1,166 research outputs found

    High-capacity Optical Wireless Communication by Directed Narrow Beams

    Get PDF

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    A Novel Received Signal Strength Assisted Perspective-three-Point Algorithm for Indoor Visible Light Positioning

    Full text link
    In this paper, a received signal strength assisted Perspective-three-Point positioning algorithm (R-P3P) is proposed for visible light positioning (VLP) systems. The basic idea of R-P3P is to joint visual and strength information to estimate the receiver position using 3 LEDs regardless of the LEDs' orientations. R-P3P first utilizes visual information captured by the camera to estimate the incidence angles of visible lights. Then, R-P3P calculates the candidate distances between the LEDs and the receiver based on the law of cosines and the Wu-Ritt's zero decomposition method. Based on the incidence angles, the candidate distances and the physical characteristics of the LEDs, R-P3P can select the exact distances from all the candidate distances. Finally, the linear least square (LLS) method is employed to estimate the position of the receiver. Due to the combination of visual and strength information of visible light signals, R-P3P can achieve high accuracy using 3 LEDs regardless of the LEDs' orientations. Simulation results show that R-P3P can achieve positioning accuracy within 10 cm over 70% indoor area with low complexity regardless of LEDs orientations.Comment: arXiv admin note: substantial text overlap with arXiv:2004.0629

    Local Positioning System Using Flickering Infrared LEDs

    Get PDF
    International audienceA minimalistic optical sensing device for the indoor localization is proposed to estimate the relative position between the sensor and active markers using amplitude modulated infrared light. The innovative insect-based sensor can measure azimuth and elevation angles with respect to two small and cheap active infrared light emitting diodes (LEDs) flickering at two different frequencies. In comparison to a previous lensless visual sensor that we proposed for proximal localization (less than 30 cm), we implemented: (i) a minimalistic sensor in terms of small size (10 cm 3), light weight (6 g) and low power consumption (0.4 W); (ii) an Arduino-compatible demodulator for fast analog signal processing requiring low computational resources; and (iii) an indoor positioning system for a mobile robotic application. Our results confirmed that the proposed sensor was able to estimate the position at a distance of 2 m with an accuracy as small as 2-cm at a sampling frequency of 100 Hz. Our sensor can be also suitable to be implemented in a position feedback loop for indoor robotic applications in GPS-denied environment

    Design, analysis and optimization of visible light communications based indoor access systems for mobile and internet of things applications

    Get PDF
    Demands for indoor broadband wireless access services are expected to outstrip the spectrum capacity in the near-term spectrum crunch . Deploying additional femtocells to address spectrum crunch is cost-inefficient due to the backhaul challenge and the exorbitant system maintenance. According to an Alcatel-Lucent report, most mobile Internet access traffic happens indoors. To alleviate the spectrum crunch and the backhaul challenge problems, visible light communication (VLC) emerges as an attractive candidate for indoor wireless access in the 5G architecture. In particular, VLC utilizes LED or fluorescent lamps to send out imperceptible flickering light that can be captured by a smart phone camera or photodetector. Leveraging power line communication and the available indoor infrastructure, VLC can be utilized with a small one-time cost. VLC also facilitates the great advantage of being able to jointly perform illumination and communications. Integration of VLC into the existing indoor wireless access networks embraces many challenges, such as lack of uplink infrastructure, excessive delay caused by blockage in heterogeneous networks, and overhead of power consumption. In addition, applying VLC to Internet-of-Things (IoT) applications, such as communication and localization, faces the challenges including ultra-low power requirement, limited modulation bandwidth, and heavy computation and sensing at the device end. In this dissertation, to overcome the challenges of VLC, a VLC enhanced WiFi system is designed by incorporating VLC downlink and WiFi uplink to connect mobile devices to the Internet. To further enhance robustness and throughput, WiFi and VLC are aggregated in parallel by leveraging the bonding technique in Linux operating system. Based on dynamic resource allocation, the delay performance of heterogeneous RF-VLC network is analyzed and evaluated for two different configurations - aggregation and non-aggregation. To mitigate the power consumption overhead of VLC, a problem of minimizing the total power consumption of a general multi-user VLC indoor network while satisfying users traffic demands and maintaining an acceptable level of illumination is formulated. The optimization problem is solved by the efficient column generation algorithm. With ultra-low power consumption, VLC backscatter harvests energy from indoor light sources and transmits optical signals by modulating the reflected light from a reflector. A novel pixelated VLC backscatter is proposed and prototyped to address the limited modulation bandwidth by enabling more advanced modulation scheme than the state-of-the-art on-off keying (OOK) scheme and allowing for the first time orthogonal multiple access. VLC-based indoor access system is also suitable for indoor localization due to its unique properties, such as utilization of existing ubiquitous lighting infrastructure, high location and orientation accuracy, and no interruption to RF-based devices. A novel retroreflector-based visible light localization system is proposed and prototyped to establish an almost zero-delay backward channel using a retroreflector to reflect light back to its source. This system can localize passive IoT devices without requiring computation and heavy sensing (e.g., camera) at the device end

    Improved Visible Light Communication Receiver Performance by Leveraging the Spatial Dimension

    Get PDF
    In wireless communications systems, signals can be transmitted as time (temporal) or spatial variants across 3D space, and in both ways. However, using temporal variant communication channels in high-speed data transmission introduces inter-symbol interference (ISI) which makes the systems unreliable. On the other hand, spatial diversity in signal processing reduces the ISI and improves the system throughput or performance by allowing more signals from different spatial locations at the same time. Therefore, the spatial features or properties of visible light signals can be very useful in designing a reliable visible light communication (VLC) system with higher system throughput and making it more robust against ambient noise and interference. By allowing only the signals of interest, spatial separability in VLC can minimize the noise to a greater extent to improve signal-to-noise ratio (SNR) which can ensure higher data rates (in the order of Gbps-Tbps) in VLC. So, designing a VLC system with spatial diversity is an exciting area to explore and might set the foundation for future VLC system architectures and enable different VLC based applications such as vehicular VLC, multi-VLC, localization, and detection using VLC, etc. This thesis work is motivated by the fundamental challenges in reusing spatial information in VLC systems to increase the system throughput or gain through novel system designing and their prototype implementations

    Recognition of activities of daily living

    Get PDF
    Activities of daily living (ADL) are things we normally do in daily living, including any daily activity such as feeding ourselves, bathing, dressing, grooming, work, homemaking, and leisure. The ability or inability to perform ADLs can be used as a very practical measure of human capability in many types of disorder and disability. Oftentimes in a health care facility, with the help of observations by nurses and self-reporting by residents, professional staff manually collect ADL data and enter data into the system. Technologies in smart homes can provide some solutions to detecting and monitoring a resident’s ADL. Typically multiple sensors can be deployed, such as surveillance cameras in the smart home environment, and contacted sensors affixed to the resident’s body. Note that the traditional technologies incur costly and laborious sensor deployment, and cause uncomfortable feeling of contacted sensors with increased inconvenience. This work presents a novel system facilitated via mobile devices to collect and analyze mobile data pertaining to the human users’ ADL. By employing only one smart phone, this system, named ADL recognition system, significantly reduces set-up costs and saves manpower. It encapsulates rather sophisticated technologies under the hood, such as an agent-based information management platform integrating both the mobile end and the cloud, observer patterns and a time-series based motion analysis mechanism over sensory data. As a single-point deployment system, ADL recognition system provides further benefits that enable the replay of users’ daily ADL routines, in addition to the timely assessment of their life habits
    corecore