19,103 research outputs found

    Index Reduction for Differential-Algebraic Equations with Mixed Matrices

    Full text link
    Differential-algebraic equations (DAEs) are widely used for modeling of dynamical systems. The difficulty in solving numerically a DAE is measured by its differentiation index. For highly accurate simulation of dynamical systems, it is important to convert high-index DAEs into low-index DAEs. Most of existing simulation software packages for dynamical systems are equipped with an index-reduction algorithm given by Mattsson and S\"{o}derlind. Unfortunately, this algorithm fails if there are numerical cancellations. These numerical cancellations are often caused by accurate constants in structural equations. Distinguishing those accurate constants from generic parameters that represent physical quantities, Murota and Iri introduced the notion of a mixed matrix as a mathematical tool for faithful model description in structural approach to systems analysis. For DAEs described with the use of mixed matrices, efficient algorithms to compute the index have been developed by exploiting matroid theory. This paper presents an index-reduction algorithm for linear DAEs whose coefficient matrices are mixed matrices, i.e., linear DAEs containing physical quantities as parameters. Our algorithm detects numerical cancellations between accurate constants, and transforms a DAE into an equivalent DAE to which Mattsson--S\"{o}derlind's index-reduction algorithm is applicable. Our algorithm is based on the combinatorial relaxation approach, which is a framework to solve a linear algebraic problem by iteratively relaxing it into an efficiently solvable combinatorial optimization problem. The algorithm does not rely on symbolic manipulations but on fast combinatorial algorithms on graphs and matroids. Furthermore, we provide an improved algorithm under an assumption based on dimensional analysis of dynamical systems.Comment: A preliminary version of this paper is to appear in Proceedings of the Eighth SIAM Workshop on Combinatorial Scientific Computing, Bergen, Norway, June 201

    On Jordan's measurements

    Get PDF
    The Jordan measure, the Jordan curve theorem, as well as the other generic references to Camille Jordan's (1838-1922) achievements highlight that the latter can hardly be reduced to the "great algebraist" whose masterpiece, the Trait\'e des substitutions et des equations alg\'ebriques, unfolded the group-theoretical content of \'Evariste Galois's work. The present paper appeals to the database of the reviews of the Jahrbuch \"uber die Fortschritte der Mathematik (1868-1942) for providing an overview of Jordan's works. On the one hand, we shall especially investigate the collective dimensions in which Jordan himself inscribed his works (1860-1922). On the other hand, we shall address the issue of the collectives in which Jordan's works have circulated (1860-1940). Moreover, the time-period during which Jordan has been publishing his works, i.e., 1860-1922, provides an opportunity to investigate some collective organizations of knowledge that pre-existed the development of object-oriented disciplines such as group theory (Jordan-H\"older theorem), linear algebra (Jordan's canonical form), topology (Jordan's curve), integral theory (Jordan's measure), etc. At the time when Jordan was defending his thesis in 1860, it was common to appeal to transversal organizations of knowledge, such as what the latter designated as the "theory of order." When Jordan died in 1922, it was however more and more common to point to object-oriented disciplines as identifying both a corpus of specialized knowledge and the institutionalized practices of transmissions of a group of professional specialists

    On the Reduction of Singularly-Perturbed Linear Differential Systems

    Full text link
    In this article, we recover singularly-perturbed linear differential systems from their turning points and reduce the rank of the singularity in the parameter to its minimal integer value. Our treatment is Moser-based; that is to say it is based on the reduction criterion introduced for linear singular differential systems by Moser. Such algorithms have proved their utility in the symbolic resolution of the systems of linear functional equations, giving rise to the package ISOLDE, as well as in the perturbed algebraic eigenvalue problem. Our algorithm, implemented in the computer algebra system Maple, paves the way for efficient symbolic resolution of singularly-perturbed linear differential systems as well as further applications of Moser-based reduction over bivariate (differential) fields.Comment: Keywords: Moser-based Reduction, Perturbed linear Differential systems, turning points, Computer algebr

    Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations

    Full text link
    The Navier--Stokes equations are commonly used to model and to simulate flow phenomena. We introduce the basic equations and discuss the standard methods for the spatial and temporal discretization. We analyse the semi-discrete equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index and quantify the numerical difficulties in the fully discrete schemes, that are induced by the strangeness of the system. By analyzing the Kronecker index of the difference-algebraic equations, that represent commonly and successfully used time stepping schemes for the Navier--Stokes equations, we show that those time-integration schemes factually remove the strangeness. The theoretical considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909, https://doi.org/10.5281/zenodo.99890

    Arithmetic Levi-Civita connection

    Full text link
    This paper is part of a series of papers where an arithmetic analogue of classical differential geometry is being developed. In this arithmetic differential geometry functions are replaced by integer numbers, derivations are replaced by Fermat quotient operators, and connections (respectively curvature) are replaced by certain adelic (respectively global) objects attached to symmetric matrices with integral coefficients. Previous papers were devoted to an arithmetic analogue of the Chern connection. The present paper is devoted to an arithmetic analogue of the Levi-Civita connection
    corecore