15,882 research outputs found

    Visible Light Communications towards 5G

    Get PDF
    5G networks have to offer extremely high capacity for novel streaming applications. One of the most promising approaches is to embed large numbers of co-operating small cells into the macro-cell coverage area. Alternatively, optical wireless based technologies can be adopted as an alternative physical layer offering higher data rates. Visible light communications (VLC) is an emerging technology for future high capacity communication links (it has been accepted to 5GPP) in the visible range of the electromagnetic spectrum (~370–780 nm) utilizing light-emitting diodes (LEDs) simultaneously provide data transmission and room illumination. A major challenge in VLC is the LED modulation bandwidths, which are limited to a few MHz. However, myriad gigabit speed transmission links have already been demonstrated. Non line-of-sight (NLOS) optical wireless is resistant to blocking by people and obstacles and is capable of adapting its’ throughput according to the current channel state information. Concurrently, organic polymer LEDs (PLEDs) have become the focus of enormous attention for solid-state lighting applications due to their advantages over conventional white LEDs such as ultra-low costs, low heating temperature, mechanical flexibility and large photoactive areas when produced with wet processing methods. This paper discusses development of such VLC links with a view to implementing ubiquitous broadcasting networks featuring advanced modulation formats such as orthogonal frequency division multiplexing (OFDM) or carrier-less amplitude and phase modulation (CAP) in conjunction with equalization techniques. Finally, this paper will also summarize the results of the European project ICT COST IC1101 OPTICWISE (Optical Wireless Communications - An Emerging Technology) dealing VLC and OLEDs towards 5G networks

    Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalisation

    Get PDF
    The bit-error rate (BER) performance of a pulse position modulation (PPM) scheme for non-line-of-sight indoor optical links employing channel equalisation based on the artificial neural network (ANN) is reported. Channel equalisation is achieved by training a multilayer perceptrons ANN. A comparative study of the unequalised `soft' decision decoding and the `hard' decision decoding along with the neural equalised `soft' decision decoding is presented for different bit resolutions for optical channels with different delay spread. We show that the unequalised `hard' decision decoding performs the worst for all values of normalised delayed spread, becoming impractical beyond a normalised delayed spread of 0.6. However, `soft' decision decoding with/without equalisation displays relatively improved performance for all values of the delay spread. The study shows that for a highly diffuse channel, the signal-to-noise ratio requirement to achieve a BER of 10−5 for the ANN-based equaliser is ~10 dB lower compared with the unequalised `soft' decoding for 16-PPM at a data rate of 155 Mbps. Our results indicate that for all range of delay spread, neural network equalisation is an effective tool of mitigating the inter-symbol interference

    Performance of the wavelet-transform-neural network based receiver for DPIM in diffuse indoor optical wireless links in presence of artificial light interference

    Get PDF
    Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both domains. Applying these signal processing tools for channel compensation and noise reduction can provide an enhanced performance compared to the traditional tools. In this paper, the slot error rate (SER) performance of digital pulse interval modulation (DPIM) in diffuse indoor optical wireless (OW) links subjected to the artificial light interference (ALI) is reported with new receiver structure based on the discrete WT (DWT) and ANN. Simulation results show that the DWT-ANN based receiver is very effective in reducing the effect of multipath induced inter-symbol interference (ISI) and ALI

    Indoor gigabit optical wireless communications: challenges and possibilities

    Get PDF
    Indoor Gigabit optical wireless communication systems have the potential to offer multiple high-speed data services that can be delivered to homes via an optical fibre cable in the near future. In this paper we will discuss the challenges involved in the design of such systems and future possible advances. Results from a recent cellular Gigabit prototype link will also be presented and discussed
    corecore