1,705 research outputs found

    Multiresolution vector quantization

    Get PDF
    Multiresolution source codes are data compression algorithms yielding embedded source descriptions. The decoder of a multiresolution code can build a source reproduction by decoding the embedded bit stream in part or in whole. All decoding procedures start at the beginning of the binary source description and decode some fraction of that string. Decoding a small portion of the binary string gives a low-resolution reproduction; decoding more yields a higher resolution reproduction; and so on. Multiresolution vector quantizers are block multiresolution source codes. This paper introduces algorithms for designing fixed- and variable-rate multiresolution vector quantizers. Experiments on synthetic data demonstrate performance close to the theoretical performance limit. Experiments on natural images demonstrate performance improvements of up to 8 dB over tree-structured vector quantizers. Some of the lessons learned through multiresolution vector quantizer design lend insight into the design of more sophisticated multiresolution codes

    Masking of errors in transmission of VAPC-coded speech

    Get PDF
    A subjective evaluation is provided of the bit error sensitivity of the message elements of a Vector Adaptive Predictive (VAPC) speech coder, along with an indication of the amenability of these elements to a popular error masking strategy (cross frame hold over). As expected, a wide range of bit error sensitivity was observed. The most sensitive message components were the short term spectral information and the most significant bits of the pitch and gain indices. The cross frame hold over strategy was found to be useful for pitch and gain information, but it was not beneficial for the spectral information unless severe corruption had occurred

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Progressive Vector Quantization on a massively parallel SIMD machine with application to multispectral image data

    Get PDF
    A progressive vector quantization (VQ) compression approach is discussed which decomposes image data into a number of levels using full search VQ. The final level is losslessly compressed, enabling lossless reconstruction. The computational difficulties are addressed by implementation on a massively parallel SIMD machine. We demonstrate progressive VQ on multispectral imagery obtained from the Advanced Very High Resolution Radiometer instrument and other Earth observation image data, and investigate the trade-offs in selecting the number of decomposition levels and codebook training method

    Feedback Allocation For OFDMA Systems With Slow Frequency-domain Scheduling

    Get PDF
    We study the problem of allocating limited feedback resources across multiple users in an orthogonal-frequency-division-multiple-access downlink system with slow frequency-domain scheduling. Many flavors of slow frequency-domain scheduling (e.g., persistent scheduling, semi-persistent scheduling), that adapt user-sub-band assignments on a slower time-scale, are being considered in standards such as 3GPP Long-Term Evolution. In this paper, we develop a feedback allocation algorithm that operates in conjunction with any arbitrary slow frequency-domain scheduler with the goal of improving the throughput of the system. Given a user-sub-band assignment chosen by the scheduler, the feedback allocation algorithm involves solving a weighted sum-rate maximization at each (slow) scheduling instant. We first develop an optimal dynamic-programming-based algorithm to solve the feedback allocation problem with pseudo-polynomial complexity in the number of users and in the total feedback bit budget. We then propose two approximation algorithms with complexity further reduced, for scenarios where the problem exhibits additional structure.Comment: Accepted to IEEE Transactions on Signal Processin

    Improved bounds for the rate loss of multiresolution source codes

    Get PDF
    We present new bounds for the rate loss of multiresolution source codes (MRSCs). Considering an M-resolution code, the rate loss at the ith resolution with distortion D/sub i/ is defined as L/sub i/=R/sub i/-R(D/sub i/), where R/sub i/ is the rate achievable by the MRSC at stage i. This rate loss describes the performance degradation of the MRSC compared to the best single-resolution code with the same distortion. For two-resolution source codes, there are three scenarios of particular interest: (i) when both resolutions are equally important; (ii) when the rate loss at the first resolution is 0 (L/sub 1/=0); (iii) when the rate loss at the second resolution is 0 (L/sub 2/=0). The work of Lastras and Berger (see ibid., vol.47, p.918-26, Mar. 2001) gives constant upper bounds for the rate loss of an arbitrary memoryless source in scenarios (i) and (ii) and an asymptotic bound for scenario (iii) as D/sub 2/ approaches 0. We focus on the squared error distortion measure and (a) prove that for scenario (iii) L/sub 1/<1.1610 for all D/sub 2/<0.7250; (c) tighten the Lastras-Berger bound for scenario (i) from L/sub i//spl les/1/2 to L/sub i/<0.3802, i/spl isin/{1,2}; and (d) generalize the bounds for scenarios (ii) and (iii) to M-resolution codes with M/spl ges/2. We also present upper bounds for the rate losses of additive MRSCs (AMRSCs). An AMRSC is a special MRSC where each resolution describes an incremental reproduction and the kth-resolution reconstruction equals the sum of the first k incremental reproductions. We obtain two bounds on the rate loss of AMRSCs: one primarily good for low-rate coding and another which depends on the source entropy

    Practical multi-resolution source coding: TSVQ revisited

    Get PDF
    Consider a multi-resolution source code for describing a stationary source at L resolutions. The description at the first resolution is given at rate R1 and achieves an expected distortion no greater than D1. The description at the second resolution includes both the first description and a refining description of rate R2 and achieves expected distortion no greater than D2, and so on. Previously derived multi-resolution source coding bounds describe the family of achievable rate and distortion vectors ((R1, R2, ..., RL ), (D1, D2, DL)). By examining these multi-resolution rate-distortion bounds, we gain insight into the problem of practical multi-resolution source coding. These insights lead to a new multi-resolution source code based on the tree-structured vector quantizer. This paper covers the algorithm, its optimal design, and preliminary experimental results
    • …
    corecore