some periodically time-variant russian
parallel grammar G=(Vr; I/;,,,P S). Let ¢(i) be the subsets of P such .that
@(m)=¢(m+J) for a certain j and all m=n. We.will construct a programmed
russian -parallel grammar G’ such that L=L(G’), which proves % (TVRP)S
C#(PRP). Thus & (TVRP)CFI (TVCF ) by ii) and the result concerning the
context free case, : RS
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Let Vy={4,,...,4,). We introduce new alphabets ¥V,={4,;: 1=k=s}
and the homomorphisms h; on V by

_ Aki lf X = Ak’
h‘(x)_{a if x=aclW
for i=1,2,...,n+j—1. Further we put

¢'() = {(Aki = haW), )il =k=s (4 ~w, ")E‘P(i)}

for i=12 ..,n+j—2,

@’ (m+j—1) ={(Agpejor = BaW), Pl sk =5,(4, = w, €p(n+j—1}.

atj-1

We consider the programmed russian parallel grammar G'=(Vr i U W FP,S)
. i=1
where the elements of P are given in figure 1.
" Obviously, L=L(G").
v) F(MRP)S F(MCF).
This fact follows from Levitina’s result # (M RP) Z(PCF). (Using the method
of iv) we can prove 1t)

Corollary 1. For X¢{P,RC, TV, M}, #(XIP)E F#(XRP).

Because some of the properties of #(PCF) are known, for instance & (PCF )
forms an AFL, we get also information on the extensions of russian parallel
languages.

4. A language L is called of index k if there exists a grammar G with
L(G)=L such that any word w€L has a derivation with the property that each
sentential form of this derivation contains at most k occurrences of letters of VN
L is of finite index iff there exists an integer k& such that L is of index k.

By #(X)gn we denote the family of languages of #(X) which are of finite
index.

By the results of [9], [7], [10], and the fact that the construction in [1] and in
this note preserve the finiteness of the index of a language, we get a second corollary.

. Corollary 2. g(PCF)FINZy(RCCF)FIN ==97(TVCF)F1N= o_(MCF)FINz
=F(PIP)py=F (RCIP)pn=F (TVIP)p;y=F (MIP)p;y=
=F(PRP)pn=F (RCRP)pn=F (TVRP)pin=F (MRP)gy.

In 9], propertles of this language family are studied. For instance, it forms an
AFL again.

-5. Finally, we remark that the context free languages and the russian parallel
context free languages are incomparable with the extensions of indian parallel
languages. This follows by the following facts:

— {a@"b"c": n=1} -is in F(MIP), it is not a russian parallel context free

. language (3]), .
— the extensions of indian parallel context free languages coincide with the
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KON — o
N F \ 1
(A ~ A, 2) o'(n) -—
s . F . s'l : r
(Ail - Alh 2) N (Aln i Al,n+ly 2)
s x F - ) sl F
lp . o sl lp
(i = 4 ) | Aon = Arpss D)
s| | : o sl-‘ o F
e |— | o'(n+1)
S F Sl F
(Aiz ~ A5, 2) sl : . lF .
—— —= A R
l 1 S ¢'(n+j—1) —
(A A2 o R )
st . . F - ) S . F
¢,(3) ) T sl . i‘l
(AI,H+]-1 ng Anm 2) 5
‘(Ais - Aie, 2)
) s F . ’ - -
sl R 1F et ES
F -

Figure 1 J

An arrow labelled by S leads to the success field; an arrow labelled by F to the failure field.
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Z (PRP) = % (RCRP) = # (TVRP) = F (MRP) =
- - -~ =F(PCF) =F (RCCFYy =% (TVCF) =% (MCF)

jgc(pjp) ;‘?(RC“II");”/(TV'IP) =}(‘M1P) - FRP).

t

F(IP) # (CF)
s Figure 2
X Y denotes X< Y X=Y. Language famrhes which are not connected are mcomnarable

§ L V- H

: EDTOL languages ([l]) and there are context free languages whlch are
not EDTOL languages :
Thus figure 2 gives the complete relation between the regarded language farmlles

\
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A new method for the analysis and synthesis of
finite Mealy-automata

By Cs. Pusk4s

In this paper we deal with the problem of analysis and synthesis of finite
Mealy-automata. As it is known, this problem-has already been solved, namely,
it is proved, that if X and Y are non-empty finite sets and o: X*—~Y* is an
automaton mapping, then there is a finite Mealy-automaton inducing « if and
only if all classes of the partition C, of X* corresponding.to o are regular
languages (see [3]). For a given automaton mapping, a Mealy-automaton can be
constructed inducing it and vice versa, but the known algorithms use, as an inter-
mediate step, the notion of the acceptance of languages in automata without outputs
and the synthesis algorithms give no reduced automaton, generally. In this paper
we give a new proof of the previous theorem, which provides us more advantageus
algorithms for both the analysis and the synthesis of finite Mealy-automata. . In the
latter case, our method supplies immediately the minimal Mealy-automaton inducing
a given finite automaton mapping.

Preliminaries

Let X be a finite non-empty set. We shall denote the algebra of all languages
over X by Z(X) and the set of all matrices over- £(X) by M(X). A matrix
NeM(X) issaid to be of type mXn ifit has m rows and » columns. The language
in the i-th row and in the j-th column of N will be denoted by (N),;. Based on the
regular operations (addition, multiplicationvgnd iteration, denoted by +, - and
{}; respectively) in #(X), we introduce the following operations on M(X). If
Le#(X) and NeEM(X), then L-N and N.L are language matrices, defined by

(L ‘N);;=L-(N);; and (N -L);; = (N);;-L,

respectively.. Let N and P be two language matrices of the same type. Then the
sum N+P is the language matrix, given by

(N +P)ij = (N)ij+(P)ij- ‘ 3
If Nisa language matrix of type mXn and P is another one of type nXp, then

3 Acta Cybernetica V1/4
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we define the product N-P in the usual way of matrix products, i.e.,

N-B)y = 5 M- Wy

Using the definition of the product we can form the powers of quadratic matrices
as follows: let
Nf=NF-L.N (k=1,2,..),

where N°=E means the unit language matrix, that is,

e if i=j,
(B = {ﬂ if i#j.
Finally, the iteration {N} of a quadratic matrix N is defined by

Ny = SN
k=0

We note that we use the term langnage vector instead of language matrix if
it has only one row or only one column. The set of all row language vectors over
Z(X) will be denoted by V"(X) and the set of all column language vectors over
Z(X) will be denoted by V(X).

Let NeM(X) be a quadratic matrix of type nXn. Take a directed graph
with n nodes, which are labelled by natural numbers 1, ..., n and there is an arrow
from the node i to the node j if and only if e€(N);;. This graph is called the
characteristic graph (see [3]) of the matrix N. If the characteristic graph of N has
cycles and the node i belongs to a cycle, then the number i is said to be a cyclic
number with respect to N.

Now we consider matrix equations of form

N-Q+P=Q, ¢y

where N and P are given language matrices and N is of type nXn.
We shall use the following results which are generalizations of some results
due to V. G. Bodnarcuk [2] (see also [3, 4, 5, 7]):

Statement 1 [6]. If the characteristic graph of N has no cycle, then
Q={N}-P

is the unique solution of the equation®(1). In the opposite case, every solution of (1)
has the form

Q = {N}-(P+R),
where R is an arbitrary language matrix with the same type as P, such that if
i (1=i=n) is not a cyclic number with respect to N, then (R);;=0 for all j.

Statement 2 [6]. If the equation (1) has a unique solution, then it can be determined
by subsequent elimination of unknown rows of the matrix Q.

Statement 3 [6]. If every element (N);; and (P);; of the matrices N and P,
respectively, is regular and the characteristic graph of N has no cycle, then every
element (Q)y; of the solution matrix Q of the matrix equation (1) is regular.
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Connections between language vectors and automaton mappings

It is known, that every automaton mapping o: X*~Y*, where X and Y are
non-empty finite sets, determines a partition C, of X*, which consists of classes

L,= (peX*|a(p)=y) (EY).

Here 7 denotes the last letter of the non-empty word r. Conversely, every partition
C of X+ defines a unique automaton mapping a:X*—~Y* appart from the nota-
tion of elements of Y. This fact makes possible for us to establish a one-to-one
correspondence between automaton mappings and certain language vectors.

In the following we use the term /-vectors instead of row language vectors and
they will be denoted by a, b, ¢, ....

An l-vector a€V"(X) is said to be complete if the sum of its components a; is
the free semigroup X+ and the intersection of any two components 4, and g,
(i#Jj) of a is the empty language.

It is obvious that if X =(xy, ..., X)), Y =(}, ..., Ymp and o: X*—+Y* is an
automaton mapping then we can correspond to « a complete /-vector a of m
components, such that

a; = <P€X+l°‘_(—1’) = J’i> (i=1,..,m.

Conversely, if ac¢V”"(X) is a complete l-vector of m components then it determines
an automaton mapping o: X*—Y*, such that a(e)=e and for p=x;x, ... x;,
a(p)=y;,¥j, --- ¥, if and only if x;€a;, x; x,.€a;,, ..., Xiy Xy, ... X, €4y, .

An l-vector acV'(X) is called regular if every component of a is a regular
“language. ’

A system ({a,, ...,a,) of complete /-vectors from ¥V"(X) is said to be closed
if there exist functions

S (oo WXL o By > (1 oy m)

and
b: {1, ..., n) - V" (X),
such that
b= 2 x;
x;€apn
and : v
8= 2 Xja5,;+b() R ¢))
xJGX

for all i (=1, ...,n) holds.

We would like to direct attention to the fact, that a closed complete I-vector
system can be considered as the rows of a solution language matrix of a matrix
equation (1). Indeed, if we set

N);= 2 x (Gj=1,.,n)
sG0=j
and we put a; and b(i) into the i-th row of Q and P, respectively, then (2) gains
the form (1). Therefore, by Statement 3, we have got immediately the following

Lemma 4. If (a,, ...,a,) is a closed complete l-vector system then a,, ..., a,
are regular.

3s
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Theorem 5. -Let U=(4, X, Y,;8,1) be a finite Mealy-automaton with state set
A=(ay, ..., a,), input set X = (xl, ooy X1y, output set Y =(py, ..., Vuy, transition
Sunction '(5 AXX—»A and output funcnon ArAXX-+Y. Let f and b be the
furictions - -

VE <1 . n>)(<] 1>—f<l, ceey n), defined by 6 (a;, Xj)-—af(,',j) and

b:{1,..,n) ~V"(X), givenby b@)= 2 x;.

. l(a,,xj)=y,‘
Then the l-vectors a,€V'(X) (i=1, ...,n), where 4
' ay = PEXHA@,p)=y) (i=1,..,n; k=1,..,m)
Jorm a closed complete l-vector system, that is, satisfy the equalities (2).

Proof. 1t is obvious that a,,...,a, are complete I-vectors. Thus we have to
show that a;, ..., a, satisfy the equalities (2). Let i (I1=i=n) and k (I=k=m)

=i» y

be arbitrary index pair. We prove that
- Ay = Z xja,(;,j)k+b(i)k.
x;€X
Let p be an arbitrary element of "a;,. We distinguish two cases.

‘ Case I. If |pl=1, ie., p=x; for some j (1=;=I) then x;€a,; implies
‘A(a;, x;)=y,. Hence, by deﬁmtlon of b, we have that x,€b(i), and therefore
PE 2 X af(l J)k+b(l)k : R

. :Cas_e 2. If |p|=2 then p=x;q (1=j=l) and

Vi = AMa;, p) = Ma;, x;9) = A(a(aia x;), ‘I) = Masa,j 9>
that is, g€ayq ;. and p=x;9€x;a., ,)k— Z X;asq px+b(@). Conversely,
let p be an arbitrary element of 2 X;a;q, ,)k+b(t)k If peb(i);, then [p|=1

and A(a;, p)=y, and therefore pEa,k If pex;az; for some j (1=j=l),
then p=x;q with g€a,; ;.. This implies that

. Yie = Aasi, 5y, D) ="1(5(aia x;), 4 = A(a;, x;q) = Aai, p),
i.e., p€ay. Thus we have shown that
- Ay = 2 XAy, J)k+b(’)k

for all i (1=i=n) and k (ISkSm) holds. O *
By Lemma 4 and Theorem 5 we 1mmed1ately get

- Corollary 6. If U=(4,X,Y,8,%) is a finite Mealy automaton then for all
state -a€A and output. y€ Y. the language

T et e g = (pEX ¥ A (a; p) = ¥
is regular.
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Theorem 5 and Statement 2 provide us an algorithm to the analysis :of finite
Mealy-automata. To illustrate this, let us consider : -

Example 1. Let U be the Mea]y-automaton given by the transmon -output’ table
Q[l a a as -

(am u) ((13, U) (az, u)
(03, D) (a2, W) (aay W)

Taking the ordering u<v<w of the output letters, by Theorem 5 we have the
followmg l-vector equatlons

a, = xaz"”}-’aa."’ [x, », 0],
a, = xaa.-l—yaz-i-[@ x, ¥l
= xa2+ya3+[x, 9, y]
From the third equation we obtam that _.

= ()xay 1,9, 7).

Substituting this into the expressmns of a and a,, we have, that o
ay = xa+ p{)0cay + 1%, 0, YD +1%, %, 01 =
= hxaat[{hn 7 i,
az=x{y}(xaz+-[x B, yD+yas+I0, x, y] =:.-

=(+x{y}x)a+[x{y}x,x, y+x{y}y]
Now we can already determine the l-vector a,:. : A o
= {p+x{) 5} [x0}x, x; yx(ph ] = ' '
= {r+xlafx{i}, {y+X{y}x}x, {y+x{y}x}(,v+x{y}y)]

b e
L

-

Then
=[x{y+x (i, {y}x'{y_+ﬁX'{y}x}x; Py +x{¥x 0+ 3]+
1Oy O = \ , :
= [hx(e+{y+x{p}x}x{}x), y+{y}x{y+x{y}x}x, 2{y}+ S
ORI O] " o
e {y}xa2+[{y}x, 0, {y}y] T
= [{y}x(e+{y+x{y}x}x{y}x) {y}x{y+x{y}x}x, y{y}+ g
| DI oI

Now we -define a new operation on the set of /-vectors. (It is. well- known that
if L is a language from £(X) and pEX* then the left-sxde denvatlon of. L ‘with
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respect to p is the language ;D,(L)=(gcX*|pgcL). We modify this concept
as follows: by the left-side e-free derivation of L with respect to p we meanthe
language ,D,(L)=(g€X *|pgcL). It is obvious that

o D@ i peL
D7 (L) = {:D:(L)—<e> if peL.

We extend this operation to [-vectors, that is, if a=[q,, ..., a,] then we define the
left-side e-free derivation of a with respect to p, by

1D; (@) =[[D; (ay), ..., 1D; (ay)]

Lemma 7. If a=[a,,...,a,] is a complete l-vector then for all pcX*, ,D,(a)
is a complete l-vector as well.

Proof. 1t is easily seen that g;Na;=0 implies that ,D;(a)N,D;(a;)=9.
On the other hand, if ¢ is an arbitrary element of X'+ then pge X *. Consequently,
there exist a unique component g;-of a, such that pg€a; because of the complete-
ness of a. Hence we obtain that g¢,D;(a;). Since e¢,D,(a;) for all i (1=i=m)

m

holds, it follows that X+= > ,D;(a). O

i=1
Lemma 8. If a=|a,, ..., a,) is an arbitrary l-vector in V'(X) then
‘ a= x_,,D;,(a)-{-b,
x,EX

where b=[by, ..., b,] is an l-vector for which b;= 2 x; (i=1,...,m).
x;€a;

Proof. Let a; (1=i=m) be an arbitrary com’ponent of a. By the definition
of b it is trivial that any word of length one from a; is in b; and there is no other
element of b;. On the other hand, the word p€a;, for which |p|=2, isin x;,D;(a)
if and only if the first letter of p is x;. O

A closed complete [-vector system (a,, ..., a,,) is said to be reduced if a,, ..., a,,
are pairwise different l-vectors. -

Lemma 9. If a is a complete regular l-vector then there exists a unique reduced
closed complete l-vectar system containing a and it can be determined algorithmicallv.

Praof. If acV(X) with X=(x,, ..., x;)) then we extend the ordering of X,
which is given by the indices of the elements in X onto X* as follows: for arbitrary
pair of words p and g let p<g if either |p|<lg| or |p|=|g} and in the latter
case p precedes ¢ by the lexicographical ordering. Then we form the left-side
e-free derivations of a. Since a is a regular [-vector, it has only finite different
left-side e-free derivations and they are regular as well. Therefore, there exist a
system of words p,, ..., p, in X*, such that the following conditions hold:

(i) if isj (1=i,j=n) then Dy(a)=D;(a),

(i) for all ge X* there exists a unique i (1=i=n), such that ,D;(a)=,D; (a),

(iii) if g is an arbitrary word in X* for which ,D;(a)=,D;(a) (1 =i=n)
then p; < g.

Let us assume that the elements of the system (p, ..., p,) are indexed ac-
cording to the ordering of X*, thatis, p,<p,<...<p,. Then p,=e. Let a;=
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=D;(a) for all i(=1,...,n). The system (a,,..,a,) consist of pairwise dif-
ferent complete l-vectors. We show that this system is closed as well. To prove
this, we have to note that for all g¢X* and a;£(a,, ..., a,) there exists p; (1= =n),
such that ,D;(a)=,D;(a,) because a,=,D,(a)=,D;(@)=a and ,D;(a)=
=D;(,Dy(a)))=iD;4(a;) and the system (p,, ..., p,) satisfy the condition (ii).
We have to determine the functions f:(l,...,myX(l,...,0H~(l,...,n) and
b: {1, ...,n)—=V"(X) yet. Letforalli(l=i=n) and j(1=/=l),

fG.j) =k D; (a) =Dy (@) (I=k=n)

bG) = (b, ... b)) Where b(i)y= 3 x; (s=1,..., m).

x €a;,

and

Finally, the fact that (a,,...,a,) is the unique closed complete I-vector system,
which contains the I-vector a(=a,) follows from Lemma 8. 0O

To illustrate the algorithm described above consider the

Example 2. Let X =(x, y) with the ordering x<y and take

a = [x{x}, y{y} :{x}y+y{p}x){x+y}l.
Let a,=a. Then

a = x[x(x}, 0, )y e+ N+ 310, ) DIx(x+a)i+Ix 3, 0)
%}elzn a,=D; (a)=[x{x}, 8, {x}y{x+y}] -and a,=.D;(a)=[9, y{y}, P}x{x+y}l.
a, = x[x{x}, 0, {x}y{x+y}+y[0, 0, (x+ ) {x+y}+[x, 8, y].
Let a,=,D; (a;)=D;,(8,)=[8, B, (x+y){x+}I.
a; = x[0, 0, -+ )+ ) +210, y () hx{x+y}1+10, 3, 5]

a, = x[0. 0, (x+y){x+y}1+y[0. 0, (x+ y){x+ y}]+[0. 0. x+ yl.

and

It can be seen that ,Dz,(a,)=.Dz(a,), Dy (a,)=,D; (a,) and ,Dj.(a,)=,D;,.(a;)=
D3y, (a1)=,D;,(ay), thatis, a,,a,,a; and a, are the all different left-side e-free
derivations of a. Finally, the functions f:{l,2,3,4)x(1,2)—~(1,2,3,4) and
b: (1,2,3,4)->V"(X) are derived from the previous computations: f(1,1)=2,
F,2)=3, f2, D=2, f(2,2)=4, 3, 1)=4, f(3,2)=3 and f(4,1)=/(4,2)=4,
furthermore b(1)=[x, y, 0], b(2)=[x, 9, y], b(3)=[0, y, x] and b(4)=[0, B, x+y].

Theorem 10. Let X =(x;, ..., Xp), Y =(py, ..., Yy and let a: X*—~Y™* be an
automaton mapping. Let a, be the complete l-vector corresponding to a. If a, is
a regular l-vector and {(a, ...,a,) Is the reduced closed complete Il-vector system
containing a, then a can be induced by the reduced initially connected Mealy-
automaton A=(ay, ..., a, a1, X, Y, 8, 1), where d(a;, x;)=a, j and A(a;,x;)=y;
if and only if x;€b(i), (i=1,...,n;j=1,...,1; 1=k=m) and the functions [ and
b are determined by the system (a,, ..., a,).
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Proof. 1t is obvious that U is well-defined. Since every /-vector a; of the
system (ay, ..., a,) is a left-side e-free derivation of a, and a,=/D;(a,) implies
that a, p=a;, it follows that U is an initially connected Mealy-automaton We
have to prove that QI induces the mapping «. To verify thls it 1s sufficient to show
that

= (p€X *|2(a;, p) = y)
for all s(=1,...,m) holds. Instead of this equality, we prove more, namely that
a;; = (PEX *|A(a, p) = ¥5) 3
for all i(=1,...,n) and s(=1,..,m) holds. If |p|=1, thatis, p=x; for some
x;€X then by the definitions of the functions b and 1 we obtain that
xj€a; > x;€b (i), o Ala;, x;) = Vs .

Let us assume that (3) have 2 lfeady been oved for all PEX T of length less than
or equal to r, for all i (=1, ...,n) and s (=1, ..., m). Now let pcX+, such that,
|p|=r+1. Then p=x;q for some x;€X and |ql—r Thus taking into account
that the system (a,, .. a Ly is closed and the previous hypothesis, we obtain that

pag = %;xtaf(i.t)s'*'b(l)s > q€as; s
*¢

AT D=y 1(5(01, x;), Q) =y, Aa;, p) =y,

Therefore, (3) is true. But this means that a; is just the l-vector corresponding to
the-automaton mapping induced by the state @; of U for all i(=1,...,n). Thus,
the fact that the system (ay, ..., a,) is reduced implies that 9 is reduced as well. [

To show how we can apply this result for the synthesis of finite Mealy-automata
~ consider o

Example 3. Let X=(x, y), Y =(u, v, w) andlet a: X*~Y™* be the automaton

mapping, given by
a(e) =e,

a(¥) =t (k=1),
()=t (k=1),
a(x*yp) = wtw™*t (k= 1, m = |p|),
a(y*xp) = Fw"tt (k=1,m = |p)).
Then the complete l-vector corresponding to « is just the regular l-vector a,=
=[x{x}, y{y}, (x{x}y+y{y}x){x+y}] from Example 2. Thus the mapping « can

be induced by the automaton U=(a, a,, a5, a3), a1, X, Y, 5, 4),. where & and
A is given by the transition-output table:

Al ay a az; a4

@, %) (@ 0) @2 W) (@, W)
y (a3: U) ((14, W) (03, U) (04, W).
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Summarizing the results of Theorelps 5 and 10, we have got

Corollary 11. If X and Y are finite non-empty sets and o: X*—~Y* is an
automaton mapping then it can be induced by a finite Mealy-automaton if and only if
the complete I-vector corresponding to a is regular.
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Komplexitit von Erzeugen in Algebren

H. JURGENSEN

1. Das Problem

A =(A4, F) sei eine endliche Algebra; A ist die endliche Trigermenge von U,
und F ist die endliche Menge von Operationszeichen. Die Abbildung v: F—~Ny=
=NU{0} ordnet jedem Operationszeichen f¢F seine Stelligkeit v, zu. Jedes
f€ F definiert eine Operation auf A4, die ebenfalls mit f bezeichnet sei, d.h., eine
Abbildung f: Ar—~A. Fir MS A sei

F(M) := {ala€ AN fEF3ay, ..., a, 6 M:a = f(ay, ..., a,)},
und fiif GEF und " NS A" sei :

a€ANIfEGIi, 1 =i=v,Ja,M }
aal, cers Qi1 Qig1s ooy anGN:a =f(a19 (A av,

G(M, N) = {a

Ferner seien- MM, M’ die kleinsten Unteralgebren von A, die M enhalten und
gegen F bzw. gegen G(-, A) abgeschlossen sind. M ist also die von M erzeugte
Unteralgebra; M’ konnte man als das von M erzeugte G-Ideal bezeichnen.

In der vorliegenden Arbeit untersuchen wir den Aufwand zur Bestimmung
von M oder M’ aus A, M und G. Als Maschinenmodell fiir die Realisierung
der Algorithmen verwenden wir die RAM (=random access machine); diese Wahl
erjaubt es, die Kosten emigermaBen realistisch auch fiir ,,relativ‘ kleine Algebren
abzuschitzen, weil keine wesentlichen Kosten fiir die Adrefirechnungen anfallen.

“* Um das Problem genau zu stellen, miissen wir noch festlegen, wie ¥, M und
G dargestellt werden : Die Elemente von A4 konnen abstrakt, d.h., etwa als natiirliche
Zahlen 1,2, ..., n:=|A4| gegeben sein oder konkret, etwa als Transformationen einer
endlichen Menge. In vielen Fillen ist die Kenntnis von n und U fiir den Erzeugungs-
algorithmus irrelevant, in anderen wird man €A mit M identifizieren kénnen.
Wir setzen die Existenz eines Programms zur Berechnung einer Bijektion x von
A auf[1:n):={l, ..., n} voraus, dessen Kosten mit konstant h, angesetzt werden.
Die Operation f¢ F kann sich auf die y-Bilder der Argumente oder auf die Argu-
mente selbst beziehen. Fiir f setzen wir konstant die Kosten ¢, an. Als typische
Realisierung von y koénnte man an ein hash-Verfahren denken mit im wesentlichen
linearen Kosten relativ zur GroBe der Darstellung der Elemente. Als Realisierung



372 H. Jirgensen

fir f kdme einerseits ein Tabellenzugriff in Frage oder andererseits z.B. ein tat-
siachliches Rechnen mit den konkreten Elementen, etwa den Transformationen.
Wir wollen Platz- und Zeitaufwand verschiedener Verfahren diskutieren; zu
diesem Zweck vereinbaren wir, dal3 die Kostenfunktion & eines Problems jeweils
die zwei Varianten @ und & fiir die Platz- und die Zeitkomplexitét hat.
Verwandte Fragen werden in [3, 4, 6] behandelt. Dabei diskutiert [6] allerdings
keine Komplexititsfragen. Die Aufsdtze [3,4], soweit sie thematisch einschligig
sind, arbeiten mit einem anderen Algorithmusbegriff, der es erlaubt die ,,Buch-
fithrungskosten® zu ignorieren. In [7] wird ein Algorithmus zum Erzeugen von
Normalteilern in Gruppen angegeben, dessen Aufwand mit O(n?) abgeschitzt
werden kann, wenn n die Gruppenordnung ist; allerdings werden auch bei dieser
Abschatzung alle Buchfithrungskosten vernachlaSSJgt Weitere einschligige Arbeiten
findet man in der Bibliographie des Ubersichtsartikels [5]. Im allgemeinen werden
in diese keine Komplexititsaussagen gemacht. In [2] schlieBlich wird gezeigt, dal3
einige natiirliche Probleme fiir Permutationsgruppen in polynomialer Zeit 16sbar sind.

2. Die naiven Algorlthmen
" Die Tragermenge (M) -von M erhalt man mit Hilfe der folgenden tr1v1alen
Bemerkung:

2.1. Bemerkung. Sei M,:=M und M,,,:=M, UF(M,) fur i=0,1, .... Es sei
k minimal mit M;,,=M,. Dann ist

)= U M,

Dabei gilt . k=[(M)|—|M|=|4|-|M|.

- Sei m=|M|, my=|M, i:=(M)|, n:=|4|. Zur Bestimmung von M,
aus M; werden .2' m}s Polynome berechnet. Jedes Ergebnis ist in .eine Menge

f€
- M’ mit M;\EM ’CM ;+1, einzusortieren. Bei Realisierung der M; durch Listen
kommt man ohne Beruckswhtlgung der Kosten fiir die Abbildung y und die Opera-
tionen f mit einem Zeitaufwand )

0(m,+1 Z mjs)

fir die Bestlmmung von M;;, aus M; aus. Insgesamt ergibt m;=0(m)= O(n)
und m— m+1 O(m) O(n) d1e (sehr grobe) obere Schranke

(m— m+1)0(2’m:+1) 0(2’)71‘:+2) O(m““) :0(n*+?)

s

fur den Zextaufwand m1t . e
C pi= max (vf{fé F)

Der Platzaufwand hat ohne Beruck51cht1gung des zur Deﬁnmon von A erforderllchen
Platzes die GréBenordnung O(/); es-wird nur Platz zur Abspeicherung der - M;
benétigt, und M;,,: kann jeweils als Verlingerung. von M, realisiert werden.
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Fiir die Trigermenge [M] von W', gegeben durch ME A4 und GEF, hat
man die folgende konstruktive Definition: -

2.2. Bemerkung. Sei  Mi=M, M}, =MuUF(M3), M =M}, U
UG(M3; 41, A) fiir i=0,1,.... Es sei k& minimal mit My, ,=Mj. Dann ist

2k
(M1 = U M.
Dabei gilt k=|[M]|—|M|=n—m.

Sei mj=|Mj|, m:=|[M}]. Unter denselben Bedingungen wie oben erhilt
man als Zeitschranke fiir die Bestimmung von [M]:

m—m
> (m;i+1' 2 myr+myies D, m§i+1'nvf—1‘vf)
i=0 SEF JEF

vyl
= (' —m+1) O ("™ 1+ p'i*n* 77)
= 0(,7,’#+ 2+n~1’3n"'—1)

— O(nﬂ+2_|_nll'+2) o O(nﬂ+2)

W = max (v,/f€ ),

wobel u'>1 vorausgesetzt sei (Sonst ist [M]=(M)). Der Platzaufwand kann
wieder durch O(#") abgeschitzt werden.

Fiir den Speziallfall von Halbgruppen oder Ringen ergeben diese zugegebener-
maBen sehr naiven Abschatzungen die folgenden Aussagen iiber den Zeitaufwand :
Halbgruppen: Erzeugen einer Unterhalbgruppe der Ordnung 1 O(mY).

Erzeugen eines Ideals der Ordnung #1": O(i#’ %n).
Erzeugen eines einseitigen Ideals der Ordnung 7’ O(m’3n)
nge Erzeugen eines Teilrings der Ordnung m: O(mY).
Erzeugen eines Ideals der Ordnung #’: O(#3n).

mit

3. Der Vorteil sorgfiltiger Buchfiihrung

Wir wollen jetzt den durch Bemerkung 2.1 gegebenen Algorithmus sorgfiltiger
studieren; dabei iibernehmen wir die oben eingefiihrte Bezeichnung und deﬁmeren
zusatzllch

Qi+1 = F(M,)\M, fir i= O, 1,
Dann ist offenbar
M,,=MUFQ, M) fir i=12,...

Zur Bestimmung von F(Q;, M;) miissen genau

2> mir—mily

f€F
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verschiedene Polynomwerte berechnet werden. Wir wollen wieder voraussetzen,
daB die M; in Listenform gespeichert sind:

9o q
{ 4

— =

My=M O o

Man benétigt vier Zeiger:

qo verweist auf den Anfang der Liste, g, hinter das Ende,

g verweist auf den Anfang von Q,, g hinter das Ende.
Zu beginn der Berechnung von M;., ist g,=g. Mit jedem neuen Element wird
go ssnach hinten‘ verschoben. Der Algorithmus endet, wenn nach der Berechnung
von M;.; gilt: g§=4g,. Andernfalls setzt man ¢:=4g, 3:=g, und fahrt mit der
Berechnung von M;,, fort.

Sei nun f€F und v,>0. Zur Bestimmung der Argumente (a,, s Ay )E
EMI™N\M}z, benutze man z.B. v, Laufvariable p,, ..., p,, mit

g=p<q und gy=p;<qg fir j=>1.

Zu jedem derartigen v -tupel (py, ..., p,,) betrachte man ferner samtliche Per-
mutationen der Form

(pj7 P25 P3y --» pj-19 D1, pj+1’ eees pv,):

fiir die p;<q ist. Bei sorgfiltiger Buchfiihrung iiber die p; mit Pi<q (z.B. durch
gekettete Speicherung dieser p;) kann man diese Permutationen insgesamt it
dem Aufwand O(f+1) bestimmen, wobei ¢ die Anzahl dieser p; ist. Der ge-
samte Zeitaufwand fiir alle v,-tupel ist daher proportional der Anzahl der betrachte-
ten v -tupel, und diese ist

izt gl (1) G- = S s =
J 4vy

= O(vy(mir—miLy).

Der Platzaufwand hat die GréBenordnung O(v;) fiir die Laufvariablen — diesen
Aufwand hatten wir in den ,,naiven‘* Abschidtzungen vernachlissigt.

Fiir jedes v,-tupel (ay, ...,a,,) sind die folgenden Operationen auszufiihren:

(1) Berechnung von a —f(a,, s @y )

(2) Priifen, ob @ im bisher aufgebauten Teil von M;,, liegt, und, wenn nein,

a in Q;,, einfiigen.

Fiir (1) treten jedesmal die Kosten ¢, auf. Die Aufgabe (2) 14Bt sich durch
Suchen in einer zu m;,, proportionalen Zeit erledigen. Eine Verbesserug ist nur
bei Abianderung der Speicherungsmethode fiir die M; zu erzielen. Diese Maoglich-
keit soll spater weiter verfolgt werden.

ve—1

@ >

Jj=0
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In der bisherigen Version haben wir also die Zeitschranke

(v,+1)2 v ’
= X my-cpomy+ 2 +— (mis—mizy)-cpomyyy
f€F =1 SR Vs
und die Platzschranke !
PP 1= O +p).
&* wird maximal fiir m;=m,=...=m, d.h., m—my=m—m. Dies entspricht

der Situation, daB man zunichst alle Elemente von (M)\M erhilt und danach
nur noch kostsplehge Uberprufungen gemiB (2) mit negativem Ergebnis macht.
Dies ergibt

(Vf‘l‘l)
m's-m-cp+
f;;' 4 eZFO 4v,
V!>

vy +1)° .
= L .mtle+ D omec, =
fé 4v, 4 SJEF 4
v!>0 v,=0

s(m'r—m's) - c,

_Jo(u-mt*1.¢), falls pu =0,
O(m-¢), falls u=0,

mit c:=max (¢/| f€F). Fiir festes ¢ und ¢ hat man also ¢*=0(#**1)=0(n*+?),
- - - Diese-Schranke erhilt man — etwa fiir p=2 — auch aus dem trivialen Erreich-
barkeitsalgorithmus fiir gerlchtete Graphen (vgl. [1], S. 207).
, Wie angekiindigt, wollen wir jetzt die Speicherungsmethode dndern. Ein ein-
facher Ubergang auf hash-Tabellen oder boolesche Vektoren, der die Vereinigungs-
operation (2) erheblich beschleunigen wiirde, ist nicht zu empfehlen, weil mit dieser
Beschleunigung eine Verlangsamung der Bestimmung der v -tupel eingehandelt
wiirde. Man beachte, dal3 der Zugriff auf die M; gleichzeitig sequentiell und indiziert
moglich sein sollte. Zwei Losungswege mit unterschiedlichen Auswirkungen hin-
sichtlich der Kosten liegen nahe: Man kann neben dem Listenspeicher fiir die
M, vorsehen

(a) ein Feld der GroBe O(n) zur Markierung der in M; vorhandenen Ele-

mente von A (etwa als hash-Tabelle) oder

(b) eine zusitzliche Abspeicherung der M; in Form balancierter Baume,

In beiden Fillen wird zu jedem Element ein zusitzlicher Rechenaufwand zur
Indexberechnung bei (a) oder fiir Vergleiche bei (b) nétig, dessen Zeitbedarf durch
h, abgeschitzt werden kann. Im Falle (a) sind je Element O(1) Zugriffe aus-
reichend; im Falle (b) muB man fiir Suchen, Einfiigen und Restrukturieren
O(log m;) Schritte ansetzen, Fiir (a) erhdlt man somit die Zeitschranke

vy+1
Z;mof Cf hA+ 2]'. Z;“—(—f4v—) (m(f—m 1) Cf hA+O(n)
J€ = \{.!€>0 f

= 0@ c-hy+n)
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und die Platzschranke .
Y7 .= O(n+m+p).

Der zusitzliche Zeitaufwand O(n) ist erforderlich, um die Anfangsbesetzung der
hash- Tabelle zu organisieren. Dies spart man bei (b). Dort hat man die Kosten

m—-m+ 1 ' E
Q= > my-c;-hylogm+ 3 Z’—(‘%—')—-(m,Y/—m,?Ll)-c,-h,,-logm,-“=
JeF i=1 f¢F Vy

o v!>0
. =0(@*-c-h,-logm)
und -

3

Q7 = O(+ ).
Zusammenfassend ;erhalten wir:
3.1. Satz, Die Erzeugung von M ist modglich mit dem Aufwand
V:=0(@"+n), ¥Y?P=0(®m)
beziehungsweise mit dem Aufwand
= O(m* -logm), QF=O0(m).
Fiir die Erzeugung von M aus MS A und GS erinn man dhnlich vorgehen. Sei
Qsi+1 = F(M3)\My;,
Qiive = G(Mi41, A \Mii 4.

Dann ist also . )
] M = MUF(QuUQ5-1, My)
und

M= MunUG(004:UQS, A).
Wie oben schatzt man den Zeitaufwand und den Platzaufwand ab und erhélt:
3.2, Satz. Die Erzeugung von M’ ist moglich mit dem Aufwand:
Yz =0 +m' n""1+n), ¥P= O(n)
beziehungsweise mit dem Aufwand
Q' = O(m* log W'+’ ¥ “Llog i), QP = O(#’).

Es ist klar, daB die Schranken ¥ und ¥’ der GroBenordnung nach optimal
sind, weil ohne genauere Kenntnis von A jeweils simtliche Operatlonen f auf
samthche mogliche v ,-tupe] angewendet werden miissen.

An dieser Stelle ist anzumerken, daB die obigen Aussagen stlllschwelgend

- voraussetzen, daB [F|=0(1) ist fiir ‘die einmal gewihlte Klasse von Algebren.

Es ist offensichtlich, welche Verallgemeinerungen fiir den Fall, daB |[F|= 0(1)
ist, durchzufiihren sind. Wir beschrianken uns darauf, fiir diese Situation ein repré-
sentatives Beispiel anzugeben: U sei eine Gruppe; um auch die Normalteiler-
eigenschaften ausdriicken zu kdnnen, wihlen wir

F= {-,71}U {y,|lac 4}
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mit
v.=2, v;=1 v,=1
und /

y.(b)=a"1-b-a.

Die Unteralgebren von U sind gerade die Normalteiler, und geeignete Modifikation
von Satz 3.1 ergibt die Aufwandsschranken

Y2 = Q0mm+mi+n), ¥YP=0(n)
beziehungsweise

QF = O(nilog m+mtlogm), QF = O(M).

Die entsprechenden Schranken ohne Beriicksichtigung der Buchfiithrungskosten
findet man in [7].

. 4. Kosten der Uniformisierung

Der Ablauf der im vorigen Abschnitt vorgefiihrten Algorithmen ist in hohem
MaBe von den Eingabedaten M und gegebenenfalls G abhidngig. In diesem Ab-
schnitt untersuchen wir an den Spezialfillen endlicher Halbgruppen und endlicher
Ringe die Kosten eines von den Eingabedaten unabhingigen Erzeugungsverfahrens.

Fiir die angesprochenen Spezialfille ergeben sich aus 3.1 und 3.2 die folgenden
Schranken:

Halbgruppen Yz=0(m%+n)=0(n?, Y*=0(n);

Pr =0 n)=0(m), ¥?P=0(m) mit G=F={}

Ringe: Wie Halbgruppen, mit G= {-}

* Wir werden zeigen, wie sich die Erzeugungsaufgaben in Halbgruppen und
Ringen auf die Multiplikation von nXn-Matrizen iiber dem booleschen Halbring
B zuriickfiihren lassen.

Sei also jetzt U eine endliche Halbgruppe. Zu acA sei

Aa = (Ag, C)
die durch die innere Linkstranslation von a definierte nXn-Matrix iiber B, d.h.,
. _J1, falls ab=c,
b.e ™10, falls ab # c.
Fir MS A sei .
= D A,.
aeM

Sei weiter A9, die nXn-Einheitsmatrix iiber B und

=>4
j=o

Man beweist leicht, daB A3, an der Stelle (b, c¢) genau dann eine 1 hat, wenn
b=c ist oder wenn c=a,a,... a;b fiir geeignete jEN und a,,...,q,6M ist.

4 Acta Cybernetica VI/4
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Seinun =m,, der n-komponentige Zeilenvektor iiber B, dessen b-te Komponente
genau dann 1 ist, wenn b€M ist. Damit gilt:

4.1. Lemma. c€(M) genau dann, wenn die c-te Komponente von my A},
gleich 1 ist.

Die zur Berechnung von - A}, erforderliche Zeit hat bekanntlich dieselbe GroBen-
ordnung wie die zur Multiplikation zweier nXn-Matrizen iiber B erforderliche
Zeit Mult® (n, B). Der Zeitaufwand fiir die Herstellung von A, ist durch O(n?)
beschrinkt. Damit folgt:

42. Satz. Die Unterhalbgruppe 9 . von A kann mit einem durch
O(Mult? (n, B)) beschrinkten Zeitaufwand (uniform) erzeugt werden.

Natiirlich hat auch der Platzaufwand fiir die Erzeugung von Mt die GroBen-
ordnung des fiir die Berechnung von A}, d.h., fiir die Berechnung der transitiven
Hiille einer bindren Relation erforderlichen Platzaufwandes

GIC aULRALi AL ugnlip ghaas el L Wil

4.3. Satz. Die Berechnung des von M erzeugten Linksideals (Rechtsideals,
Ideals) der Halbgruppe 2 kann (uniform) in der Zeit O(n?) durchgefiihrt werden.
- Zum Beweis hat man nur zu beachten, daB ¢ genau dann im von M erzeugten
Linksideal liegt, wenn die ¢-te Komponente von my, A% gleich 1 ist. Zur Berechnung
von A% ist jedoch keine Multiplikation, sondern nur die Addition .

erforderlich. Mit der dualen Aussage erhilt man auch die Behauptung fiir Rechts-
ideale und lIdeale. .

Es ist ohne Schwierigkeiten moglich, diese Uberlegungen auf Ringe U zu
iibertragen. Neben der Assoziativitdt fiir die beiden Operationen + und - nutzt
man dabe1 nur noch die Dlstrlbut1v1tatsgesetze

a- (b+c)—a bta- ¢, (a+b)-c:a-c+b-c

aus. Den durch M S 4 beziiglich + und - bewirkten Linkstranslationen ent-
sprechen die Matrizen A, , und A.,. Man beweist leicht, daBl c€{M) genau
“=dann gilt, wenn die c-te Komponente von my A% 4 gleich 1 ist, wobei M, durch
‘Tipg, =Ty AT 3y definiert’ist. Damit erhdlt man aus Satz'4.2:

4.4. Korollar. Der Teilring M von A kann mit einem durch O(Mult* (n, B))
beschriankten Zeitaufwand (uniform) erzeugt werden.

Fiir die Erzeugung von Idealen tritt, weil im allgemeinen auf die. Erzeugung
der durch M erzeugten Unterhalbgruppe beziiglich + nicht verzichtet werden
kann, ebenfalls der Aufwand O(Mult* (n, B)) auf.

Ein uniformes Erzeugungsverfahren fiir beliebige universelle Algebren wird
schon vom Ansatz her erheblich komplizierter als fiir die Spezialfille von Halb-
gruppen und Ringen. Man beachte insbesondere, dal3 die so bequeme Darstellung
durch Matrizen iiber B im allgemeinen wenig Vorteile bringen diirfte; in den
Beispielen von Halbgruppen und Ringeh' ist durch die Matrixdarstellung etwas zu
-gewinnen, weil ‘der Assoziativitdt in der Algebra die Assomatmtat der Matrlx-
multiplikation korrespondiert. . : - :
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Abstract

Time and space complexity of algorithms for generating algebras is studied; the bounds
derived are essentially optimal.
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On the lattice of clones acting bicentrally
By LAszLO SzABG

1. Introduction

For a set F of operations on a set A the centralizer F* of F is the set of
operations on A4 commuting with every member of F. If F=F** then we say
that F acts bicentrally. The sets of operations on A4 acting bicentrally forms
a complete lattice &, with respect to <.

The sets of operations acting bicentrally were characterized in [5] and [11].
For |A|=3 the lattice %, is completely described in [2] and [3). The aim of this
paper is to investigate the lattice %£,. Among others we show that for any set
A there exists a single operation f such that {f}** is the set of all operations of
A (Theorem 5). Furthermore, it is proved that if B& A then % can be embedded
into %, (Corollary 7).

2. Preliminaries

Let A be an at least two element set which will be fixed in the sequel. The set
of n-ary operations on 4 will be denoted by 0%’ (n=1). Furthermore, we set

0,= U 09. A set FS0, is said to be a clone if it contains all projections and

n=1 . .
is closed with respect to superpositions of operations. Denote by [F]. the clone
generated by F. Let f and g be operations of arites n and m, respectively.
If M isan mXn matrix of elements of A4, we can apply f to each row of M to
obtain a column vector consisting of m elements, which will be denoted by f(M).
Similarly, we can apply g to each column of M to obtain a row vector of n ele-
ments, which will be denoted by (M)g. We say that f and g commute if for every
mXn matrix M over A, wehave (f(M))g=/f((M)g).

By the centralizer of a set FE 0, we mean the set F*S0, consisting of all
operations on A that commute with every member of F. It can be shown by
a simple computation that F*=[F]*=[F*] for every FESO,. The mapping
F—F* defines a Galois-connection between the subsets of O,. Indeed, F;C F,

implies Ff2F; and FC(F*)*=F** for every F,,F,, FEO,. From this
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it follows that F*=F*** forevery FSO,. Thusthe mapping F—F** isa closure
operator on the subsets of O,. The set F** is called the bicentralizer of F. If
F=F** then we say that F acts bicentrally. The sets of operations on A acting
bicentrally form a complete lattice with respect to €. Denote by ZA this lattice.
In %, we have /\F NF, VF (UF)** and (VF) -—/\ ,(/\F)*
i€l
=V F. It follows that the mappmg F—»F *(Fe&)) 1s a dual automorphnsm
i€l

of Z,.

The set of all projections, and the set of all injective unary operations on A
will be denoted by P, and S,, respectively. An operation f€F is said to be
homogeneous if f€S%. The symbol H, denotes the set of all homogeneous opera-
tions, i.e., H,=S%.

We say that an operation f€0, is parametrically expressible or generated by
aset F& O, ifthe predicate f(x,, ..., x,)=y is equivalent to a predicate of the form

(30) . G0) (= BIA . A4y, = By)
where A4; and B; contain only operation symbols from F, variables x, ..., x,,
¥, t, ..., 4}, commas and round brackets.

For 3=n=|4| denote by I, the n-ary near-projection, i.e. the n-ary operation
defined as follows:

Li(xyy ey x) = {

We need the ternary dual discriminator-function d which is defined in the following
way:

x if x#x;, 1=i<j=n,
x, otherwise.

x if y#z

d(x,y,z)={z if y=z.

If f€0, and BS A4 then fp denotes the restriction of f to B.

3. Results

First we give two examples. For every subset XS A4 let Cy be the set of all
unary constant operations with value belonging to X. Furthermore, let Iy be
the set of all operations f€O, for which f(x, ..., x)=x for every x€X.

Example 1. For every subset XS 4 we have Cy=Iy and I3=[Cy]. In partl-
cular, P¥=0, and O%=P,.

Proof. C3x=1Ix and I32[Cy] are obvious. Now let f€I; be an n-ary opera-
_tion and suppose that f¢[Cx]. Then f is neither a projection nor a constant opera-
tion with value belonging to X. Therefore there are elements ay, ..., a;,€4,

i=1,...,n42, such that a=f(ay, ..., 0,)=a;, i=1,..,n, and (@,,;1,82)=
=_(f(an+1,l- --'9an+l,n)s f(an+2 1s =+ n+2 n))&{(x X)IXEX} Let M (au)(n+2;xn
“Since (ay, ..., a, )¢ {(x, --.» x)|xEX b and (ais ..., G,19) is distinct from each

¢olumn of M there exists an (n+2)-ary operation g€ly such that (f(M))g=
=glay, ... ,,+2);éf((M)g) showing that f and g do not commute and f¢I3.
This contradlctlon shows that” I3S[Cx]. Hence I}f=[Cy].
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Finally if X=@ then we have Iy=0, and [C]=[0]=P,. O
Example 2. If [4]|=3 then (SAUC;,)*=HA and H;=[S,UC,].

Proof. 1t is well known that H,S1, if |4|=3 (see e.g. [1]). Therefore
(S, UCH)*=s NCi=H,NI,=H,. In [10] it is proved that [S,UC,] acts
bicentrally, Thus Hji=((S,UC)*)*=[S,UCI*=[S,UC,. 0O

For {A4|=2, E. Post [8] described the lattice of clones over 4. Using this result
the lattice %, can be determined by routine. Figure 1 is the diagram of %, in
case |A|=2. (We use the notation of [9]).
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Considering the diagram we can observe the following facts: if |4|=2 then
%, has 25 elements, six atoms (O,, O;, Oq, S, P;, Ly, and six dual atoms
(D, C,, Csy, S, Ps, Ly). Remark that the dual automorphism F--F* coincides
with the reflection of the diagram with respect to the axis S;— Ps. ,

For |4|=3, &, is a finite lattice of power 2986 and it has 44 atoms and dual
atoms (see {2], {3] and [4]).

In general we have the following.

. Theorem 3. If A is a finite set, then the closure operator F-F** is algebraic,
and %, is an atomic and dually atomic algebraic lattice. If A is infinite, then the
closure operator F--F** is not algebraic.

Proof. Firstlet 4 be a finite set. A. V. Kuznecov showed in [5] that F =F**
if and only if F contains every operation parametrically generated by F. From
this it follows that the closure operator F—F** is algebraic. Thus %, is an al-
gebraic lattice. It is well-known that there are finite seis FS 0, suchthat F**=0,
(see e.g. [4]). Therefore &, is dually atomic. Since %, is dually isomorphic to
itself, it is atomic, too.

A. F. Danil’cenko proved in [4] that if [4|=3 then every dual atom of %,
is of the form {f}* where f€0, is an at most |A[|-ary operation. From this it
follows that %, has finitely many dual atoms and atoms (the numbers of atoms
and dual atoms are equal).

- Nowlet 4 be an infinite set and let x,, x,, ...€A4 be pairwise distinct elements.
Put X;={x;, x;41, ...}, i=1,2,.... Then, by Example 1, Ix€%,, i=1,2,..

and clearly Iy S1Ix,S.... Furthermore CJIX‘¢0A and (D L)y =(N1Z)=
i=1 i=1 i=1

= (ﬁ [Cx])*Pf=0,. It follows that the closure operator F—F** is not
i=1
algebraic. [0
Theorem 4. If |4|=5, then H, isanatomand [S,UC,] is a dual atomin &,.

Proof. ‘First we show that if 4 is the ternary dual discriminator and
I, (3=n=|4|) is a near-projection then {d}*={l,}*=[S,UC,]. The inclusions
{d}y*2[s,uUC,] and {,}*2[S,UC,] are obvious. Let f€0O,\[S,UC,] be an
m-ary operation. If f depends on one variable only then we can assume without
loss of generality that f is a unary operation. Since f is non-injective and non-
constant, there are pairwise distinct elements a, b, c€ 4 such that f(a)s= f(b)=f(c).
Furthermore choose elements x,, ..., X,€4 such that a, b, c, x,, ..., X, are pairwise
distinct. Then f(d(a, b, ¢))=f(a) # f(c)=d(f(a), f(b), f(c)) and f(l,(a,b, x,, ...
vees Xns )= (@ #f()=1,(f(a), f(),[(xa); ..., f(x,), f(c)) showing that f does not
commute with d and /,, i.e. f¢ {d}* and f¢ {l,}*. Now suppose that f depends on
at least two variables, among others on the first. Therefore there are elements
as, ..., a,€ A such that the unary operation g(x)=f{(x, a,, ..., a,) is not a constant.
If f takes on at most n—1 elements from™ 4 then g is not injective. Therefore
g¢{d}* and g¢ {I,}*. From thisit follows that f¢ {d}* and f¢ {l,}*. Finallysuppose
that f takes on at least n(=3) values. Since f depends on at least two variables,
there are elements a,...,a,,b,, ..., b,,a,b,c€A such that a,b and c¢ are
pairwise distinct and a=f(a,, ..., a,), b=f(by, as, ..., a,), c=f(ay, by, ..., b,)
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(See €.g. [6]) Then d(f(als b2a eeey bm)a f(bls gy «eey am) f(ala m)) d(C, b a)_.
_c¢a'—f(a15 (A ] am) f(d(ala bl, al) d(b2’ as, 02)1 EEEE) ( ms Om>s am)) ShOWIng that
feldy. Fmally, since f takes on atleast n values, there are elements x;, ..., X;,€4,
i=4,...,n, such that a,b,c,x,, ..., x, -are pairwise distinct- elements where
x;= f(x,-l, vevs Xim). NOW con51der the following nXm matrix M. - :

X414+ Xam
'M= Xp1 oo Xpm
a,qs...a,
b, a;...a,
ab,... b,

Then (f(M),=1,(xq, ..., Xy, 8, b, c)=Xs#c=f(ay, by, ..., b,)= f((M)l) showmg
that f and I, do not commute. This completes the proof of the equalities {d}*=
=[S,UC,] and {Ly =[S.UC4l.

Now we are ready to prove the theorem. Since Hi=[S,UC,], it is enough
to show that H, isanatomin %,, i.c. for any nontrivial operation fE€H, we have
{f¥*=H, or equivalently {f}*=[S,UC,]. In[1] and [7] it is shown that if |4|=5
then every non-trivial clone of homogeneous operatlons contains the dual discrimi-
nator or a near-projection. Therefore, if fCH, is a non-trivial operation ‘and
del{ff) then [S,UCLS (f1*=[{f)*S (@}*=[S,UCL. If Le[{f}] for some
n=3, then [S,UCUHS{f}'=[{/N"S{L}"=[S.UCJ Hence {f}'=[S,UC4l,
which completes the proof. [ :

_Theorem 5. There exists a function f€0, such that {f}*=

Proof. If A is a finite set then let f€O0, be a Sheﬂ'er functlon i.e.an operatlon.
f for which [{f}}=0,. Then [{f}*=[{fI"™"=04"=0,.

Now let” 4 be an infinite set. In[12] it is proved that there exists a bmary r1g1d
relation ¢ on A (¢ is rigid if the identity operation is the only unary operation
preserving g). Choose a rigid relation ¢ and define a binary operation h as follows:
h(x, y)=x if (x,y)€¢ and h(x,y)=y if (x,y)¢o. We show that {h}*NS,=
={id,}. Indeed, let t¢S, and t=id,. Then there is a pair (x; y)€¢ such that
(t(x), 1(»)g 0. Clearly x>y, since otherwise the unary constant operation 4 {x}
preserves  o. It follows that t(i(x, y))=1(x)=t(y)=h(t(x), t(y)) and t¢{h}*.

Let gc0O, be a fixed point free permutation whose cycles are all 1nﬁmte
Furthermore, let a, b€ A with a>=b. : v

Now we are ready to define an operatlon f such that {fy*=0,. Let

g if x —-"y =z=u,
;ilgy, ;’ u) - ,if = gEx))
_ zZ,U 1 X = s
f(x5y92 u)= a _ . lf y:gg(éy(x))’
b if x=g(g(),
x . otherwise. . -

Denote by ¢, and ¢, the unary constant operations with values a and b, rel
spectively. Then g, d, b, cay GE[{f}] since f(x, x, x, x)=g(x), f(%,. g(x), y, z)—
=d(x,y,2), f(&x), %, x, y)=h(x, ), :f(x, g(g(x), X, ¥)=c,(x) and " f(g(e(x)),



386 L. Szabd

x, x, x)=cy(x). If te{f}* then tc{d,h,c,,c,}*. Since r€{d}*, by Theorem 4,
te[S,UC,). We can suppose that ¢t is unary. If t€S, then s {h}* implies t=id,.
If 1€C,, i.e. t isaconstant operation with value x, then we have that a=c,(t(a))=
=t(c(a))=xy=1 fc,,(a)) =c,(t(a))=b which is a contradiction. Thus we have
{f¥=P, and {f}*=P;=0,. O

Let BS A(B#0) and let s be a mapping from 4 onto B such that s(b)=»5
for every b€ B. For any operation f€O{), n=1, let us define an operation f5¢0,
as follows: fS(ay, ..., a,)=f(s(a), ..., s(a,)) for any a,, ...,a,6A. For any FC O,
let FS=P,U{f5|fcF}.

Theorem 6. Let FS Oy such that idgc F. Then (FSy**=(F**)S. In parti-
cular, if F=F** then F5=(FS)**

Proof. We shall prove the theorem through some statements:

(1) s€FS and sc(F5*

Since idg€ F, we have s=id$¢ FS. Let g€ F. If g€ P, then, clearly, s com-
mutes with g. If g=f5 for some f¢F, then for any a,...,a,6A we have
5(2(@rs s 8)) = $(5(@rs -..r 3)) = $(F(5(@)s s 5(an)) = f(5(5(@D), s 5(5(an))) =
=g(s(ay), ..., s(a,)). Hence s commutes with g and se(F5)*.

(2) If ge(FS)* then g preserves B.

Indeed, if g is n-ary and by, ..., b,€B then g(b, ..., b)=g(s(b1), ..., s(b,))=
=s(g(by, ..., b))€B.

(3) g¢(FS* if and only if gz€ F* and g commutes with s.

First suppose that ge(F%)*. Then g commutes with s, since s€FS. If f¢F,
then g commutes with f5. By (2), we have gg€ Oy, and clearly the restriction of
/S5 to B coincides with f. These facts imply that gz commutes with f. Hence
gs€ F*. Now suppose that gz€ F*, g commutes with s, and fSc FS(f€F). Let
g and f be m-ary and n-ary, respectively, and choose arbitrary elements g;,, ...,q;,€ 4,
i=1,...,n. Then

fs(g(all’ sy alm)’ ceey g(anl, cees anm)) = f(s(g(a119 (RS ] alm))9 cevy s(g(anla rey anm))) =
= f(gB(s(all)a ey s(alm))’ sy gB(s(anl), sres s(anm))) =
= gB(f(s(all)s ceey S(anl)))a .. 'sf(s(alm)9 eeey s(anm)) =
= g(f5@us s @)y s L5 @ims -0 Gum))-
Hence g commutes with /5 and ge(FS)*.

(4) If feF* then fS¢(F5)*.

Clearly, the restriction f§ to B coincides with f, and f5 commutes with . s.
Therefore, by (3), we have f>¢(F5)*.

(5) If ge(F5)** then g€ P, or g maps into B.

Suppose g€(FS)**\ P, is an n-ary operation which takes on a value from 4\ 5.
Since g is not a projection, for every i€{l,...,n} there are a,...,a,€A4 such
that a;=g(ay, ..., @) #a,. Furthermore let a,,y,,...,4,4;,64 such that
8(ay41,15 s Gni1,M)=08n11¢B. Let us define an (n4-1)-ary operation heO, as
follows:

— s(an+l) if (xl’ AR xn+1) =(al’ AR an+l)’
B oo Xarr) = {x,,+1 otherwise.
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Then h commutes with s, and hy, being a projection, belongs to F*. Therefore, by
(3)3 hE(FS)* Now g(h(alla e an+1,1)7 Tt h(aln, R an+1,n))=g(an+l,1’ “eey an+1,n)=
= Upt1 = s(an+1) = h(als (R an+1) = h(g(alla S aln), LS g(an+1,1’ () an+1,n) It
follows that g does not commute with A, which is a contradiction.

(6) If ge(F5)** then g preserves B.

This follows from (5)

(7) If ge(F5)** then gz€ F**.

Let gc(FS)** andlet f be an arbitrary operationin F*. Then, by (4), we have
that g commutes with 5. Taking into consideration (6), this implies that gz (€ Op)
commutes with f (the restriction of f° to B). It follows that gz€ F**.

Now we are ready to prove the theorem. First let ge(FSy**. If g€ P, then
clearly ge(F**)S. Suppose that g¢ P, and let gz=f Taking into consideration
(5), (1) and (7), we have that g maps into B,g commutes with s, and feF**
Thusif g isn-ary then for any a,, ..., a,€ 4 wehave g(ay, ..., a,)=s(g(ay, -.., a))=
=g(s(@)s ..., s(@))=f(s(@), ..., s(a,)) showing that g=/5 and g€(F**)°. Finally
let g€(F**)5. If gc P, then ge€(FS)**. If g4 P, then there is an f€ F** such that
g=f%. Take an arbitrary operation h from (FS)*. Then, by (3), & commutes
with s and hze F*. It follows that hy commutes with [ (hg€ F*=(F**)*). Let
g and h be m-ary and n-ary, respectively, and choose arbitrary elements ay, ...
vees A€ A, i=1, ..., n. Now

h(g(qll, cees Ai)s o5 &A1y oons Auny)) = Hp(f(5(a11), ..., (@), F(5(01), ..., 5(@nm))) =
= f(hs(s(ary), ---» 5(@n1))s -+ hp($(@1)s o os 5(@nm))) =

e = f(h(s(aw), - 5(@))s -y h(s(alm), ey S(@nm))) = -

= fls(h(@uss -5 @)y «-os S(h(Q1ms o3 Gugy))) = &M (@11, ooy Gar)s ooos K@y .5 Guy)).

" It follows that g commutes with 4 and g€(FSy**. 0O

Corollary 7. The mapping F—F5 from %, into %, is an isomorphism,

Proof. From Theorem 6 it follows that if Fe % then FS¢%,. Observe that
(FNEY=FNF’ and (RUF)S=F;UF§ for any F,, F,6%. Therefore
taking into consideration Theorem 6, for any F,, F,€.%; we have that (FyAFp)S=
—(F,NF)S=F;NF§=FSAFS and (F,VF)S=((F,UF)*"*)=((F,UF)")*=
=(F$UF$**=F§VF5. Finally, it is obvious that the mapping F— F® 1s injective. [J

Corollary 8. If s»id, then [{s}] is an atomin %Z,.
Proof. Let P;C Op be the set of projections on B. Then P§=[{s}] and there-
fore, by Theorem 6, [{s}]€ %, . Itis trivial that [{s}] is an atomin %,. 0O
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Analysis of data flow for SIMD systems

REINHARD KLETTE

0. Introduction

A general approach to characterizing the inherent complexity of computational
problems is given by the quantitative analysis of the extent of the data flow that has.
to be performed during the solution of these problems. On the other hand, any
parallel processing system possesses a restricted ability for fast data transfer deter-
mined essentially by the interconnection pattern of the processing elements. In
the present paper, these general observations, as previously mentioned by Gentleman

(1978), Siegel (1979), Abelson (1980), or Klette (1980), will be transformed into :
~ precise definitions of local, global and total data transfer within SIMD systems,
and the corresponding definitions of local, global and total data dependencies for
computational problems as well. The basic relation between these corresponding
notions — the computational time must at least be sufficient for realizing the
necessary extent of data transfer — will be represented in a so-called data transfer
lemma that outlines the starting point of our formalized method of obtaining lower
time bounds by data flow analysis. This approach will be illustrated by application
to a variety of different parallel processing architectures where the unifying feature
will be that we shall use SIMD models that employ an interconnection network
and use no shared memory. Qur parallel processing systems will be abstract models
of computation where the level of abstraction may be compared with that of a random
access machine (RAM); cp. Aho et al. [2] for this model of serial computation.
For computational problems such as those mentioned in the present paper the author
was inspired by the digital image processing area, where reference is made to Rosen-
feld et al. [9] and Kiette [5]. But, of course, this does not represent a serious restric-
tion; e.g., matrix multiplication or pattern matching are computational problems
of general importance.

The general SIMD model as used in this paper is characterized by a finite or
infinite set of processing elements (PEs), an interconnection network, and a central
processing unit (CPU). For a rough scheme of an SIMD system which the reader
may have in mind throughout this paper, see Fig. 1.

CPU. The CPU has a (central) random access memory which consists of
a finite or infinite sequence of registers rgy, ry, ry, ... with a distinguished accumu-
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lator r,. Let Dcpy be the depth of this random access memory, i.e., the number
of CPU registers, for 1=Dg,=c. Furthermore, let W, be the word length
of these registers (number of bit positions), which is assumed to be constant for
all CPU registers, for 1 =W p,;=. The CPU spreads a single instruction stream
to the synchronized working PEs. The programs of the system are stored in a,
potentially size-unlimited, special program memory of the CPU. Part of any instruc-
tion addressed to the PEs is an enable/disable mask to select a subset of the PEs
that are to perform the given instruction; the remaining PEs will be idle. The CPU
may read the accumulator contents of any one PE of a specified subset of all PEs,
and is able to transfer its accumulator contents to some of the PE accumulators.
Any data transfer between CPU and PEs is restricted to serial mode.

PEs. Each PE has some (local) random access memory which consists of a finite
or infinite sequence of registers r,, 1, ¥y, ... with a distinguished register r, called
the accumulator. Let Dpg be the depth of these random access memories, i.e.,
this depth is assumed to be constant for all PEs of a given system, for | =Dpg=oo.
Furthermore, let Wy be the unique word length of the. PE registers, for 1 =Wpp= .
Each PE is capable of performing some basic operations which take place in its
accumulator. Direct data access is restricted to its own registers, to the accumula-
tors of the directly connected PEs in the sense of the given interconnection network,
and, possibly, to the accumulator. of the CPU. The PEs are indexed by integers
or tuples of integers. Each PE knowsitsindex. Let Npg, 0=Npg =<0, bethe number
of PEs of a given system, and ind={};, /s, ..., jn,.} be the set of all PE indices of
a given SIMD system.

__ Interconnection network. Each PE is located in a node of a given undirected
graph representing the two-way interconnection scheme. Any PE may uniquely
identify the different edges connected to its node by using a given coding scheme.
Let Ny be the branching degree of the network, i.e., the maximum degree of the
nodes of the given graph, for 0=N;< <.
For the selection of a specialized SIMD model the following system features
may be concretely specified:

e off-line or on-line communication with the outside world,
@ special values for Npg, Ny, Depys Deg, Wepus Of Weg,
@ the set ind,

o the interconnection network structure including the edge coding scheme,
o the CPU instruction set including the available set of enable/disable masks
as well as the method of the data exchange between CPU and PEs, and
@ the restrictions on the system in communication with the outside world,

i.e., input and output management.

Note that as regards the technical realization of an SIMD computing facnllty, in
principle, one implementation may offer different ways to run such a system, i.e.,
the working principles of several SIMD models as considered in the present paper
may be unified within one implementation. Essentially, this is the problem of
constructing a flexible interconnection network with reconfigurability, and/or of
running a system using different modes.

The outline of this paper is as follows. In the first section we shall present
some standardized system description features for specifications of SIMD models.
In Section 2 we shall describe how the data flow of an SIMD system may be measured
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by functions in a quantitative way. Then, in Section 3 the corresponding notions
of data dependencies will be explained for computational problems. In Section 4
the data transfer lemma will be given as well as some applications of this lemma to
different models of computation for lower time bound determination. Our concluding
remarks are given at the end of the paper.

The standard SIMD models as described in Section 1 constitute the frame-
work of a parallel simulation system (PARSIS) presently under implementation;
cp. Legendi [7] for a similar project for simulation of cellular processors.

1. OFF-NETs and ON-NETs

In our experience in parallel program design the exclusion of given technical
restrictions, e.g., on Npg, Ny, etc., in the first steps of problem solutions, enables
us to find important methods of parallelization of solution processes as well as
general features for system description. Of course, for concrete implementation
quite a lot of time must be spent in taking given restrictions for Npg, N, etc.
into consideration. The present paper is concerned with the first phase, the theore-
tical preparation for the second phase, which is the concrete implementation. In
this sense, we shall deal with abstract SIMD models throughout this paper. More
detailed discussion will be the subject of forthcoming papers, depending on the
progress of the PARSIS project.

The common one-accumulator computer, e.g., the random access machine
(RAM) in the sense of Aho et al. [2], may be considered as the simplest example
of an abstract SIMD system — Npe=0 and Dcpy=W py=<. We shall use the
RAM as the underlying model for serial data processing where, in distinction to [2},
infinite precision, real number arithmetic is assumed, which is convenient for our
theoretical considerations of computational problems such as the Fourier transform,
or for operations on finite sets of points in the real plane, by avoiding discussions
of round-off errors. In this sense, our standardized system description features
start with the declaration of abstract registers.

Abstract registers. For an SIMD system with abstract registers we assume that
any register may store one real number at a time, without any special encoding
tricks. For our theoretical considerations in this paper, it is not important to specify
how the reals are stored in these abstract registers by special bit representations,

Standard register enumeration. We assume a unique enumeration of all registers
as follows. For registers r, of the PE with index j or (j, k), called PE(j) or
PE (J, k) in the sequel, we use the integer tuples (j,m) or (j, k, m), respectively,
and for register r, of the CPU just the integer m.

Uniform network structure. Either Njy=0, or Ny=p=1 and the network
structure is characterized by p different functions f, fi, ..., f,_1 on the set ind
of all PE indices in the following way. For j, k€ind, PE(j) and PE(k) are directly
connected iff there exists an i, 0=i=p—1, such that f(j)=k. Because of our
assumption that all connections are two-way it follows that

(Aj, keind) [(Vie{0, 1, ..., p— 1P £i() = k = (VRe(0, 1, ..., p—1}) fi(k) = j].

In [10] the functions f, fi, --.s fo—1 were called interconnection functions. With
the exception of a fixed set of PEs at the network border, we also claim that all
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PEs are directly connected to exactly p different PEs. When f;(j)=k, PE(k)
is called the ith neighbor of PE(j). In this way, the edge coding scheme for uniform
networks is defined. For each PE, the neighborhood consists of all (i.e., at most p)
neighbor PEs. Examples of infinite networks as well as finite networks matching
our uniformity demand are given in Table 1. In the sequel we shall use these networks
as defined here.

Some remarks are necessary regarding Table 1. The left-right 2° (LR2I) net-
work and the left-right-up-down 2! network (LRUD2I) network were used for
vector machines in Pratt et al. [8] and Klette et al, [6], respectively, without the re-
striction by an integer m as stated in Table 1. Note that we have restricted our-
selves to interconnection networks with finite branching degree. The special form
of the set ind in the Quadtree network is determined by our standard PE address
masking scheme as defined later on. The finite uniform networks mentioned in
Table 1 were studied by Siegel [10] — the perfect shuffle (PS), the ILLIAC, the
Cube, the plus minus 2° (PM2I), and the wrap-around plus-minus 2° (WPM2I)
network, with the modification that the PS network is an undirected graph to match
our uniform network convention, i.e., for the PS network the inverse shuffle func-
tion was added in comparison to [10]. For jcind={0, 1, ...,2"—1} let a,,_; ... 4,4,
denote the binary representation of j and a; denote the complement of a;. Then

exch (a,_1...a1a0) = apy_1... 418y,
shuf (a,,_y...a1a0) = ap_3... 410001,
shuf=1(a,,_y...a,1a9) = AgQp_1.--A20;,
cube; (A 1. Ai41;0i1--Ag) = Gy .. Qi 418;G; 1 ... Ao,
WPM,;(ap-1---G4...05) = byy_1...b;... by,
where by ... bobpm_v ... Bis1b;i=(Gi=1 ... QgOp_y ... B;1,0;)+ 1 mod 2™,
WPM_;(a,_1--.0;...00) = byy—1...b;... by,

Where bi‘—l “ee bObm—l ces b,-+1b,-=(a,-_1 e Qo Qpyq - a,-.,.la,-)—l mod 2m, fOI‘ O§l<m
and m=1.

Standard PE masking scheme. As standard masks we shall use the simple bit
patterns for PE indices as used, for example, in [10]. In the case of integer indices,
a standard PE address mask is given by an arbitrary, non-empty word on the alphabet
{0, 1, x} enclosed by brackets, where x represents the “dont’t care” situation.
The only PEs that will be active are those whose address (i.e., index) matches the
mask from right to left, where the indices are given in binary representation; 0 mat-
ches 0, 1 matches 1, and either 0 or 1 matches x. For example, by mask [x] all
PE’s are activated. For the representation of concrete standard masks within
programs, etc. we take liberties such as [all PE’s] instead of [x], or [odd PE’s]
‘instead of [1x] if the rightmost bit position is assumed to be the sign position.
In the case of integer tuple indices, the standard PE address masks are arbitrary
tuples of non-empty words on {0, 1, x} enclosed by brackets. Note that for infinite
networks as given in Table 1 any given PE address mask activates an infinite mani-
fold of PE’s. For example, the mask [Oxx] applied to the bintree network will

.5 Acta Cybernetica VI/4



Table 1. Uniform networks

Edge coding scheme

Network ind Nin| Case
0 1 2 3 4 5 6 7
LINEAR integers 2 |all ji—1 j+1 — — — — — _
LR2I™ integers 2m| all Lu(D=j+2" and fp1(j)=j—2' for O=i<m and m=2
BINTREE positive 3 (j=2 [ — — — — — — _
integers all — 2j 2j+1 — — — — —
TRIANGLE positive 5 {j=2 |l — — — — — — —
integers all — 2j 2j+1 — — —_ —_ —
j=2! — — — j—1 — — —
jr2=1 — — — — j+1 — — —
bt 5 , g
QUADTREE Y j=4 U4 - - — — - - —
{4240 1) alt — 4j 4j+1 4j+2 4+3 — — -
HEXAGONAL tuples of integers | 3 | all (,k—1) (,k+1) — — — — — _—
jt+k — _ i - _ — —_ —_
even U-Lk
j +k} - — i — — — — —_
odd (+1,k)
SQUARE tuples of integers | 4 | all Gik—1) U,k+1) (G—1k) (G+1,k) — - — —
TRIAGONAL tuples of integers all Gk=1 | Gk+D) | G-Lk | G+Lk)  |[G=1Lk=DG+1,k+1)] — —
DIAGONAL tuples of integers | 8 | all G,k—1) G,k+1) (j-1,k) G+LE)  (G=LEk=D|G+Lk+DIG-Lk+D|(j+1,k=1)
LRUD2I™ tuples of integers | 4m | all Ju(i, Y= +2 k), fauiU, )= =24, k), fairoU, K)=(, k429,
Su+s(U kY=, k=2, for O0=i<m and m=2
PS™ {0,1,...,27=1} [3 [all exch shuf shuf ! — — — —_ _
m m
ILLIAC™ {0,1,...,2—1} |4 | all +1mod2™ | —1mod2™ +?mod2"‘ —?mod2'" — — — —
CUBE™ 0,1,...27° 1} | m |all fi(j)=cube,(j), for O=i<m
PM2I™ {0,1,...,2m "1} 2m] all L()=j+2 mod 2™, foi.\(j)=j—2'mod 2™, for O=i<m
WPM2I™ {0,1,...,2m"1; 2m| all Lu()=WPM,.()), fai:(j)=WPM_(j), for 0=i<m
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activate the processing elements PE(2) and PE(3) on layer 1 of the bintree,
disables layer 2, enables the first four PE’s of layer 3, and so on, where the common
binary representation of non-negative integers is assumed for the PE indices of the
bintree network.

Abstract CPU instruction set. For any one of our theoretical SIMD systems,
we shall assume that its CPU instruction set may be obtained by special interpretation
and selection of the instructions of an abstract CPU instruction reservoir defined
as follows. There are two different types of instructions, parallel instructions for
activating some of the PEs, and serial instructions where the CPU itself is addressed
for certain activity. Any parallel instruction consists of a PE address mask, an
operation code (READ, WRITE, LOAD, STORE, OP, or OP,,,,/=1), and an
operation address a where we shall use the standard register enumeration for
explaining the meaning of these operation addresses. For the serial instructions,
we assume branching instructions JUMP b, JGTZ b, JZERO b, JLTZ b (where b
symbolizes an instruction number in a CPU program and the contents of the CPU
accumulator are tested), the HALT instruction, and instructions consisting of an
operation code (READ, WRITE, LOAD, STORE, OP;, or OP,). See Table 2

Table 2. Abstract CPU instruction set without test and stop instructions

Instruction Possible operation address « ,
[mask] READ « m; *m
[mask] WRITE « m; *m
[mask]-LOAD o ~ - - - omg -*m;- i
[mask] STORE « m; *m; N A PUR §
[mask] OP; « m; *m; T i
[mask] OP; « m; *m; i
[mask] OP,,, I PR O
READ « m; *m
WRITE « =X; m; *m
LOAD « =x; m; *m; (§))]
STORE « m; *m; )
OP, « =x; m; *m; @)
OP; « =x; m; *m; )]

for the complete abstract CPU instruction set without jump and stop instructions.
In the case of a parallel instruction, OP, denotes a unary operation determining
the new accumulator contents of all activated PEs by a certain transformation of
the contents of the register addressed by o as well as the old accumulator contents
of the activated PEs; and OP,,; denotes an (/+1)-ary operation in the same sense.
For the activated PE(j) the operation address m indicates the contents of register
(j, m), *m indicates the contents of register (j,n) if the nonnegative integer n is
the contents of register (j, m) at that moment (i.e., indirect operand addressing,
in any situation of incorrect programming; €.g., in the case that (j, m) does not
have a nonnegative integer contents at that moment, an interrupt of the programmed
system is assumed), and the operand : i,1i,, ...,7 for /=1 indicates the contents
of the accumulators of those neighbors of the activated PEs that are encoded by

5%
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iy,@s, ..., i, according to the edge coding scheme of the interconnection network.
LOAD and STORE have the obvious meanings that the accumulator contents of the
activated PEs are replaced by the addressed value, or copied to the addressed
registers, respectively. READ and WRITE denote the necessary operations for
communication with the outside world where the source and the destination of the
data in the “outside world” remain unspecified (certain places within a computing
environment not belonging to the given SIMD system itself). In the case of a serial
instruction, the unary operation OP, and the binary operation OP, produce new
CPU accumulator contents by a certain transformation of the addressed values,
where in the case of OP, the old CPU accumulator contents is used as the operand
in the first position. READ, WRITE, LOAD, and STORE have the obvious fixed
meanings. The operands =x,m,*m, and (j) indicate the data unit x itself,
the contents of CPU register m, the contents of CPU register n if register m
contains the nonnegative number » at that moment, and the contents of register
(j,0), respectively. Note that with this abstract CPU instruction set data transfer
between the CPU and the PEs is possible via the accumulators in serial mode only.
Furthermore, for a specialized SIMD model, it is convenient to identify the basic
computational power of the PEs and the CPU with that of the RAM as represented
by the RAM instruction set [2, Fig. 15], roughly speaking. In this way, an interesting
point is provided by the description of how the PEs are able to perform local logical
decisions in SIMD mode as we shall explain in Example 1 by equation (1) for a spe-
cial SIMD model.

Off-line 1/O convention. For the off-line communication of an SIMD system
with the outside world we assume that a special set of input registers of the system
is fixed such that all other registers of the system contain value zero at the beginning
of any computation (moment t=0) as it is assumed for those input registers not
actually needed for the placement of input data. Each of the input registers may
contain at most one data unit of the input data. -Thus, for concrete problem solu-
tions, it is necessary to specify

@ what data structure is assumed for the given input data, and

@ how the data are placed in the given input register set.

Also, a set of output registers of the system must be fixed. In this sense, for concrete
problem solutions it has to be clear

@ what is the desired data structure for the output data, and

@ how this data structure has to be stored, or computed in the predetermined

output register set.
As off-line I/O convention we declare that for a certain L, 1=L=Dc,, the
CPU registers 0,1, ..., L—1 are fixed to be input and output registers, and for
any PE()), if there exists a certain m=0 such that register (j, m) is fixed to be
an input register (output register) then register (7, 0) is an input register (output
register) as well. What is true for the register holds for the accumulator, too.

On-line 1/O convention. For the on-line communication of an SIMD system
with the outside world some registers are predetermined to act as input and/or
output registers. As on-line I/O convention we adopt the same rules as in the off-
line case. But, at the beginning of any on-line computation (moment ¢=0), all
registers of the system are assumed to hold value zero. Input data or output data
may enter or leave the system at a moment as specified by the CPU program according
to READ or WRITE instructions. In any correct program these input (output)
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instructions have to be addressed to a proper subset of all registers specified as
input (output) registers. For the input (output) data it is assumed that there.exists
a memory facility in the outside world from where (to where) the input (output)
data are obtained (given) by the system. Thus, for concrete problem solutions it is
necessary to specify
e what data structures are assumed for the input and output data, and
@ how these data are partitioned into waves of information such that one wave
may enter (leave) the system per input (output) operation as performed
according to the CPU program. el
The size of these waves of information, i.e., the number of data units forming those
waves, may alter during a computation process, and just one data unit, for examplé
by LOAD = x, will be considered to be the simplest case of a wave of information.
Uniform cost criterion. For measuring the time complexity of computatlons
we assume that any (basic) instruction of the SIMD system needs one umt of txme
for performance on this system.

Definition 1. A model of computation SYS is called a standard oﬁ” lzne network
system (SYS€OFF-NET) iff SYS is defined by

® a CPU and a fixed set of indexed PEs, with concrete values for Dgpy

and Dpg,

e abstract registers if not otherwise specified, and the standard reglster enume-

ration,

e a uniform interconnection network with 0= Ny< oo,

e the standard PE masking scheme, '

e a special interpretation and selection of instructions of the abstract CPU

" instroction set where

(OFF. 1) no READ and WRITE instructions are contained in the instruction set
of SYS,

(OFF. 2) for the CPU all RAM mstructlons [2, Fig. 1.5] except READ and WRITE
are avilable,

(OFF. 3) for Ny=p=1 at least one instruction of the type [all PE’s] OP,,,:

,.,...,p—1 1is available, and

(OFF. 4) for any output register (j,0), i.e.,.accumulator of PE(j), at least one
instruction of the type OP,(j) is ava1lable 1.e., the CPU may have con-
trol of any outputting PE, , .

e the off-line I/O convention, and

e the uniform cost criterion.

For the defined class OFF-NET we may define subclasses — e. g., OFF- NETP
to be the set of all SYSEOFF-NET having the branching degree p=N,y, OFF-
SQUARE to be the set of all SYSEOFF-NET having a square network as defined
n Table 1, OFF-BINTREE " with the same reference of Table 1, - OFF-PS=

= U OFF-PS™, or just OFF-RAM.

m=1 : '
Example 1. Let us consider the following special SIMD system EXAMPI¢
€OFF-SQUARE. Let Dgpy=Dpg=<. Additionally to. the CPU registers
0,1,...,L—1 for a certain L=1, all the accumulators (j,%,0), 0=;<M and
0<k<N for some M, N=1, are ﬁxed as input and output registers of EXAMPI
The system possesses the followmg instruction set: ,
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[mask) ADD a, a for m, *m, :i, ..., i for iy, ...,5€{0,1,2,3},
[mask] OP, &, « for m, *m, :i for i€{0,1,2,3},/=1,2,
[mask] LOAD «,a’ for m,*m, :i for i€{0,1,2,3)},
[mask] STORE «,a for m, *m, :,,...,§ for iy, ..., €{0,1,2,3},
LOAD «a,a for =x, m, *m, (j, k),
STORE a, a for m, *m, (J, k),
OP, a,a for =x, m,*m, (J, k),
JUMPb, JGTZ b, JZERO b, JLTZ b, and HALT.
Here, [mask] represents an arbitrary PE address mask, OP, is ABS (absolute value)
or SIGN (signum function), OP, is ADD, SUB, MULT, or DIV, for the tuples
(J, k) with O=j<M and 0=k<N.

To give a short illustration of the computing power of EXAMP!I let us consider
the computation of the parallel Roberts gradient (cp. [9] for its importance to digital
image processmg), where the input image A=(a;) of size¢ MXN is assumed
to be stored in the PE input registers (a; in reglster (J, k,0)) at the beginning
of the computation. At the end of the computatlon value max {|la;; —a;,1, Hlf,
|@;41,x—aj,x+1]} has to be present m register (j, k, 0).

By performing the following sequence pf parallel instructions,

1. [all PEs]STORE1 . 7. [all PEs] STORE 3
2. [all PEs] LOAD :2 8. [all PEs] LOAD 1
3. [all PEs] STORE 2 9. [all PEs] LOAD :1
4. [all PEs] LOAD :1 10. [all PEs] SUB 2
5. [all PEs] SUB 1 11. [all PEs] ABS 0
6. [all PEs] ABS 0 12. [all PEs] STORE 4

all registers (j,k,3) contain value |a;,—a;1,+:, and all registers (j,k,4)
contain value |a;;,,—a; 41|, for 0=j<M and O0=k<N. These values may be
considered as two MXN matrices B and C. For max (B, C)=(max {bis cic))
we have

max (B, C)=BXsign (B—C)+C Xsign (C—-B)+B—-BXsign|B-C|, (1)

where X.means the parallel MULT operation (cross product of two matrices),
and sign the parallel SIGN operation. Using this formula, the parallel Roberts
gradient may be computed on the defined special OFF-SQUARE system within time
29 or less, independent of the values of M and N, as the reader may check easily.
Note that formula (1) describes a way in which the PEs are able to perform local
logical decisions in SIMD mode.

Example 2. By some easily described modifications, the system EXAMPI
may be altered dramatically. Replace the square network by LRUD2I™, for
m<max {log,M, log, N}, let Wyz=1, and replace the parallel operations ADD,
OP, and OP, by logical operations AND, NOT, and OR, respectively. What results
is a special OFF-LRUD2I"™ system EXAMP2 which essentially coincides with the
PBS (paralleles Binarbildverarbeitungssystem). The computational power of the
PBS was extensively studied in [4].

Definition 2. A model of computation SYS is called a standard on-line network
system (SYSE€ON-NET) iff SYS is defined by
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o a CPU and a fixed set of indexed PEs, with concrete values for DC,,U
and Dy,

@ abstract registers if not otherwise specified, and the standard register enu-

meration,

a uniform interconnection network with 0= Ny< oo,

the standard PE masking scheme,

a special interpretation and selection of instructions of the abstract CPU

instruction set where, for Ny=2, an integer tuple (p, ¢) may be denoted

to be the characteristic of SYS in the following sense:

(ON.1) P=N;y and 1=qg<p,

(ON. 2) a proper subset {i, I, ..., I,} of all directions {0, 1, ..., p—1} is specified,

(ON. 3) at least one instruction of the type [all PE’ s] OP,.; iy, by, ..., I, is avaible,

(ON. 4) for any of the instructions [mask] LOAD : j or[mask]OPk(“) ]1, JaseesJus
k=1, it follows that j, /i, fa, ..o o€ {i1s fay -oos i}y

(ON. 5) for any of the instructions [rnask] STORE Jis Jas -+ jks k=1, it follows
that jy, jo, ., k€{0, 1, ..., p—1}—{i1, iy, ..., i}, i.e., the result sof con-
secutive parallel operations may be shifted through the system in directions
{0,1,...,p—1}—{i1, 4y, ..., i,} only, and, furthermore

(ON. 6) for the CPU all RAM instructions are avilable including READ and
WRITE,

(ON.7) for any output register (j,0), at least one 1nstruct10n of the type OP,(;)
is available,

@ the on-line I/O convention, and
o the uniform cost criterion.

For the defined class ON-NET we may define subclasses — e.g., ON-NET,,,
.to be the set of all ON-NET systems with characteristic (p, g), ON-LR21" to be
the set of all SYSCON-NET having a left-right 2! network as defined in Table 1,

ON-ILLIAC™ with the same reference to Table 1, ON-PM2I= G ON-PM2I™,

m=1
or just ON-RAM.
Any infinite network class OFF-LINEAR or ON-DIAGONAL may be con-
sidered as an abstraction of a finite network system, or as the union of classes of
finite network systems in the following way.

: Definition 3. Let OFF-IN be the set of all OFF-NET systems which are defined
by a special infinite network IN, e.g., IN=LINEAR or IN=LRUD2I". A model
of computation SYS is called a finite OFF-IN system (SYSE€ FIN-OFF-IN) iff there
exists a system SYS,€ OFF-IN such that SYS may be obtained as a restriction of
SYS, in the following sense:

Let ind, and D} be the PE index set and the PE memory depth for SYS,,
respectively. A ﬁnite cut off of the PE register set of SYS, is defined by a certain
finite subset ind of ind, and a (possibly infinite) memory depth Dpz=D8:. The
work of SYS may be described as follows. All registers in a certain finite cut-off
of SYS, are available in SYS but all registers not in this finite cut-off will be con-
sidered to be dummy registers, i.e., they are assumed to store value zero if addressed
as an operand, and to “forget” any value handed over to them; this is the only
difference between SYS, and SYS.
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Analogously the set FIN-ON-IN may be defined.

Example 3. An example of a FIN-ON-BINTREE system may be specified
as follows. Let Dpy=< and Dpg=m=2. The finite cut-off of the bintree net-
work is given by ind={l1,2,...,2™"—1}. Additionally to the CPU accumulator
which acts as an input and output register (L=1), the registers (2™, 0),
2™1+1,0),...,(2"—1,0), i.e., the accumulators of the 2™~! leaf node PEs,
are fixed as input registers, and register (1,0), i.e., the accumulator of the top node
PE, is fixed as an output register. The system possesses the following instruction set:

[mask] ADD a, a for m,*m, : 1,:2,:1,2,

[mask] OP,a, a for m,*m, : 1, : 2 and [=1,2,

[mask] LOAD «, « for m, *m, : 1, : 2,

[mask] STORE «, « for m, *m, : 0,

[subset leaf nodes] READ 0,

[top node] WRITE O,

LOAD a, o for =x, m, *m, (1),
STORE «, o« for m, *m, (1),
OP, a, a for =x, m, *m, (1), and =1, 2,
READ 0,
WRITE «, a for =x, 0,
JUMP b, JGTZ b, JZERO b, JLTZ b, HALT.

Here, [mask] represents an arbitrary PE address, OP; either ABS or SIGN,
OP, one of the operation codes ADD, SUB, MULT, or DIV. Altogether, a FIN-
ON-BINTREE system EXAMP3 is defined which may be obtained by a restriction
of an infinite ON-BINTREE model where infinite sets of input and output PE
registers are available in the infinite origin.

To give a short illustration of the computational power of the system EXAMP3
N—-1

1
let us consider the computation of the arithmetical average ~ 2> a;, N=2""1 and
i=0

n odd, for M consecutive waves of information (ay, a,, ...,ay—;) where a; is
fed to the accumulator of the PE (2"~!+i), for i=0,1,..., N—1. In order of
the M consecutive waves of information the arithmetical average have to leave
the system via register (1, O).

For initialization of the system, at first the instruction LOAD =N, STORE (1),
[top node] STORE 1 will be performed in this order. For M=(n—1)/2 the following
sequence of instructions is executed (n—1)/2 times:

[leaf nodes] READ 0, .

[all PEs] ADD : 1,2,

[leaf nodes] LOAD 1,

[all PEs] ADD : 1,2,
followed by the following sequence of instructions which is executed M —[(rn—1)/2]
times:

[top node] DIV 1,

[top node] WRITE O,

[leaf nodes] READ O,

fall PEs] ADD : 1,2,

[leaf nodes] LOAD 1,

[all PEs] ADD : 1,2,
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Finally, the following sequence of instructions is executed (n—3)/2 times:

[top node] DIV 1,

[top node] WRITE 0,

[all PEs] ADD : 1,2,

[all PEs] ADD : 1,2,
followed by the last two instructions [top node] DIV 1 and [top node] WRITE 0.
Thus, altogether, the arithmetic averages of M =(n—1)/2 consecutive waves of
information (a,, gy, ..., ay_;) may be computed within 6Af+#n basic operations
of EXAMP3, instead of O(N - M) basic operations in the serial case using a RAM
as model for computation.

In conclusion, we point out that SIMD now denotes not a general concept
(single-instruction, multiple data) but an exactly defined class of models for computa-
tion, namely the union of all system classes given by Definitions 1, 2, and 3.

2. Local, global, and total data flow measures

Let SYSeSIMD; throughout this paper such a special parallel processing
system will be used as a standard system for considerations of data transfer re-
strictions in computing systems. Any computational process performed on such
a model SYS may be uniquely specified by a CPU program =# and a concrete input
situation I characterized by the placement of input values into the set of input
registers if off-line mode is used, or by the partition of the input data into consecutive
waves of information fed to some of the mput registers of the system from the out-
side world if on-line mode is used.

As suggested by applications to visual perception, the set of input registers of
the model SYS may be considered as the retina of the system, and any new wave
of information to this set of input registers represents a snapshot of the outside
world. In this sense, after ¢ steps of a computational process characterized by
a program =n and an input situation I, for any register r of the system we may
mark out a certain receptive field recl (r, t) containing all the names of those input
registers which have had any influence on the contents of register r up to the moment
t, where new waves of information to the retina of the system create new names
of the input registers, formally represented by #®, r, 3 O for register r.

Standard register names. At time t=0 of any computational process, each
register r in our standard enumeration possesses the name . At t=0 let the
wave number WN=0 also. At time #+1 assume that a serial or parallel READ
instruction, or an instruction LOAD =x, OP,=x, or OP,=x has to be performed.
Then, by this operation we obtain WN«~ WN+1 and the new names r*M for
all registers which were addressed by these instructions. For example, the number
(> e(j, m)*™ in the case of an instruction [mask] READ *m for all activated
processing elements PE(j), where c(j, m) denotes the actual contents of register
(j, m), or the name 0"¥ in the case of an instruction OP,=x.

Definition 4. Let SYS¢SIMD. Standard register names are assumed. For
a program 7© of SYS, an input situation I of SYS, a register r of SYS, and an
arbitrary moment =0, the receptive field recl(r,t) is recursively defined as
follows:
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moment t=0:

{r(°)} if input register r stores an input value according
reck (r, 0) = to I, for off-line mode,

empty set, otherwise

moment t+1, t =0:
At moment t+1 a certain instruction has to be applied according to = and I,
or the-HALT instruction is assumed for this moment.

(i) Depending on this instruction, if it is one of those listed in Table 3, the
changes of receptive fields are defined as given in this Table where we omit the
indices 7 and [ for simplification of the expressions. In the case of parallel instruc-
tions, the mentioned changes are valid for all activated PEs PE (j) where j matches
[mask].

Table 3. Changes of receptive fields in step 7+1

Instructions Changes of receptive fields
[mask] OP, m rec ((J, 0, 1+ 1)=rec ((j, m), 1)
[mask] OP, *m rec ((, 0), t+1)=rec ((j, m), t)Urec ((j, c(j, m)), 1)
[mask] OP, :i rec ((, 0), t+1)=rec ((£(/), 0), 1)
[mask] OPs m rec ((J, 0), £+ 1)=rec ((j, 0), ) Urec ((J, m), 1)
[mask] OP; *m rec ((j, 0), 1+ 1)=rec ((j, 0), nu
Urec ((j, m), ) Urec (G, c(j, m), 1)
[mask] OP,,, : iy, iz, ..., iy rec ((j, 0), 1+ 1)=rec ((j, 0), £) Urec ((f,.l(j), 0), 1)y
Urec ((f;.’(j), 0), 1)U... Urec ((fi,(j)’ 0),1)
[mask] STORE m rec ((j, m), t+1)=rec ((, 0), ¢)
[mask] STORE *m rec ((J, ¢(j, m), t+1)=rec ((j, 0), 1) Urec ((j, m), t)

[mask] STORE : iy, iz, ..., i rec ((f;.l(j), 0), £+ 1)=rec ((J, 0), ¢), rec ((f‘.’(j, 0), r+1)=
=rec ((j, 0), 1), ..., rec ((f‘.l(j), 0), 7+ 1)=rec ((j, 0), 1)

[mask] READ m rec (j, m), t+ 1) = {(j, m)¥}

[mask] READ *m rec ((J, ¢, m), t+1)=rec ((J, m), ) U{(J, c(, m))‘W”’}
OP,=x ' rec (0, £+ 1)= {0 ™}

OP,m rec (0, z+1)=rec (m, t)

OP, *m rec (0, t-+1)=rec (m, ) Urec (c(m), t)

OoP, () rec (0, 1+ 1)=rec g(j, 0), ¢

OPy=x rec (0, t+1)=rec (0, ) U {0 ™}

OP,m . rec (0, t+ 1)=rec (0, £)Urec (m, ¢)

OP; *m rec (0, ¢+ 1)=rec (0, ) Urec (m, t) Urec (c(m), t)
OP, (j) rec (0, t+1)=rec (0, #) Urec ((J, 0), 1)

STORE m rec (m, t+1)=rec (0, z)

STORE *m rec (e(m), t+1)=rec (0, £) Urec (m, t)

STORE {j) rec ((, 0), 14+ 1)=rec (0, 1))

READ m rec (m; t+1)= {m""™}

READ *m o rec (e(m), t+1)=rec (m, 1)U {c(m){™ ¥}
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(ii) For the parallel or serial LOAD instructions the changes of receptive
fields are the same as for the corresponding OP, instructions.

(iii) In the case of a WRITE, JUMP, or HALT instruction no changes of
receptive fields appear.

(iv) Inthe case of a JGTZ, JZERO, or JLTZ instruction no changes of receptive
fields appear in step ¢+1, but the set rec (0, r) will be added at moment ¢'=r42
to any receptive field that alters at moment t' according to (i) or (ii), if at moment
" an instruction has to be performed covered by cases (i) and (ii). For example,
the instruction [mask] OP, m, at moment ¢ =¢+2, will produce the changes
rec((J, 0), r')=rec ((j, 0), ¥ —l)Urec ((j, m),  =1)Urec (0, t) for all activated PEs.

For illustration of this definition, consider the special OFF-SQUARE system
as defined in Example 1. Let 7/ be any concrete input situation for computing
the parallel Roberts gradient and let n be the sequence of the 12 parallel instruc-
tions as given there. At moment r=0 we have rec((J, k, 0), 0)={(j, k, 0)(‘”},
for 0=/<M and O0=k<N, and for any other register r of the system EXAMP 1
rec (r, 0) is the empty set. After performing the 12 instructions of n the receptlon
fields of maximal cardinality 2 belong to the registers (J, k, 0), (j, k, 3) and (j,k,4),
for O=j=M-2 and 0=k=N-2, where, e.g, I'CC((j,k 0), 12)={(j+1, k, 0)©,
(J,k+1,0)®}). For the system defined in Example 3, and the program and the
input situation as described there, after performing the 6M+n instructions the
receptive field of maximal cardinality NM+1 belongs to the register (1, 0), i.e.,
to the accumulator of the top node PE.

Definition 5. Let SYS6SIMD. For a set R of registers of SYS and a moment
=0 define the Iocal data transfer Sfunction Asys by

Asys(R, ©) = miax max max card (rec (r, 1)),
n I reR

the global data transfer function ysys by
ysys(R, ) = max max card (J reck(r, 1)),
n reR

the total data transfer function tgys by

tsys(R, 1) = max max 2>, card (reck (r, 1)).
n reR

By this definition, it follows immediately that the functions Agys, ysys and
1gys are monotonically increasing for any set R of registers of SYS and increasing
values of . Furthermore,

Asys(R, 1) = ysys(R, 1) = t5ys(R, f) )

for all models SYSeSIMD, sets R of registers and moments ¢=0. Also note that
for any model SYS, if within ¢ steps of an arbitrary program n for SYS starting
with an arbitrary input situation I for SYS at most wgys(¢) input data may be
fed to the system, then

Isys(R, 1) = osys(f), and _ v - (3.0)
Tsys(R, ) = Asys(R, 1) - card (R), ‘ (3.2
for any set R of registers of SYS and ¢ =0.
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"Example 4, In Section 4 we shall characterize the way to use these data transfer
functions for obtaining lower time bounds for concrete computational problems.
For serial data processing we shall apply the system RAM,, cp. [2, Fig. 1.5], as
model for computation, where R, ={0,1,2,...,L—1}, L=1, is assumed to be
the set of all input/output registers of sucha machine (Depy= 0, Npg =0, W py= o).
For t=0, we have wopp_RAML(t) =L+t and wON—RAML(t)—t For OFF-RAM =

= U OFF-RAM;, note that wgpr_gam (t)= max wopp_RAM,_ (1) is not defined.
L=1

Furthermore, we have

Aorr—ram, (Re, 1) = {[Z(IL++1 1)/1”2<]r+ 1,0 hsc.)tthfr\&(ils‘ej v @.1)
YorF—rAM, (Rp,0) =L+t, and 4.2)
TorF—RaM, (Rr, ) =L(t—|L/2|4+1) for t=|[L[2), (4.3)
in the case of using the RAM_ in off-line mode, and
' - Aon—ram, (R, ) = Yon—ram, (RL, f) =1,
ron—ran (Re, 1) = {tL( Ef_lzf/z)i’rl/zﬂ éflc;r t=1, “.5)

in the case of using the RAM in on-line mode. The maximal data flow for obtaining
equation (4.1) is possible by indirect addressing OP, *m, followed by OP,=x
operations. For (4.3), the same sequence of operations is extended by L—1 instruc-
tions STORE m. For (4.4), ¢ operations of the type OP,=x may be considered.
For small ¢ the exact derivation of the function torr_ram, represents a sophisticated
problem already, for this quite simple model of serial computation.

Example 5. For further illustration of the concrete derivation of these data
transfer functions, let us consider both systems EXAMPI1 and EXAMP3 as defined
above.

For the system EXAMPI, first we see that wgxampi(!)=MN+L+1, for
t=0. Let R, y be the set {(j,k,0):0=j<M and O0=k<N} of all PE input/
iutput registers of the system. By using ¢ operations of the type

[all PE’s] ADD :0,1,2,3

we obtain the maximal local and total data transfer within the field of PE accumula-
tors, where

Apxamer (Rag, nof) = 28842t +1, (5.1)
3
(2t2+2t+1)MN—[i“3L—l- (t+1)2+—2—(—t—;—1)—)(M+N)§
= Texampr (Ry,vo0) = (2342t + 1) MN, (5.2)

for 2t+1=min {M, N}, by elementary combinatorial considerations and (3.2).
For t=t,=|M/2)-|N/2] we have

MN+(@{—1tg) = Apxamp1(Ry v, ) = MN+L+t. 4.3)
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For t=t,=M+N—2 we can easily see that

M2N?+(t—1y) = texamp Ry, vy 1) = MN(MN+LH+0). (5.9

Finally, for the case of global data transfer we obtain
MN for t=0 ST
'YEXAMPI(RM,N! t) = MN+2t+1 for 2t+1 <L and t > 0 (5.5)

MN+[(L—1)/2]+¢t for 2t+1=L

where, for 2¢+1=L, the maximal global data transfer is possible by 7 operations
of the type ADD *m, and one operation STORE (/, k), e.g.

For the system EXAMP3, at first we have wgxamps(2)=?-N, for N=2""1
and r=0 by using ¢ operations of the type

[leaf nodes] READ O,
Let Ry={0, (1, 0)} be the set of the two distinguished output registers of this syste
EXAMP3. By using the instruction pair

[leaf nodes] READ 0,

[all PEs] ADD :1,2 :
repeated (m—1) times, m>l the single instruction

(leaf nodes] READ 0
again; and finally (n— 1) instructions

[all PEs] ADD :1,2,
we obtain the maximal local data transfer for register (1, 0) in any case t=m,
We have

- : SRR 10 - for-t=0

-1 for 1=t=n-1
Aexamea(Ro, 1) = m-N for t=n+2m-I, m=1
‘ and =1 or 1=2,

for all 1 =0. Analogously, for the same set R, and =0

0 for t=0,

201 for 1=t=n-1, .
Vexames(Ro, ) =1, for t=n+2m-2, m=1, = .

m-N+1 for t=n+2m—-1, m=1, :

0 ' ‘for t=0,
. , 21 for 1=t=n+1,
Texampa(Ros 1) 2m-N for t=n+2m—-1, m=1.

2m-N+1 for t=n+2m,m=1.

Of course, the values of Apxamrss Yexames> and Texames depend on the chmce
of the set R,, and may be quite different for some other sets of registers. '

Definition 6. Let CLASSCSIMD. The general data transfer functions are
defined as follows, for such a set CLASS of models of computation, for #; nZO
Acrass(f) denotes the maximal value of all Agys(R, t),
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Tepass(n, t) denotes the maximal value of all ygys(R, t) with card (R)=n, and

Tcpass(n, £) denotes the maximal value of all 7gys(R, t) with card (R)=n,

where SYS is an arbitrary element of CLASS, and R denotes a set of registers

of SYS.

Interesting examples of CLASS are sets like OFF-NET,, ON-NET, ,, OFF-
SQUARE, OFF-BINTREE, or ON-HEXAGONAL, where these general data
transfer functions are fully defined.

Theorem 1. For standard off-line network systems and 2= p< < we have

24+ 1 for p=2
_ner. () = —1)—1
Aorr NET,,() P ( (p 1)2 ]+1 for p=3,
and
Lorr—ner, (it ) = Torr—ner, (i,8) = it - Aopr—ner, (), for a,7=0.

Proof. First, let us consider the local situation. For p=2, the maximal transfer
of data units is possible by indirect addressing to the CPU accumulator, e.g. For
p=3, there exist special OFF-NET, models SYS, such that, according to (OFF.3),
at any moment l=s=¢ the maximal possible number of p(p—1)*"! new names
of input registers may enter the receptive field of a certain register r, for 1=0. Thus,

Asys,({r}, O = 1+:§:p(p—1)’ =p {——'(p;l_);_l ]“"1-

For the total and global situation note that by choosing sufficiently complex SYS, ,,
for n, t=0, the maximal local situations of data transfer characterized by receptive
fields of cardinality Aorr_ner, (f) at moment ¢ may appear in n different registers
and time ¢ such that these reglsters are far enough from one another so that their
receptive fields are pairwise disjoint. [J :

Example 6. By (4.1) and Theorem 1, it follows that Aopp— ram(?1) = Aorr—ner,(1) =
=2¢+1, for t=0. Of course, this coincidence is not true in the total and global
cases. According to Theorem 1 we have I'opp_ner, (7, 1) =Topr—ner, (1, t)=n2t+1),
for n,t=0, but by elementary considerations I'gpp_gam(n, 1)=2t+n, for n=1
and TOFF—RAM (n, t)=2n(t—-n+2)-2, for t=n=2.

In Table 4 the general local data transfer functions are collected for some
classes of off-line systems as defined in Section 1. For these classes, the functions
Aorr—nET, 8 given in Theorem 1 act as upper bounds, where the proper value
of p has’to be specified. The classes OFF-LINEAR, OFF-PS, OFF-BINTREE
and OFF-QUADTREE represent examples for the maximal transfer situations
as characterized by Theorem 1, for p=2, 3,5, respectively.

..Some remarks about Table 4 and about the other networks which were defined
in Table 1.

1. For the bintree, triangle and quadtree network note that the maximal
receptive fields may be obtained for central nodes of these tree structures only, and
not at-the top node. The maximal possible cardinalities of receptive fields of top
node accumulators are given for illustration of this fact.
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Table 4. General local data transfer functions for offline systems

CLASS P Aorr—crass(t) t=4 t=8
LINEAR 2 2t+1 9 17
3 3
HEXAGONAL G A 31 109
SQUARE or ILLIAC 4 2243t+1 41 145
TRIAGONAL 6 . 3t2+3t+1 61 215
DIAGONAL 8  4r2+4r+1 81 289
PS 3 3.20-2 ’ 46 766
BINTREE 3 3.2t-2 46 766
top node 2411 31 511
TRIANGLE . ' .5 3.20%1 42235 99 ) 1,579 -
top node 28+l 1. 31 511 -
QUADTREE : 5 (5-4-2)3 426 ” 109, 226
top node ) 41 —-1)/3 341 87,381

2. For all examples of CLASS given in Table 4, we have I'opr—crass(®, 1)="
=Torr—cLass(M> 1)=n+ Aorr—crass(?), for n, 1=0.

3. The hexagonal, square, triagonal, and diagonal networks are special examples
of infinite graphs of constant degree p such that the general local data transfer

function is equal to% 2 +%
. for- the orthogonal grid in a natural way, e.g., the metrics. d, or dy as used in
digital image processing, cp. [9], to the square or diagonal network, respectively.

4. For the networks CUBE™, PM2I", WPM2I™", LR2I", or LRUD2I™, the
derivation of the three general data transfer functions represents a very sophisticated
problem. Of course, the: values of these functions depend on the value of m, and
the consideration of classes like

CUBE = |J CUBE™
m=2

would lead to undefined general data transfer functions. In, [4] the general local
data transfer functions were analyzed for some concrete SIMD systéms similar
to FIN-OFF-LR2I™ or FIN-OFF-LRUD2I™ systems like EXAMP2 which was
defined above. But, for the present paper, we recommend data transfer analysis
for specialized (ﬁmte) SIMD systems to the interested reader, and are satisfied with
some hints:

CUBE™: For ‘this system, the exact derivation of the local transfer functlon
should be a solvable task. We have . o e

t
=2 [’:’] for t<m
AOFF—CUBEm(t) El;"o'. : o for t=m
=2"*(t—m) for t=>m.

For example, we have Aorr—cuse256 (4)=177,589, 057 and Agpp_cupe256(8) is
about 4- 10",

t+ 1. Such networks correspond to usual digital metrics
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PM2I™: For this, as for the other “power-of-two systems”, the analysis of
data flow represents quite a hard problem, cp. {4]. But, to give the reader some
feeling about the complexity of the data transfer functions for these systems, some
values will be collected:

=1 for t=0
=2 for t=1
. = 2 —1 _2 4 f t = 2
Aorr-pmam(1) (m-1)(m—2)+4 for g
=2" for t=[m/2)
= 2nI+1(t-—[m/2]) for t > I'm/2].

Note that exponential increase changes to linear increase at t=[m/2].

WPAM2I™: Tt may be that this is the most complicated situation of any network;

we have.

=1 for t=0

= for t=1
Aorr—wpmeim(?) :

=27 for t=[m/2]

= 2y —'[m/2]) for t=[m/2.

This great difficulty in analyzing data paths should be a hint to the limited practical
importance of this network.

LR2I™: For brevity we shall use the function a(i)= > j2=%(i+ 1)—%(i+ 12+
. ji=1

+l 1(i+1)3. We found the following interesting values:

3
1 , 4for t=0
2m+1 ) for t=1
2(m—2):+4m+1 for t=

; ‘ 1+6m+4(m—2>+2.-0(m—4) for t=
: 14+8m+6(m—2)*+4.0(m—4)+

m—¢6
: +4- > o(i) - for t=4
A4 "0 =§ =1
OFF—LR2l 1+10m+8(m—2)2+6-a(m—4)+
m—6
+8- > o)+ for t=35
i=1

+8'S 3o())

i=1 j=1

2m. f— c,,,. . for ¢ é [((m—1)/2]

\’
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The contents ¢,, depend on the value of m only, for example c,= —1, ¢5=1, ¢,=7,
c;=25, cg=T1, ¢;=185, ¢;=455, c,=1081, and ¢,=2503. Because the LR2I"
is an infinite network- Iopp_rram (1 1)=Topr—Lram(®; 1)=n+ Aopr_Lram(?),
for n, t=0. .

LRUD2I™: Of course, we have

Aorr—_Lruparm () =2 - Aopr_rram(t)—1, for =0, and, because LRUD2I™
iS dan inﬁnite network we have FOFF_LRUDglm(n, t)=TOFF—LRUD2["‘ (n, t)=n .
+ Aorr—Lrupaim(?), for n, 1=0. ‘

Theorem 2. For standard on-line network systems and 2=p<o, l=g=p—1,

0 for t=20, .
Aon—ner,, (1) =121 for t=1 and g=1,
(¢'—D)(g—1) for t=1 and g¢g=2,

and Ton—ner,, (1 1)=Ton—ner,, (1 t)=n+ Aon—ner,, (1), for n, t=0.

Proof. Consider the local data transfer situation first. At z=1 assume that
a sufficiently large set of input registers obtain input data in parallel by a READ
instruction. Then (¢—1)/(g—1)=2t—1=1 for g=2, or t=1. For g=1, the
maximal local transfer situation, i.e., the maximal transfer of data units to a given
register, is possible by indirect addressing. Thus, Aon—nErp,1(f)=2t—1 for r=1.
For g=2, according to (ON.3) it follows that

Aoxner, () = E 4" = (4= D)(g—1),

where these maximal cardinalities of receptive fields may be obtained in certain
PE accumulators. For given n, t =0, by choosing a sufficiently large field of PEs
obtaining input data in their accumulators at the first instruction (i=1), n receptive
fields of maximal cardinality Aon_ngrp,q(f) may be pairwise disjoint. 0O

Example 7. By (4.4) we know that Agn_ram(?) =T on—ram(#, t)=t, for =0 and
nz 1, and thus Aon—ram(?) < Aon—ner, ,(?) as well as Tongam(r, ) <D on—ner, (71, 1)
n

3 +l , fort=n=l,

for t=2 and n=1. Furthermore, Ton_ram(®, t)=n[t— >
-and thus TON—RAM(”! t)<T0N__NETP’1(n, t) for t=n =2

In table 5 for classes of on-line systems mentioned in Section 1 some results
on the analysis of general local data transfer functions are collected. For these
classes the functions given in Theorem 2 act as upper bounds where the proper
values of p and g have to be correlated. By ON-INg i, .'._,,»q) we denote a special
ON-IN system with fixed set {i,, i, ..., {,} according to (ON.2). The classes
ON-LINEAR;, ON-BINTREE; ;, and ON-QUADTREE(M, 3,4} represent
examples for maximal transfer situations as characterized by Theorem 2. '

Some remarks about Table 5 and about the other networks which were defined
in Table 1:

1. For all examples of CLASS in Table 5 we have I'on_crass(®, )=

=Ton—cLass(M, 1)=n"- Aon—crass(?), for n,1=0.

6 Acta Cybernetica VI/4
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Table 5. General local data transfer functions for on-line systems

CLASS p {ir, iz, ... ig} Aon—crass (1) =4 =8
LINEAR I R (1)} 2t—1 7 15
HEXAGONAL 3 {0,1} 1+ 1)/2 10 36
{0} 2t—1 7 15
SQUARE or
ILLIAC 4 {0,1,2) 1 16 64
{0, 2} e+ 172 10 36
{0, 1}, {0} 2t—1 7 15
~ 5 5
TRIAGONAL 6 {0,1,2,3,4} S-Sl 31 121
3 1
{0,2,3,4) — =z 22 52
2 2
{0, 2, 4} 1 16 64
7 7
DIAGONAL 8 0,1,23,467 Sri-—r+l 43 197
BINTREE 3 {1,2) 21 15 255
{0, 1} t{t+1)/2 10 36
TRIANGLE 5 {1,2,3,4} 2—1 15 255
QUADTREE 5 {1,2,3,4) @-1)3 85 21, 845
PS 3 {0,1) (Q+V3)** - -y3r*°Y
V5.2:43) 2 11 87

2. The class ON-PS, ;, denotes special SIMD systems using the PS network
in its original [10] meaning. Let fo=1, i=1, fo=2, ..., fovs=Sfo+/fos1> ..., Where

L=M0+ }/-5—)';+1 —(1=V5)y+yy5s. 221

t .
denotes the nth Fibonacci number, n=0. We have Aon—rpsg 3 {(1)= 2 fo=for2—2,
! n=1

for t=0; cp. [3] for a similar result.

3. For the bintree, triangle, and quadtree network note that the maximal
receptive fields may be obtained for the top node accumulator, for. {i,,is,..., i}
equal to {1,2}, {1, 2,3,4)}, {1, 2, 3,4}, respectively.

4. The analysis of the general data transfer functions for classes ON-CUBE™,
ON-PM2I", ON-WPM2I™, ON-LR2I™, and ON-LRUD2I™ will not be considered
in the present paper.
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3. Local, global, and total data dependence measures

For parallel processing systems, the optimal time for the solution of a computa-
tional problem depends upon the data transfer abilities of the given system as well
as on the principal possibilities of parallelization of a solution process for a given
problem. The first may be characterized by the data transfer functions Agys,
I'gys, Tsys by a general system analysis as considered in Section 2. The second
property, however, requires individual consideration of the given computational
problem.

For example, consider the multiplication of two NXN real matrices A4-B=C.
For a given system SYS assume that all N2 elements of matrix C have to be
computed in N2 different output registers represented by the set Royr. Let
r€ Routs RoS Rour, and R; be the set of N distinctive registers for outputing
the N diagonal elements of C. Then it follows that Agys(r, t*)=2N, yeys(Ry, t¥) =
=Z2N? and tgys(Ry, t*)=2N -card (R,) if the product A-B is to be computed
on SYS within time 7*. Thus, if the functions Agys, I'sys or Tsys are known,
lower time bounds are derivable from these inequalities for the solution time ¢*
immediately, where the maximal lower time bound from the three possible values
is taken as the result. For example, according to our considerations in Section 2

for the system EXAMP1 we have 1*=}N—1 under the assumption that M =2N.
But note that a better lower time bound for this system and the matrix multiplication
problem may be obtained by more specialized considerations as demonstrated by
Gentleman [3, Theorem 1]. Because each data unit transfer from a certain
register r, to a certain register r, of the system EXAMPI1 may be performed in
-the reverse direction, from r, to r;, in the same time, the proof of Theorem 1
in [3] matches the situation given by the system EXAMPI, ie., for r€Ryyr we
have Agxampr (7, 2t*)=N?2, and thus t*> (2N2 1)1/2—%.

For a general approach to the derivatxon of lower time bounds for parallel
processing systems we shall use the quantitative description of data dependencies
of the desired output data in relation to the input data specification, for computa-
tional problems which may be identified with special functions as described later on.

Definition 7. Let n, m=1. Let f be an n-ary function defined on a certain
set domain (f) of n-tuples of real numbers, and into the set of m-tuples of real numbers.
For an n-tuple (x, X, ..., X;)€domain (f), define

sub, (X1, Xg, .oy X,) = {1 =j = n&(VX # X)) (X1, Xay ooy Xjo1, X' Xjp1s oons XE
€domain (f) & proj; (f (x;, Xa, ...r X,)) # Proj; (f (X1, Xz5 oes Xjm15 X Xj15 oos X))}

to be the set of all positions j such that changes in the jth component of (x;,x,,...,X,)
have an effect on the projection proj; f, for 1=i=m. Then, define

A, = max max card(sub;(x, x;, ..., X,
T (kX %) 1ZiSm (sub; (x1 x2, --os %)),

m
Yy = max card[U subi(xl,x2,...,x,,],

(X1, X 0y X)) =1

6*
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and

Ty =, max anrd(sub (%15 X5 -5 X))
X11 Xgs ee0sXpy) j=
The function f is called Iocally d-dependent \ff d=4i,, globally d- dependem iff
d=y,, and totally d-dependent iff d=t,, for an integer d=0.
By this definition, for arbitrary functions f defined on n-tuples of real numbers
and into the set of m-tuples of real numbers, it follows immediately that Ae=y,=1,
if m=1, and for m=1

A=y, =15, @1

yr=n, ) (7.2
and

Tfé m'j.f. (7.3)

For example, in the case of the following function f,

_Jxitx, if x;=0
f(xl,xz,xa,x4,x5)—{x3+x4 if x,#0,

we have sub, (x;, Xs, X3, X4, 00={1, 2, 5} if x;+x,#x;+x,, and sub, (x;, x5, X3,
x5, 0)={1,2} if x;+x,=x3+x,. Because of A,=y,=1,=3, this function is
local, global, or total 1-, 2-, and 3- -dependent, but not 4- or 5-dependent.

Now, in a sequence of examples, the data dependence measures as given by
Definition 7 will be analyzed for certain computational problems. The results
are collected in Table 6, i.e., the following examples may be considered as explanatory
remarks to this table.

Example 8. The multiplication of two NXN real matrices may be considered
as a 2N%-ary function into the set of NZ2-tuples of real numbers. For this computa-
tional problem, it is evident that

AMATRIX—-MULTIPLICATION = 2N,

— 2 - 3
YMATRIX—MuLTIPLICATION = 2NV, and  Tyatrix—muripLicaTiON = 25,

where these maximal values of data dependence are true for each input vector of
length 2N? containing non-zero values in all positions. By this example it follows
that the upper bounds (7.2) and (7.3) cannot be reduced in general. The inversion
of an NXN real matrix in place may be considered as an N2-ary function into
the set of N2-tuples of real numbers. We have

— _— 2
'IMATRlX—lNVERSlON—IP - YMATRIX—-INVERSION—IP - N ’
and

TMATRIX—INVERsloN—1p = NV*,
where this maximal case of data dependence appears for any matrix containing
non-zero values in all N? positions. These data depence quantities may be con-
sidered as a direct consequence of the data dependence quantities for the determinant
of an NXN real matrix,

_ — —_ 2
ADETERMINANT = YDETERMINANT = TDETERMINANT = N 2.
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The solution of a system of N linear equations in N unknowns may be considered
as an (N24 N)-ary function into the set of N-tuples of real numbers. We obtain

)-LINEAR—EQUATIONS = YLINEAR—EQUATlONS = N2+ N’
and

— 3 2
TLINEAR—EQUATIONS = N3+ N2

Transposing an NXN real matrix in place may be considered as an N*-ary function
into the set of N2-tuples of real numbers,

_ — — N2
A1ransposimion—te = 1, and  Yrransposimion—1p = TTRANsPOSITION—IP = V%,

but for binary operations on permutated NXN real matrices in place,

@i)ij=0,1, .. ,N~1= (0p2(aij7 an(i,j)))l,j:(),l, v N=1
considered as NZary functions into the set of N2-tuples of real numbers,

AvaTrix——tp = 2 for m#id,

YMATRIX——1p = N2,
and

TMATRIX—n—1p = 2N2—card {(ia NDO0=ij=N-1& =) =(, j)},

the transposition may be considered as a special permutation n*, TMATRIX-—r*+—1p =
=2N%®—N, and op, as the exchange operation in this case, opy(a;;, d,+, ;)=
=(a,+, j)» aij)» where the second component of these resulting tuples will be
considered as a dummy result.

Example 9. In this example, three two-dimensional transforms of NXN
pictures will be dealt with. First, the Fourier transform of an NXN complex matrix
(2D-DFT, two-dimensional discrete Fourier transform, cp. {9]) may be considered
as a 2N?-ary function into the set of 2N2-tuples of real numbers. In this case, we have

2N?—4 = Jyp ppr = 2N?-1,
Y2D—DFT = 2N2, and 2N4 = T2D—DFT = 4N4—2N2,

where these maximal values of data dependence are true for each input vector of
length 2N? containing non-zero values in all positions. For the exact determination
of Awpp_prr and t,p_prr, the influence of different values of N has to be studied.
The Walsh transform of an NXN real matrix (2D-WT, two dimensional Walsh
transform, cp. [9]) may be considered as an N 2-ary function into the set of N3-tuples
of real numbers,

— — . — 4
2ep—wr = Vep—wr = N%, and tT,p_yr = N7,

where these maximal values of data dependence are true for any input vector of
length N2, The computation of the parallel Roberts gradient (see Example 1) on
images of size M XN may be considered as an MN-ary function into the set of
MN-tuples of real numbers. For this function,

)-ROBERTS—GRADIENT =4,

YrOBERTS—GRADIENT = MN, and  TropERTS—GRADIENT = 4MN—-2M—2N-2,
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by considering the case of non-zero values in all MN positions, and by paying
attention to border effects.

Example 10. The computation of the convex hull of a simple polygon, cp. [5]
where the N extreme points of the polygon are given by coordinate tuples of real
numbers starting with the uppermost-leftmost point, may be considered as a 2N-ary
function into the set of 2N-tuples of real numbers. In the resulting vector of length
2N, there appear all coordinate tuples of the extreme points of the convex hull of
the given polygon in order, starting with the uppermost-leftmost point, and with
the same run orientation as the given polygon. Positions actually not needed in
this resulting 2N-tuple contain value zero by assumption. In this case, it follows that

Acu—sipor, = Yeu—sieoL = 2N, and 2N2—8N+12 = tcy_gpoL = 4N?

by analyzing the input situation of special convex polygons with N extreme points
as illustrated in Fig. 2, for N =4. The computation of the convex hull of N planar

}/4 P,
Pr_y

Py P,

Figure 2.
Convex polygon for analyzing the
maximal possible data dependence
situation, for N=4

points, cp. [5], given by coordinate tuples of real numbers, may be considered as
a 2N-ary function into the set of 2N-tuples of real numbers as described above,
analogously to the simple polygon situation. For this problem,

Acu—poINT = You—pont = 2N, and  tcy_pomnt = 4N3,

where these maximal values are true for any input situation. The computation of
the Voronoi diagram of N planar points, cp. [5], given by coordinate tuples of real
numbers, may be considered as a 2N-ary function into the set of (18N — 33)-tuples
of real numbers in the following sense. The Voronoi diagram may have 2N —5
vertices at most, and, as a special planar graph, 3N —6 edges at most, for N =3,
See Fig. 3 for an illustration of the construction of such a “maximal Voronoi dia-
gram”, where the number v(N) of vertices, and the number e(N) of edges satisfy
the recursive equations
v(3) =1, e(3)=3,

v(N+1) =ov(N)+2, and e(N+1)=e(N)+3
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=3

N=4

N=5

Figure 3.
Voronoi diagrams for N=3,4,5,6 with 2N—5=1, 3,5, 7 verticesand 3N-6=3,6,9, 12|
edges, respectively

for N=3. The 18N-33=3(2N—-5)+4(3N—6) positions of the resulting vector
of a Voronoi diagram computation we consider as a unique characterization of
a Voronoi diagram by linearization of adjacency lists for this special graph structure
with the positions for each vertex where two are reserved for the coordinate values
and one for a common pointer, and two times two positions for each edge — for
the index of the vertex at the other end of the edge, of for the slope of the edge,
and for a common pointer. For concrete inputs of N points, positions actually
not needed in the resulting (18N —33)-tuple contain value.zero by assumption.
Then, we have

d AVORONO[—D[AGRAM = YVORONOI-DIAGRAM — 2N s
an
12N —3 = Tyoronoi-piacram = 2N (18 N-33),

for N =3, where the local and global case may be analyzed by using a regular
N-gon, and for the total case a Voronoi diagram in the sense of Fig. 3, with 2N -5
points, was used where each point of the diagram essentially depends on there
input points, i.e., on six coordinate values.
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Example 11. Matching of a pattern of length M against a string of length
N(M=N and the elements of pattern and string are assumed to be reals) may be
considered as a (N+M)-ary function into the set of (N—M41)-tuples on {0, 1}
where, for

SeaTTERN—MATCHING (P15 P2s ---» Pmb 515 Szs oo Sm)=(€1, €3, ...y EN_pg41)

we have e;=1 iff s;.;=p;;,, forall j=0,1,..,M—1, and ;=0 otherwise,
for i=1,2,...., N—M+1. We have

APAT’I‘ERN—MATCHING =2M,
YeaTTERN—MATCHING = M+ N, and  Tparrern—maTcHiNG = 2ZM (N—M+1).

In all three cases, the maximal dependence may be analyzed for the trivial input
situation p;=s;=const, for i=1,2,..,M and ;j=1,2,...,N. Detection of
a pattern of length M within a string of length N, M =N, may be considered as
an (N+M)-ary function into the set {0,1} where the output is equal to
max {e;:i=1,2,.., N—M+1 & foarrern—MatcinG (P1> Pas s Pr3 515 S25 - SN) =
=(ey, €z, ..., ey~ pm+1)} for input (py, Ps, ..., Pag; S1, Sa, ---, Sy). Then,

max {2M, M+|N/M |} = Aparrern—siGNaLizaTioN = M+ N.

Note that this represents the first example of a computational problem where the
equality y,=n remains an open problem, for an r-ary function f with n=N+M
in the case of pattern detection. As a last example, sorting of N real numbers
may be considered as an N-ary function into the set of N-tuples of real numbers.
For this very important problem, we have

AsorTING = YsorTing = N, and  tgopTing = N3,

where these maximal values are true for N pairwise different input values.

"4, Data transfer lemma and applications

Between the quantitative descriptions of data transfer for SIMD systems
(Section 2) and of data dependence for computational problems (Section 3), the
following direct relation holds.

Lemma 1. (Data Transfer Lemma). Let SYS€SIMD, and let n be an ar-
bitrary program for SYS for the computation of a function f which is n-ary and
has m-tuple values. Let R denote the set of output registers of SYS where the
m-tuples appear at the end of the computation (card (R)=m, off-line mode), or
those output registers of SYS via which the computed values of the m-tuples leave
SYS in certain waves of information (card (R)=m, on-line mode). Then, the
computation of f(x,, x;, ..., X,) on SYS by n requires at least f, steps of com-
dutation for a given input (xy, Xy, ..., X))€domain(f), where Agys(t)=4,,
rsys(card (R), IO)EYI, and Tsys(card (R), Io)%ff.

Proof. Let us consider the local off-line or on-line situation. Assume that
Ap=card (sub,-(x,,xz, ...,x,,)), for a given input vector (x;, x,, ..., x,), and for
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a given position i, 1=i=m. Let sub,(x;, Xg, ..., X,)={/1; Jas -5 Js,}- For any
. position’ Iy, k=1,2,..., A, either the name of an input register rece1v1ng value

at a given moment will be transfered to the receptive field rec{¥v ¥z %= (b r*)
by some operational instructions only, if value pr0),(f(x1,x2, ...y X,)) appears
in register r®¢ R at time r*=t, of computation, or during the * steps of compu-
tation of proj,(f(x;, Xs, ..., X,)) at least one test instruction JGTZ, JZERO,
or JLTZ must be performed where the contents of the CPU accumulator depends
on the input value x; at the moment of testing. In the second case, if the test
instruction is followed by certain operational instructions directed to register r®
the name of the input register rece1vmg value x; ata given moment will be trans-
ferred to the receptive field rec{xv*2»*a) (pH, t*), too; cp. (iv) in Definition 4.
Without loss of generality, assume that j, j., ..., /;, v=4;, denote all the positions
which have produced register names in the receptlve field rec{xu =2 o xa)(pO) . 1¥),
If v=mn,, then n,<card (rec@xr xar o xa) (4O 1)) = Agy (1) follows immediately.
For v<i,, let t,1,, ..., t, be all the moments where test instructions have to be
performed according to = and input (x;, X, ..., x,) such that the contents of the
CPUaccumulator depend on one of the input values X;, e . Xj, at least, at

the moments of testing. Consider the followmg program ' computlng somethmg
unspecified, produced by n and (x, Xs, ..., X,) in the following way: '

— all test instructions at moments tl, ty, ..y 1, Will be-deleted- n"m, and

— all other instructions of 7 will be performed according to #: and input
(x1, X3, ..., X,), in the same order where all instructions LOAD o or
OP, a, for a equal to =x, m, *m, or (j), will be replaced by. OP2 oy for
the same value of «, if such instructions appearin-m. - ‘

Thus, ‘the receptive field of reglster 0, ie., the CPU accumulator will increase
monotonically according to =#n’ and (xl,x2, vy X,).  After t*—w ‘operations
according to 7', rec (0, 7*—w) contains-all -input register .names for the input
data x; xj, . This receptive field will be combined with rec{¥r ¥z *)

.lv+1’ M4
(D, r* —w)>'rec("1’f"2 %) (D ) at moment - t*—w41=r* by adding an
instruction OP, a (see conditions (OFF 2) and (ON. 6)) or OP,(j) (see conditions
(OFF4) and (ON.7)) to n’. Thus, A =card (recifr>e (0, *—w+1))=
= Agys(f* —w+1)= Agys(f)). Note that the off-line or. on-line I/O.. convention
is necessary to ensure that a non-accumulator PE register r® may be replaced by
the accumiilator of the same PE which is an output register, too. For this replace-
ment, ‘parallel STORE instructions may be replaced by parallel OP, 1nstruct10ns
using the-same masks for PE addresses.

What we have explained is one of the poss1ble ways to ensure the necessary
data transfer within time limit ¢,, for the local off-line or on-line situation. The
essential point in the program transformation from n to n’ may be characterized
by the word “linearization™, because all test instructions could be deleted, in fact.
This linearization approach may be used for the local, global and total situation
in the following way.

For the given program = and an input sitiiation /, all the performed instruc-
tions will be written as a linear sequence S,. We obtain sequence S; by deletion
of all instructions JLTZ, JZERO, JGTZ, JUMP, WRITE, and HALT in sequence.S,.
Now, for the special case of an on-line program, if in sequence S, there were some
STORE instructions in front of a WRITE instruction directed to certain output
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registers ré R, then these STORE instructions will be shifted to the end of sequence S, .
In the resulting sequence S, all serial or parallel OP; « or LOAD « instructions will
be replaced by an OP, « instruction formally, in the same position for the same
value of a. For the resulting sequence S; we have monotonically increasing re-
ceptive fields for all accumulators, for the CPU and PEs. Also, by the described
step from S, to S,, for sequence S, the receptive fields of output registers will be
monotonically increasing for consecutive output waves of information. Now, if
in the original sequence S, there was no test instruction, our program linearization
is finished. In the other case, in S; we shall place an instruction JZERO, e.g., in
that position where the last test instruction was located in sequence S,. Now con-
sider an arbitrary output register r€ R. If there is an operational instruction behind
the JZERO instruction directed to r then register » will obtain the receptive field
of the CPU accumulator containing all the register names corresponding to tested
input values, cp. (iv) in Definition 4. If there is no operational instruction behind
the JZERO instruction directed to r then we shift the last instruction directed to
r in front of the JZERO instructioh. to a position behind this instruction. By con:
sideration of all registers r€R, our program linearization is finished. Note thar
the length of the resulting linear instruction sequence is restricted by the length of
the original sequence Sj. ]

Now assume that A =card (sub;(x, x,, ..., x,)) for a certain i, 1=i=n,

yr=card (U sub,(y;, ys, .-, ¥»)) and ;= 3 card (sub;(z;, z,, ..., 2,), for certain
i=1 i=1

input vectors (xy, Xa, ..., %), (V15 Yas -oos Vu)s (215 23, ...» 2,). These input vectors
characterize input situations I, 1,, I, for SYS. By linearization of .7 according
to these input situations we obtain linear programs =,, 7, n,, respectively, all
of length =¢,. Thus, we have

T .
Ag‘,,xg ..... x,.)(R,'o) = /1,_’

y;’)"lryz. ....y..)(R. 0 = s

(21,282,000 2
T I g ) = T,

which proves our statements. []

Corollary 1. Let CLASSE SIMD. For any system SYSE€CLASS, the compu-
tation of a function f which is into the set of m-tuples of real numbers requires
at least 7, steps of computation in the worst case, where Acpass(fe)=4;,
Tevass(m, () =7y, and Tcpass(m, 19)=7,. .

Proof. Immediately by Lemma 1 where the generalization about all programs
computing the function f is used as well as about all systems of CLASS. For the
on-line case note that there may already be a certain my=m such that
Tepass(mo, )=y, and Tepass(mo, bo)=1,. O

Example 12. Let CLASS={EXAMP1} and consider the computation of the
parallel Roberts gradient as described in Example 1. In this case we get the trivial
lower time bound 1 only; an upper bound was 29. Now, let CLASS={EXAMP3}
and consider the computation of the arithmetical averages of M consecutive waves
of information of length N =2"-1 as described in Example 3. Here, by Corollary 1
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we obtain the lower time bound n+2M—2=max {n—1, n+2M -2, n+M—1},
cp. equation (6.1), (6.2), (6.3), for values i,=N,y,=N-M and 1,=N-M. An
upper bound was 6M +n.

Using common asymptotic notations, for both examples the optimal times
6(1) and 8(M +n) are known as a result.

Theorem 3. For any system SYSc¢OFF-NET,, p=2, the computation of
a function f which is into the set of m-tuples of real numbers requires at least
1, steps of computation in the worst case, where

ty = max {(d, —1)/2, (dy—m)/2m, (d;—m)[2m}
for p=2, and for p=3
fy = max {log“,_l (di(p—2)+2)—1.586,
log, 1 (d2(p~2)+2)—log,_, m—1.586,
log, -1 (ds(p—2)+2)—log,_, m—1.586},
if f is locally dl-dependent: globally d,-dependent, and totally d,-dependent.

Proof. Immediately by Theorem 1, Definition 7 and Corollary 1 where the
relation log,_,p>1.586, p=3, was used. 0O

In Table 7 are collected, for the classes of off-line systems defined in Section 1,
the lower time bounds that may be obtained by using Corollary 1. Because the
classes OFF-LINEAR, OFF-PS, OFF-BINTREE and OFF-QUADTREE represent
examples for the maximal transfer situation as characterized by Theorem 1, for these
classes the lower time bounds are as given by Theorem 3. If a function f into the
set of m-tuples is globally or totally d’-dependent, then the value d has to be replaced
by d’/m in the lower time bounds given in Table 7, to obtain the corresponding
values for the global or total situation.

Theorem 4. For any system SYSEON-NET, ,, 2=p<<o, | =¢<p, the compu-
tation of a function f which is into the set of m-tuples of real numbers requires at
least 1, steps of computation in the worst case, where

ty = max {(d, +1)/2, (ds+m)/2m, (d3+ m)/2m} )
fo?-' g=1, and for ¢g=2
: to = max {log, (d;(g—1)+1), log,(ds(g—1)/m+1),
log, (d3(g—1)/m+17},
if f is locally d;-dependent, globally d,-dependent, and totally d3-dependent.

3

Proof. Immediately by Theorem 2, Definition 7 and Corollary 1. O

In Table 8 are collected, for the classes of on-line systems defined in Section 1,
the lower time bounds that may be obtained by using Corollary 1. Because the
classes ON-LINEAR,, ON-BINTREE; j, and ON-QUADTREE, ; ;4 re-
present examples for maximal transfer situations as characterized by Theorem 2,
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for these classes the lower time bounds are as stated by Theorem 4. As in the case
of Table 7, if a function f into the set of m-tuples is globally or totally d’-dependent,
then the value d has to be replaced by d’/m in the lower time bounds given in
Table 8, for obtaining the corresponding values for the global or total situation.
Note that value m may be replaced by a value my=m for special ON-NET systems.

5. Conclusions

In this paper we have given a general framework for the description of parallel
processing systems, and explained how data flow may be used for analyzing lower
time bounds in general. Note that this approach may be applied to supercomputers
as well as to on-chip realizations. Problems connected with the technical features

' Table 6. Local, global and total data dependence measures

Computational ; .

problem f ' n m g 17 7,

MATRIX ; :

"MULTIPLICATION 2N* N2 2N 2NT . 2N3

MATRIX

INVERSION IP N2 N® Nt N? N4

DETERMINANT . N* - 1 ' N® ’

LINEAR . ' .

EQUATIONS N:+N N N2+N NELN N34N*

TRANSPOSITION IP N? ° N? 1 N? Ne

MATRIX 7 IP N N2 2 N2 NS {G )
for msid n{, )=, j)}

2D—DFT ©2NT 2Nt =2Nt—4 2N? =2N

© =2N—1 =4N4_2N?

2D—WT- N? N? N N N

ROBERTS ‘

GRADIENT MN NM 4 MN AMN—2M—2N—2

CH SIPOL . 2N . 2N . 2N 2N =2N*—8N+12

' =4N? .

VORONOI 2N 18N-33 2N 2N =12N—30

DIAGRAM , . S36N*—66N

PATTERN . )

MATCHING N+M N-M+1 2N M+N 2M(N—M+1)

PATTERN e : ’

SIGNALIZATION N+M 1 =max {2M, M+|N/M|}, =SM+N

SORTING .. N N N N Nt
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of architecture elements were by passed by the selected level of abstract system de-
scription. Thus, in the discussion of parallel algorithms for a given model SYS€
€SIMD we may have in mind quite different technical implementations, but we
may discuss parallel algorithms for all of them at once using the abstract model
SYS¢SIMD. For example, an important problem is given by the necessary decision
between different structures of parallel processing systems to ensure efficient algo-
rithmic solutions for classes of computational problems such as mentioned in
Example 8 (matrix-type computations), 9 (two-dimensional transforms), 10 (geo-
metric problems), or 11 (combinatorial problems). According to our considerations’
in [4] the selection of parallel algorithms crucially depends on the given parallel
processing system and comparisons between different SIMD systems on the ‘basis
of knowledge about optimal algorithms represents quite a hard task. Also, there
are nearly as many different models for parallel processing as papers on this topic,
making comparative studies of different parallel structures nearly impossible. In
the present paper an attempt was made to propose a classification of special parallel
processing systems which have been of widespread interest in the past. The proof.
of the practicability of the proposed exact definition of SIMD- systems will be the
subject of forthcoming papers; the first programs of the PARSIS pro_]ect fit well
into this framework.

By using Tables 6, 7, and 8 the interested reader may obtain lower time bounds
for different combinations of SIMD systems and computational problems, e.g.
the lower time bound log,(N?+1) for the two-dimensional Walsh transform on

Table 7.  Lower time bounds for off-line systems in OFF-CLASS
for computing a local d-dependent function

CLASS p lower time bound d=128 - d=128
LINEAR 2 ([d-1/2 64 8,192
8 5\1/2
HEXAGQNAL 3 ((? d _T] - l) / 2 9 105
SQUARE or ILLIAC 4 (Qd-1r-1)2 8 . 91.
4 1)~ -
TRIAGONAL 6 ((—3— d —-3—) - 1] / 2 7 74
DIAGONAL 8 (@v*-1)2 6 64
PS 3  logy(d+2)—1.586 6 13
BINTRE 3 logy (d+2)—1.586 6l i3
top node log, (d+1)—1 7 14
TRIANGLE 5  ty=log, (d—t8+21,+5)—2.586 5 12
top node log, (d+1)~1 7 14
QUADTREE 5 log, (3d+2)—1.161 4 7
5 7

top node log,3d+1)—1
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- Table 8. Lower time bounds for on-line systems in ON-CLASS
for computing a local d-dependent function

CLASS p o {ih, ..., 0} Lower time bound d=128 d=1282
LINEAR 2 {0} d+1)2 65 8,193
HEXAGONAL 3 {0, 1) (@d+DV2—1)/2 16 181
SQUARE or ILLIAC 4 {0, 1,2} dvs 12 128
: 8 3 \1/2
TRIAGONAL 6 {0,1,2,3,4) ((? d——S-) - 1] / 2 7 81
8 3 1/2
DIAGONAL 8 {0,1,2,3,4,6,7) ((7 d—7] ~ 1] 2 6 64
BINTREE 3 1,2 logs (d+1) 8 15
TRIANGLE 5 {1,2,3,4) logs (d+1) 8 15
QUADTREE ' 5 {1,2,3,4) logs (3d+1) 5 8
PS 3 o fip2=d+2forthe 11 21
Fibonacci numbers
Jos fas fos o

ON-TRIANGLE systems. The characterization of data dependencies for computa-
tional problems as given by Definition 7 may be refined, e.g., by consideration of
changes of function values not only by changing arguments in one position but in
several positions. '

Abstract

Starting with an exact definition of classes of SIMD (single instruction, multiple data) systems,
a general approach to obtaining lower time bounds by data flow analysis is presented. Several
interconnection schemes, such as the square net, the perfect shuffle, the infinite binary tree, etc.
are analyzed with respect to their data transfer possibilities. For some types of computational
problems the data dependencies are analyzed in a quantitative way. From both types of analysis,
lower time bounds result for many combinations of SIMD systems and computational problems,
for example, O(log N) for on-line quadtree-net systems and the computation of Voronoi diagrams
for N planar points, O(N) for off-line diagonal-net systems and the two-dimensional discrete Fourier
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On the number of zero order interp'olantsv

P. Ecsepl-TOTH* and L. Turr**.

1; ‘Introduction

Our motivation for. determining the set of all interpolants of arbitrarily-given
sentences ¢ and ¥ is twofold, both originating in computer-science.

Firstly, according to the well:known method of Floyd—Hoare in the' theory
of program verification, a program (or more precisely, a program schema) must be
associated by so called assertions, which are, actually, first order -open formulae.
This association can be partially mechanized; the difficulty arises in associating
assertions to loops. If ¢ is the assertion immediately before the loop-and ¥ is the
oone_immediately after it, then the assertion’associated to-the loop is not so easy
to look for. One possible escape is provided by the theory of interpolation:i the
assertion to be associated to the loop must be an interpolant of ‘¢ and . ‘The
celebrated model theoretic result of W: Craig states the existence of an interpolant
if @ and  are first order sentences and ¢ is a logical consequence of ‘. In'the
above mentioned problem, however, one needs more than one (possibly, all of the)
interpolants to support the choice of the loop-assertion, on the one hand, and then,
obviously, he must generalize to open formulae. At the first stage of this process,
we aim the investigation of the set of all interpolants of any two first order sentences
¢ and Y. Our method is traditional: we reduce ¢ and Y into the zero order
language, where matters are very much smoother. - Thus, algorithniic-generation
of the set of all zero order interpolants of any two zero order sentences, the toplc
of the present paper, is a part of our treatment of the first order case.

Our second motivation can be paraphrased as follows: on the zero order level,
an interpolant of ¢ and - can be considered as a generalization (or a relativization)

- of the well-known concept of “implicant”. Indeed, taking. ¢ as the false formula,
the set of interpolants of ¢ and Y concides with the set of implicants of:y. This
_observation provides us with the-possibility to. consider “‘implicants of - ¢ . relative
to ¢”, which, in turn, may yield to a better understanding of synthesis problems
of truth—functlons and automata.

These considerations, however, will remain in the background in the present
paper and will be published elsewhere. Our purpose here is much simpler: to
investigate the case of zero order sentences and to present an algorithm which returns
the set of all interpolants of arbitrarily given zero- order:sentences. ;

7 Acta Cybernetica VI/4
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The method employed here is based on the isomorphism between the zero order
Lindenbaum—Tarski algebra and the Boolean algebra of truth-functions associated
to the equivalence classes of zero order sentences.

By an interpolant of ¢ and ¥, we mean a zero order sentence y which is an
interpolant in the sense of Craig [1] and x is equivalent neither to ¢ nor to i;
i.e. y is proper. According to this strengthening, Craig’s Theorem on the existence
of (proper) interpolants no longer holds without additional assumptions: it may
well happen, that for fixed ¢ and ¥, no proper interpolant exists: i.e. any inter-
polant (which exists in the sense of Craig) is equivalent to either ¢ or .

To study the Boolean algebra of truth functions, we shall use trees. To every
truth function, we associate a binary tree, the *“‘valuation tree” of the function at
band. The valuation tree associated to a function is a compressed form of the truth-
table of that function. Being so, the tree contains every information (up to logical
equivalence) about the function [2]; and since interpolants are defined by means
of logical consequence, the trees associated to (the arbitrarily given) ¢ and
contain every information about the set of their interpolants. On the other hand;
the “geometrical content” of trees gives us the possibility of expressing semantical
properties.of functions, and in particular, of interpolants in a simple and ‘visualiz-
able” way. Additionally, an easy method is imposed to calculate the exact number
as well as the number and length of maximal chains of equivalence classes of inter-
polants. The conditions under which proper interpolants exist are formulated in
terms of trees; they have however, a natural and easily comprehensxble meaning
for sentences, too..

The organization of the paper’is as follows. In the next sectlon we concretize
our terminology and notations. In Section 3 we give conditions which are equi-
valent to the existence of proper interpolants. The method developed there will be
applied to obtain our main results in Section 4 on the number of interpolants and
chains of interpolants, respectively. We conclude a next to trivial consequence on
the algebraic structure of interpolants in Section 5. Finally, we reformulate our
results for sentences in terms of model theory, in Section 6. : e

2. Preliminaries

Throughout the paper we keep fixed a countably infinite set S, which will
play the role of sentence symbols when we are dealing with formulae, whlle in'case
of truth functions, S will be considered as a set of .variables.

2.1. Let F be the set of zero order sentences over S. Let = denote thé logical
equivalence relation on F. Clearly, = is an equivalence relation indeed; let us
denote by [¢] the eqmvalence class containing ¢ (@€F). 1t is well-known, that
F=(F/=, A, V, 1,0,1) is a Boolean algebra, the so called Lindenbaum-—Tarski
algebra of F [1], where 0 denotes the class of unsatisfiable elements of F while
1 stands for the class of valid ones; the operations being defined i in the natural way:
el =(10), [P AWV] =[o AV, [p]VI¥]=[0 V).

' 2.2. Let B= U ‘B,, where B,={f|f:2"+2;2={0,1}}, the set of Boolean

functions of ﬁmte number of variables taken from S. By an assignment we mean
an element of the set #2={(£, &, ...)|6:€{0, 1} for i€w}. The value of f€B
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under an assignment ¢€“2 (in notation: f(£)) is obtained firstly, by substituting
for all icw, the i-th component &; of ¢ for the i-th variable s;(€S) everywhere
in f provided s occurs in f (otherwise the i-th component of ¢ has no effect
on the value of f) and secondly, by calculating that value. We say, that f and
g (€B) are equivalent, in notation: f~g, iff f(&)=g(£) for all &e»2. It follows,
that ~ is an equivalence relation over B; the equivalence classes are denoted as
those in F: ie. for fe€B, the equivalence class containing f is denoted by [f].
We shall use the symbols 0 and 1 in B, too: 0={f]|f({)=0 for all £e«2}
and 1={f|f(&)=1 for all &€«2}. For g,fc¢B, we can define the operations
+,+, and ~(bar) as follows: for €2, f()+g(&)=max {f({), g(&)}, f(§)-8(&)=
=min {f(£), g(&)} and f(&)=1—g(£), respectively. Since ~ is compatible with
these operations, we can carry them over classesin B/~ : [f1=[f), [f]-[g]l=L/f" g],
[ f 1+[gl= f+g] What is-obtained is the well-known Boolean algebra

=(B/~, -, +,7,0,1). Obviously, & is isomorphic to Z. For the sake of Simp11c1ty,
from now on, when we speak about functions, we shall tacitly mean the equi-
valence classes they do represent, and we shall omit brackets in notations, i.e. f€#
is always to be understood as [ f]€B/~. Legality of this seemingly abuse of ter-
minology will be justified in Section 5, Theorem 14.

2.3. By a full binary tree of level n (n€w) we mean an ordered pair T=(V, E)

where ¥V, the set of vertices is defined by

n 2 N
= .U U {ij}
Jj=0k=1
and E, the set of edges is
- E= {( e Vil =j+1,1=2.k—B where 0=j=n—1, 1=k=2, BE{O 1}}

In particular, if n=0, then V={V,}, E=0, ie. the full binary tree of level 0 is
a point. The indices j, k of a vertex V,€V mean that Vi is the k-th pomt of
T on the j-th level. We shall label the edge Vi, Visne-p) by sty Note,
that the label s#,, does not depend on k.

Let T= (V E) be a full binary. tree of level n. By a path pin T we mean
a sequence of vertices Vo , Vi, ---» Vo, Such that ky=1 andforall j(0=j=n-1),
( J,,J,V(,H),‘J”)EE The set of paths in 7 will be denoted by Pr. Clearly,
card Pr=2". If P& Py, then P determmes in ‘the natural way a subtree of T.
If we write “T; is a tree of level »”’, then we always mean, that T, is determined
by a subset of paths P of a full binary tree T of level n. Similarly, “T, is a sub-
tree of T, is to be understood, as both, T; and T, are determined by subsets
P, and P, of a full binary tree T such that P,S P, (ie. T;,T, and T are of
the same level). The set of all subtrees of a full binary tree T will be denoted by
Sub T, and in each element of Sub T, the vertices will be indexed by the same
indices as they were in T, If T;€Sub T and T;#T, then we write T,CT. Similar
notation applies to arbitrary binary tree. Obv1ously, if T is a full binary tree of
level n, then card (Sub T)=2?2".

Let T=(V,FE) be a full binary tree of level n and (I/Oko,. o Vikgs vees I/,',k")
be a path of 7. By FBT (V) we mean a subtree of T, the vertices of which 1s
determined by the set

k,2"1

{Vilkoa . _,k_,}U U U {Vtr}

t=j+1 r=(k;—12t /41

7
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and the set of edges is defined in the natural way; in other words, FBT (V) is
determined by those paths of T, the initial segment of which is (Vo ..., Vi J)
and are continued in all possible ways allowed by T.

2.4. Let n€w and T be a full binary tree of level n. We can define a mapping

B,/~ —~Sub T by the following recurrence. Let sfi=s; if ;=1 and other-
wise sH=§;. ‘

(1) 7,(0)=9, t1(1)=T-

(i) If f——.s"'x woo ~Spr€B,, thenlet p=(Vy, ..., ¥, > be that path of T for
which (¥, Vj+14,,n is labelled by s for all j(0=j=n—1) and define
w(f)=p.

(iii) Let g= f1+f2+ .+fn where each f; is of the form s, -s;:" and
define

u(®= U (/)

Since the cardinalities of B,/~ ané Sub T are equal, and.every g€ B, has a form,
determined uniquely up to the ordering of the variables, requlred by the clauses
of the recursion, it follows that t, is one-one and onto.

Let us define 74: B,/~ ~Sub T by 1,(f)= 7 (f) f) where 7,( f ) denotes a subtree
of T determined by all paths of T which is not contained in 7,(f); i.e. by the
complement of 7,(f) with respect to P;. We have immediately,

Lemma 1. For all f¢B,/~

@ (H=0(),

(i) (=0 (f).

Lemma 2 [4, Theorem 1]. Let T,€Sub T and assume, that T, is determined

by the set of paths {p,, ..., p,} and let si¥, ..., 53’ be the labels associated to the
edges in p;. Then,

C a[3dew)-n

We call r{l(Tl)¥Z’( IT s%x) the function to which 7, is associated. Using
k=1 j=1

Lemma 1 above, the dual of this assertion is easily obtained. In the sequel when
speaking about associating a tree T to a function f€Z# it will always mean the
tree assigned by t,. (The duals of the assertions will not be mentioned because
of being obtainable immediately.)

", 2.5. Let, f€#. We say, that f does not depend on the variable s5;€S, in other
words, s; is dummy for f, iff s; occurs in f and for all ¢,¢& E“’Z for which
&i=1— é and &=¢&, if ksj we have f(&)= f(é) It is easy to construct an
algorlthmlc function 4, such that for all f€%, 6(f) is the set of variables occuring
in f which are not dummy for f. Clearly, dummy variables do not effect the values
of functions and thus they can freely be omitted ‘or mtroduced when necessary. Let
pl_<V0k0" sV;k,, V(l+l)kj+1" s nk> and p2_<I/0k01 tres JkJ’ V(]+l)lj+1"' V >be
two paths in a full binary tree T. We say, that p, and p, are amlcable paths
w.r.t. j iff all pairs of edges of the form (¥, , Vi1, and Vo, Vs,
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are labelled by the same label (which, of course depends on r) provided r#j
and either [; ,=k;,1+1 or k; =l ;+1.

A path p=<JV0ko, cors Viskys oos Voi,»  goes through ¥, iff for some
JO=j=n) r=j.

By definitions, we have

Lemma-3 [2, Special case of Theorem 15]. Let f€# and assume that T,=
‘=(W, E,) is the tree associated to f. Then, for some j(1=;=n), s; is dummy
for f iff for all k& such that ¥j;_,),€¥;, all amicable paths w.r.t. j—1 going
through V;_,y, are paths of T;. '

2.6. Let f,gcd. We shall use.the. following notations: 4., for §(f)Nd(g),
the set of variables which are not dummy in both f and g. Let &,,=6(f)—4,,
and I';,=0(g)—4,,, the sets of variables which are not dummy for. f but do not
occur in g and for g but do not oceur in f, respectively. For the sake of con-
venience, we shall denote the elements of 4,, by Xgs X1, ..., the elements of &,
by Yo, 1, ... and the elements of I'y, by 2z, z, ... throughout the paper; e.g.
any appearence of x; will always be meant as an element of 4., S e.t.c. Moreover,
we tacitly assume that an ordering is fixed on these sets. _ ‘

Since for given f, gc%, the case when 4,,=# is of no interest from our
point of view, i.e. from the point of view of interpolants, we shall suppose that
4;,#9 and distinguish the following four cases: ’

Case 1: ®py=TI,,=0.

Case 2: &, 70, [';,=0.

Case 3: ®,,=0, I';,#0D.

Case 4: &,,70, I ;;#0. .

- = - - Let f, gc¢#8. We shallsupply both f-and -g with all variables from 4, U® U
UTI';,. One can distinguish the functions obtained in this way by f and g, however,
such distinction is not necessary. Indeed, by definition, the variables of @, will
be dummy for g (and that of I'y, for f), hence f and f (similarly, g and g)
do represent the same equivalence class, thus, by our agreement on terminology,
we can choose f as the representative of that class. In fact, we shall do, and simply
write f for f (gfor §). Weshall fix an ordering of the variables occuring in f and
g as follows: all elements of A4,, precede all elements of * &,, which, in turn,
precede all elements of I';, while we keep the previously fixed orderings inside
d;4, ®;, and I'y,. By this fixing of ordering, the construction of trees associated
to f and g will be definitive. :

Let n=card (4,,U®,,Url) and i=card 4,, (recall, that 4,0, hence
I=i=n follows) and consider a full binary tree T of level n. For f, let T,=
=(¥;, E;) be that subtree of T which is associated to f. We introduce the follow-
Ing notations: '

V) = alVae V. 1 = k=29,

U(f) = {ValVa€¥(f) and FBT(#)¢SubT,, 1=k=2}
_[¥(H-u(f) provided i n,
= {"V(f ) otherwise.

In the rest of the paper we shall keep the reference of ‘the (lower case) letter
i fixed, namely, i=card 4,, and every occurence of i' not in English words will
always refer to this cardinality.
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3. Existence of interpolants

3.1. Let f, g€B. We write f=g iff 4,70 and for all £€2, f(¢)=1 entails
g(&)=1; and f<g iff f=g but f+g The following assertion is immediate
by definitions.

Lemma 4. Let f, g€# and assume that T, and T, are the trees associated
to f and g, respectively. Then f=g iff T,¢SubT,; in particular, f<g iff
T,CT,.

d From now on, we shall fix (arbitrarily) f, g€# such that f<g, /=0, g=£1.
All assertions in the rest are valid under these assumptions only, but, for the sake
of being short we shall omit them everywhere when stating lemmata or theorems
formally. Accordingly, every formal assertion is to be read as “If f, g€4%, f<g,
f#0,g=1 then” followed by the assertion written as such. This remark applies
also for definitions.

First we set 1, =!hlh€AB, f<h, h<g and §(k)S 4.} We say, that hcZ
is an interpolant of f and g iff h€/,,. By Lemma 4, we have

Corollary 5. Let h¢# and T,,T,, T, be the trees associated to f, g, h,
respectively. Then,
(1) hely, implies T,CT,CT,, and
(2 T,cT,cT, and W (h)=7 (h) together imply h¢l,.

The following two lemmata readily follow from definitions by Lemma 4 and
Corollary 5.

Lemma 6. Let h€# and h¢l,,. Then,
(1) Y(NHESVh),

@ w(Hcwh),

3 rim=wh),

@ WHhS#(g), and

(5) YWY ().

Lemma 7. Let heB. If

(1) #()W®h),

@) ¥(h)=w(h), and

G) Y=Y (g)
are satisfied, then h€l,,. .

3.2. Recall that &, =TI, =0 in Case 1; &,,#0, I';,=0 in Case 2; &P,,=0,
I;y#9 in Case 3; and &,,#0, I';,#0 in Case 4.

Lemma 8.

) %(f)=%(g)=9 in Case 1.

2 «(f)=9 in Cases 2 and 4,
U(f)=0 in Case 3.

(3) u(g)=0b in Cases 3 and 4,
U(g)=0 in Case 2.

@ 7(=7(g) in Cases 1 and 2.
6y v(NH=7Y{) in Cases 1 and 3.
©®) #(g)—¥(f)=0 in Case 1.

() w(g)—¥(f)#9 in Cases 3 and 4.
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Proof. All statements exept (7) in Case 4 readily follow from Lemma 3 by
definitions.

For proving (7) in Case 4, let us suppose, that %(g)—¥"(f)=0 and let V, ;€% (g).
We have either V;€%(f) or V;€#(f), immediately. Let us suppose first, that

Vj€%(f) and let k=card @,,. Since f does not depend on elements of I,

there exists an | (1=I= 2'+") by Lemma 3, such that FBT (¥;1)€Sub Ty
(where T; is the tree associated to f). On the other hand, since g does depend
on elements of I'j,, itis 1mpos51ble again by Lemma 3, that the same is true for
T, (T, being associated to g); i.e. there exist some vertices in FBT(¥.4y) which
are not contained in 7. It follows, that T,¢T,, a contradiction to Lemma 4.
If V,;€#(f) then, using a similar argument, the assertlon follows.

The next theorem gives necessary and sufficiant conditions under which proper
interpolants exist.

Theorem 9. /=9 iff card (#(g)—¥(f))=a, where a=2 in Case 1, a=1
in Cases 2 and 3 and ‘=0 in Case 4.

Proof. Let T, and T, be the trees associated to f and g, respectively.

For Cases 2 and 4, let T, be the tree obtained from 7T, by adjoining FBT
(Vi) for all V;e%(f) to T;. By Lemma 8 (2), we have %(f)>0 and hence,
T, CT1 in both cases. In Case 4, T, T, follows from Lemma 8 (7). In Case 2,
W (g) Y(f)#0 by assumption, thus TICT Let h be the function to which
T, is associated. By the construction of Tl, we have #'(h)=%"(h), hence heI,g,
by Corollary 5 (2).

For Cases 1 and 3, let T, be constructed from T, by adding to T the tree
FBT(V,;) for some V€% (g)—¥(f). Since #(g)—¥(f) is not empty by as-
sumption, we have immediately, that T,CT; (recall, that FBT(V;) is the path
ending in ¥; in Case 1). In Case 3, T,CT, is obtained by Lemma 8 (7), while
in Case I, this proper inclussion is entailed by the assumption, namely, by the fact,
that #7(g)— 7 (f)—{V;}=@ (where ¥;; is the vertex used .in the construction
of T;). Again, denoting by # the function to which T, is associated, hélj,
follows from Corollary 5 (2) since # (h)y=%"(h).

To prove the converse, let /,,#0 and assume that hely,.

Case 1. card (¥ (g)—¥ (h))=1 and card (¥'(h)~¥'(f))=1 thus card ("//f(g)—
—7(f))=2 by Lemma 8 (4).

© Case 2. “V(f)C"V(h) #(h) by Lemma 6 (1 and 3); “//(h)C“V(g) by Lemma 6
(5) and ¥(g)=%#(g) by Lemma 8 (4). Summarizing up, 7 (f)Cc#(g) and hence
card (W (g)—7 () =1.

Case 3. ¥ (f)=w(f) by Lemma 8 (5), #(f)yc#(h)=¥"(h) by Lemma 6
(2 and 3) and finally, #(h)S#°(g) by Lemma 6 (4). We have then ¥ (f)C#(g)
which implies card (#(g)—7¥(f))=1.

3.3. We present here some counterexamples thus illustrating the very nature
of proper interpolants.

Let the following functions be given: fi=x;-X,, g=x;- x2+x1 X5 f2=
=X1-Xq+ Y1, Eo=X1-Xg; and f3=X; X, 8§a=X;-X,+X, - Xy z;. The trees associated
to these functions are indicated in bold line by Figs 1, 2 and 3, respectively.
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Fig. 1

Fig. 2

Fig. 3

It is clear, that &, =l =0; ¥(g)—¥(f)=#(g)—¥ ()= and
card (W (g)—¥(f))=1, nevertheless I, ,=0. Similarly, Drp={n} Tfy=0
and 'V(gz)—"//(fz)='ﬂ/(gz)_"//(f2)=ﬂ and Ifzgz=ﬂ' Finally’ 4sf:saa:'g’ rf393= Z
and #(g)—7(f)=0, thus I, =0.
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4. The number of interpolants

41. -
Theorem 10. Let m=card (#(g)—¥'(f)). Then,

card(I;) =2"—a

where =2 in Case 1, a=1 in Cases 2 and 3 and «=0 in Case 4.

Proof. Let M=w(g)—¥(f). In all cases, if M0 (M=0 can occur in
Cases 2, 3 and 4 only, by Lemma 8 (6)), then the whole set / s €an be constructed
by the following recurrence.

Let us denote by T, the tree obtained by adjoining FBT (V) to the tree T,
associated to f for all V3€%(f). Obviously, T,S T;.

Let T, be a tree such that T'ET,E T, and T, is associated to an inter-
polant h, of f and g (or, to f if T,=T,=7T;) and suppose, that ¥;cM. Let
T3 be constructed from T, by adding FBT (¥j;) to T,.. Clearly, T,CT,CT,
and, for the function h; to which T, is associated, ¥ (hy))=Y (hs). It follows
from Corollary 5, that hycl,, iff T,CT,, and from Lemma 4, that h,<h;. Let
M,=M—{V,;} and repeat this procedure with V€M, and w1th T3 (in place
of Tp) until M is emptied.

Summarizing up, starting from T, and taking in all possible ways one, two, ..., m
distinct elements from M (provided M=@) and proceeding as described above
we can produce a set of functions I'={t, ..., t,} and it follows from the construc-
" tion, “that TU{f, g}=1,U{f, g}, "ie. any function which can be constructed in
this way is either an element of I,, or of {f,g}. Since one, two, ..., m distinct

elements can be chosen from M in (mJ , (m) yeers (m) possible ways, and Zm' [’7] =

1 2
=2"—1, we have card J=2". :
It remains to investigate whether f and g do or do not appear in I. This
will be done case by case.

Case 1. We have %(f)=0 by Lemma 8 (1), hence T,=T,, ie. fél. On
the other hand, taking all elements from M, we obviously obtain a tree identical
to T,, thus g€l. All the other elements of I are proper interpolants, indeed, that
is I;,=I—-{f,g}. It follows, that -card (/,,)=2"-2. .

Case 2. By Lemma 8 (2), %(f)#% which entails T,CT,, ie. the function
to which T, is associated isin I, (cf. the proof of Theorem 9). Taking all elements
from M in the procedure above, we arrive to 7, by Lemma 8 (3), hence g¢l.
We have I;,,=I—{g}, hence card (I;)=2"—1.

"Case 3. %(f)=9, by Lemma 8 (2), which implies Ty=T; and thus fcl.
Let 7, be the tree obtained by the procedure using all elements of M. Then by
Lemma 8 (3) 7,CT,. That is g¢l,I;,=I—{f} and we have card (I;,)=2"—1.

Case 4. Since %(f)=9® by Lemma 8 (2), we have T,CT,, ie. f¢I. On the
other hand, taking all elements in M and constructing the tree 7, by the procedure,
by Lemma 8 (3), T, 7, holds. We obtain, that g¢/ and so I =1
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4.2. By a chain of interpolants we mean a finite sequence of distinct functions
hg, ..., h, such that the following clauses are satisfied:

(1) hO'—f h =8,

(2) hel,, 1,.“1 for 1<j=<t.
A chain ho, ..., h, of interpolants is maximal iff for every ;j (0=j<1?), Ly, ,,=9.

Corollary 11. Every maximal chain of interpolants of f and g has length
card (#(g)—7(f))+p where =1 in Case 1, f=2 in Cases 2 and 3 and =3
in Case 4.

Proof. Immediate by the proof of Theorem 10.

Fig. 4 below indicates all of the four cases. h, stands for the function obtained
from T, in the proof of the previous theorem, and h,, denotes the function which
is constructed by using the whole set M.

Corollary 12. The set of all maximal chains of interpolants of f and g has

cardinality given by
(card (¥ (g)—7 ()"

Proof. The second (in Cases 1, 3) or the third member (in Case 2, 4) of a parti-
cular maximal chain is obtained by using exactly one element from the set M=
=W(g)—7(f); this element can: be taken in card M different ways. The next
member of the chain can be taken in card M —1 different ways, and so on. The
assertion follows by induction. :

? = = 1 = = . = ’ 1’ -

hy=h =g ThM h =g h =g h =g

¢ 4 h
oy "o

) b ]

. . - ! -

p ¢ L ? s

ohz 1h1 'h2 'hl

{hy=h =t J.hoff b h=h, =f Jh0=

Case 1 Case 2 Case 3 ,Cése} 4
Fig. 4 .
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5. The algebra of interpolants

Theorem 13. The algebra S£=(I,,U{f,g},-, +,f,8) is a distributive sub-
lattice of the Boolean algebra £2=(B/~, -, 4+, ~, 0, 1) with zero element f and unit
element g.

Proof. The only thing to be proved is that /,,U{f, g} is closed under + and -
This is, however, obvious from the construction outlined in the proof of Theorem 10.

It is relatively easy to show using Lemma 1 and the construction of I, that
1,,U{f. g} is not closed under negation: the algebra .# is not a Boolean algebra.

Theorem 14. Let hy, h€1,,U{f, g}. Then in the Boolean algebra %, the
two equivalence classes [h,] and [h;] are identical iff their representatives h, and
h, are such; i.e. [h))=[h,] ff hy=h,.

Proof. Obvious, by Lemma 2 and the construction of I,,.

6. Conclusions

By using the isomorphism between % and %, to every ¢@&%, there cor-
responds a class in # denoted by f,, and conversely, for f€% one can associate
an element @, in #.

By a zero order model A4 we simply mean a subset of the set of sentence sym-
bols S. Observe, that every assignment &£¢€<2 represents a zero order model in
the sense of [1]: let Ag={si|s.€S and ;=1} where ¢&; is the i-th component of ¢.
The converse is also valid: every model ACS can be associated by an assignment
&, defined by

_ {1 iff s;€4,
% =10 otherwise.

Clearly, for every ¢ and A4, we have Ak=¢ iff f(¢)=1. Weset 4,={A4|ACS,
A= o).

Let ¢ and { be two assignments and @€%. We say that the models A,
and A, are g-equivalent with respect to a subset 4 of 6(f), the set of nondummy
variables of f, iff A;N4=A4,NA. This is indeed an equivalence relation and being
so we can set for ACS, p€F and Aco(f):

[413={B|BcS and" B is g-equivalent to A4 with respect to 4}.

Notice, that by choosing 4=48(f), the class [A4)2U+ is represented by one
path in the tree T, associated to f,.

Let f,gc% and consider the sets of variables, 4., &, and I'y,. Then,
clearly, card ¥'(f)=card ( {[A]ﬂfg}) and similarly, card ¥ (g)=card ({[A]"”}),
that is, ¥(f) and ¥(g) 1dent1fy all ¢,-equivalent and @, -equivalent classes of
models with respect to the common set of nondummy variables of f and g,4,,
respectively.

By definition, Z(f)N#(f)=0, #(HU#(f)=¥(f) and similar equations
hold for g. If for some k, V;€#7(g), then FBT (V) is a subtree of the tree T
associated to g, and all paths of FBT (V) represent the same ¢,-equivalence
class of models with respect to the set of all nondummy variables of g, d(g), while
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if V,4#(g) and hence V,€%(g), then the paths of T, going through ¥V, will
represent different classes (with respect to d(g)). We say that A is a respectable
model (for ¢,) iff

41420 = [4)3.

Since interpolants of f and g (hence of ¢, and ¢,) can depend on the variables
of 4,, only, respectable models for ¢, are exactly the ones which are of interest
from the point of view of interpolants.

The ¢,-equivalence classes of respectable models for ¢,, however, are identified
by elements of #(g), according to the remark above. .

Let us introduce the following notations:

AyP={[A]s37| A is a respectable model for g} and 4, —{[A]f,‘”] A€A, ).
Then, the set W (8)—7"(f), playing a central role in our 1nvest1gat10ns ldentlﬁes
those respectable model classes for ¢, which are not models of ¢,, and

card (W(g) -7 (f))=card (45" —4,,) hence a reformulation of Theorem 9 in
model theoretic terms can be eas1ly obtained.

Summing up the results of the paper, for any two zero order formulae ¢ and
¥ such that @ =y, = ¢, ¥, we can decide whether does or does not exist a proper
interpolant for ¢ and  and if the answer is affirmative, we can give the number
of equivalence classes of proper interpolants immediately, or we can construct the
whole lattice of equivalence classes of interpolants when necessary. The method
developed in the paper is much more effective (even if it is considered as inefficient
in the more strict sense of [5]) than the one presented in [3].

- Abstract

The number of equivalence classes of interpolants for arbitrarily given two zero order sentences
are calculated using tree-theoretic arguments. As a by-product, the number of maximal chains
and the algebraic structure of equivalence classes of interpolants are determined.
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