4 research outputs found

    A multi-domain ontology on healthy ageing for the characterization of older adults status and behaviour

    Full text link
    Ageing is a multi-factorial physiological process and the development of novel IoT systems, tools and devices, specifically targeted to older people, must be based on a holistic framework built on robust scientific knowledge in different health domains. Furthermore, interoperability must be guaranteed using standardized frameworks or approaches. These aspects still largely lack in the specific literature. The main aim of the paper is to develop a new ontology (the NESTORE ontology) to extend the available ontologies provided by universAAL-IoT (uAAL-IoT). The ontology is based on a multidomain healthy ageing holistic model, structuring well-assessed scientific knowledge, specifically targeted to healthy older adults aged between 65 and 75. The tool is intended to support, and standardize heterogeneous data about ageing in compliance with the uAAL-IoT framework. The NESTORE ontology covers all the relevant concepts to represent 3 significant domains of ageing: (1) Physiological Status and Physical Activity Behaviour; (2) Nutrition; and (3) Cognitive and Mental Status and Social Behaviour. In total, 12 sub-ontologies were modelled with more than 60 classes and sub-classes referenced among them by using more than 100 relations and around 20 enumerations. The proposed ontology increases the uAAL collection by 40%. NESTORE ontology provides innovation both in terms of semantic content and technological approach. The thorough use of this ontology can support the development of a decision support system, to promote healthy ageing, with the capacity to do dynamic multi-scale modelling of user-specific data based on the semantic annotations of users’ profile

    MYLIB: SMART LIBRARY INDOOR NAVIGATION USING BLUETOOTH LOW ENERGY WITH TRIANGULATION METHOD

    Get PDF
    This paper proposes an android-based application to help the users to navigate in finding books in the library easily and interactively. This navigation application is connected to a Bluetooth Low Energy (BLE) device that will emit an RSSI signal received by the Smartphone user and show the desired distance to the bookshelf position. The method of triangulation and mean filter were used to eliminate noise in the test environment to make the position of the bookshelf can be found precisely based on the RSSI BLE Beacon value. The test results showed the largest RSSI value for LOS conditions at -48dBm and NLOS at -63 dBm; while the lowest RRSI values for LOS conditions was at -84dBm and NLOS was at -96dBm

    Continuous monitoring of health and mobility indicators in patients with cardiovascular disease: a review of recent technologies

    Get PDF
    Cardiovascular diseases kill 18 million people each year. Currently, a patient’s health is assessed only during clinical visits, which are often infrequent and provide little information on the person’s health during daily life. Advances in mobile health technologies have allowed for the continuous monitoring of indicators of health and mobility during daily life by wearable and other devices. The ability to obtain such longitudinal, clinically relevant measurements could enhance the prevention, detection and treatment of cardiovascular diseases. This review discusses the advantages and disadvantages of various methods for monitoring patients with cardiovascular disease during daily life using wearable devices. We specifically discuss three distinct monitoring domains: physical activity monitoring, indoor home monitoring and physiological parameter monitoring

    Indoor Bluetooth Low Energy Dataset for Localization, Tracking, Occupancy, and Social Interaction

    Get PDF
    Indoor localization has become a mature research area, but further scientific developments are limited due to the lack of open datasets and corresponding frameworks suitable to compare and evaluate specialized localization solutions. Although several competitions provide datasets and environments for comparing different solutions, they hardly consider novel technologies such as Bluetooth Low Energy (BLE), which is gaining more and more importance in indoor localization due to its wide availability in personal and environmental devices and to its low costs and flexibility. This paper contributes to cover this gap by: (i) presenting a new indoor BLE dataset; (ii) reviewing several, meaningful use cases in different application scenarios; and (iii) discussing alternative uses of the dataset in the evaluation of different positioning and navigation applications, namely localization, tracking, occupancy and social interaction
    corecore