11,838 research outputs found

    Algorithmic Randomness as Foundation of Inductive Reasoning and Artificial Intelligence

    Full text link
    This article is a brief personal account of the past, present, and future of algorithmic randomness, emphasizing its role in inductive inference and artificial intelligence. It is written for a general audience interested in science and philosophy. Intuitively, randomness is a lack of order or predictability. If randomness is the opposite of determinism, then algorithmic randomness is the opposite of computability. Besides many other things, these concepts have been used to quantify Ockham's razor, solve the induction problem, and define intelligence.Comment: 9 LaTeX page

    A Stochastic Complexity Perspective of Induction in Economics and Inference in Dynamics

    Get PDF
    Rissanen's fertile and pioneering minimum description length principle (MDL) has been viewed from the point of view of statistical estimation theory, information theory, as stochastic complexity theory -.i.e., a computable approximation to Kolomogorov Complexity - or Solomonoff's recursion theoretic induction principle or as analogous to Kolmogorov's sufficient statistics. All these - and many more - interpretations are valid, interesting and fertile. In this paper I view it from two points of view: those of an algorithmic economist and a dynamical system theorist. >From these points of view I suggest, first, a recasting of Jevons's sceptical vision of induction in the light of MDL; and a complexity interpretation of an undecidable question in dynamics.

    Ultimate Intelligence Part I: Physical Completeness and Objectivity of Induction

    Full text link
    We propose that Solomonoff induction is complete in the physical sense via several strong physical arguments. We also argue that Solomonoff induction is fully applicable to quantum mechanics. We show how to choose an objective reference machine for universal induction by defining a physical message complexity and physical message probability, and argue that this choice dissolves some well-known objections to universal induction. We also introduce many more variants of physical message complexity based on energy and action, and discuss the ramifications of our proposals.Comment: Under review at AGI-2015 conference. An early draft was submitted to ALT-2014. This paper is now being split into two papers, one philosophical, and one more technical. We intend that all installments of the paper series will be on the arxi

    Solomonoff Induction Violates Nicod's Criterion

    Full text link
    Nicod's criterion states that observing a black raven is evidence for the hypothesis H that all ravens are black. We show that Solomonoff induction does not satisfy Nicod's criterion: there are time steps in which observing black ravens decreases the belief in H. Moreover, while observing any computable infinite string compatible with H, the belief in H decreases infinitely often when using the unnormalized Solomonoff prior, but only finitely often when using the normalized Solomonoff prior. We argue that the fault is not with Solomonoff induction; instead we should reject Nicod's criterion.Comment: ALT 201

    No Free Lunch versus Occam's Razor in Supervised Learning

    Full text link
    The No Free Lunch theorems are often used to argue that domain specific knowledge is required to design successful algorithms. We use algorithmic information theory to argue the case for a universal bias allowing an algorithm to succeed in all interesting problem domains. Additionally, we give a new algorithm for off-line classification, inspired by Solomonoff induction, with good performance on all structured problems under reasonable assumptions. This includes a proof of the efficacy of the well-known heuristic of randomly selecting training data in the hope of reducing misclassification rates.Comment: 16 LaTeX pages, 1 figur

    Modeling Epistemological Principles for Bias Mitigation in AI Systems: An Illustration in Hiring Decisions

    Full text link
    Artificial Intelligence (AI) has been used extensively in automatic decision making in a broad variety of scenarios, ranging from credit ratings for loans to recommendations of movies. Traditional design guidelines for AI models focus essentially on accuracy maximization, but recent work has shown that economically irrational and socially unacceptable scenarios of discrimination and unfairness are likely to arise unless these issues are explicitly addressed. This undesirable behavior has several possible sources, such as biased datasets used for training that may not be detected in black-box models. After pointing out connections between such bias of AI and the problem of induction, we focus on Popper's contributions after Hume's, which offer a logical theory of preferences. An AI model can be preferred over others on purely rational grounds after one or more attempts at refutation based on accuracy and fairness. Inspired by such epistemological principles, this paper proposes a structured approach to mitigate discrimination and unfairness caused by bias in AI systems. In the proposed computational framework, models are selected and enhanced after attempts at refutation. To illustrate our discussion, we focus on hiring decision scenarios where an AI system filters in which job applicants should go to the interview phase
    • …
    corecore