65,024 research outputs found

    PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 2: User's manual (version 3.0)

    Get PDF
    A comprehensive description of user problem definition for the PAN AIR (Panel Aerodynamics) system is given. PAN AIR solves the 3-D linear integral equations of subsonic and supersonic flow. Influence coefficient methods are used which employ source and doublet panels as boundary surfaces. Both analysis and design boundary conditions can be used. This User's Manual describes the information needed to use the PAN AIR system. The structure and organization of PAN AIR are described, including the job control and module execution control languages for execution of the program system. The engineering input data are described, including the mathematical and physical modeling requirements. Version 3.0 strictly applies only to PAN AIR version 3.0. The major revisions include: (1) inputs and guidelines for the new FDP module (which calculates streamlines and offbody points); (2) nine new class 1 and class 2 boundary conditions to cover commonly used modeling practices, in particular the vorticity matching Kutta condition; (3) use of the CRAY solid state Storage Device (SSD); and (4) incorporation of errata and typo's together with additional explanation and guidelines

    Interplay of spatial dynamics and local adaptation shapes species lifetime distributions and species-area relationships

    Full text link
    The distributions of species lifetimes and species in space are related, since species with good local survival chances have more time to colonize new habitats and species inhabiting large areas have higher chances to survive local disturbances. Yet, both distributions have been discussed in mostly separate communities. Here, we study both patterns simultaneously using a spatially explicit, evolutionary community assembly approach. We present and investigate a metacommunity model, consisting of a grid of patches, where each patch contains a local food web. Species survival depends on predation and competition interactions, which in turn depend on species body masses as the key traits. The system evolves due to the migration of species to neighboring patches, the addition of new species as modifications of existing species, and local extinction events. The structure of each local food web thus emerges in a self-organized manner as the highly non-trivial outcome of the relative time scales of these processes. Our model generates a large variety of complex, multi-trophic networks and therefore serves as a powerful tool to investigate ecosystems on long temporal and large spatial scales. We find that the observed lifetime distributions and species-area relations resemble power laws over appropriately chosen parameter ranges and thus agree qualitatively with empirical findings. Moreover, we observe strong finite-size effects, and a dependence of the relationships on the trophic level of the species. By comparing our results to simple neutral models found in the literature, we identify the features that are responsible for the values of the exponents.Comment: Theor Ecol (2019

    Scaling of the risk landscape drives optimal life history strategies and the evolution of grazing

    Full text link
    Consumers face numerous risks that can be minimized by incorporating different life-history strategies. How much and when a consumer adds to its energetic reserves or invests in reproduction are key behavioral and physiological adaptations that structure much of how organisms interact. Here we develop a theoretical framework that explicitly accounts for stochastic fluctuations of an individual consumer's energetic reserves while foraging and reproducing on a landscape with resources that range from uniformly distributed to highly clustered. First, we show that optimal life-history strategies vary in response to changes in the mean productivity of the resource landscape, where depleted environments promote reproduction at lower energetic states, greater investment in each reproduction event, and smaller litter sizes. We then show that if resource variance scales with body size due to landscape clustering, consumers that forage for clustered foods are susceptible to strong Allee effects, increasing extinction risk. Finally, we show that the proposed relationship between consumer body size, resource clustering, and Allee effect-induced population instability offers key ecological insights into the evolution of large-bodied grazing herbivores from small-bodied browsing ancestors.Comment: 9 pages, 5 figures, 3 Supplementary Appendices, 2 Supplementary Figure

    Health Care Savings from Personalizing Medicine Using Genetic Testing: The Case of Warfarin

    Get PDF
    Progress towards realizing a vision of personalized medicine - drugs and drug doses that are safer and more effective because they are chosen based on an individual's genetic makeup - has been slower than once forecast. The Food and Drug Administration has a key role to play in facilitating the use of genetic information in drug therapies because it approves labels, and labels influence how doctors use drugs. Here we evaluate one example of how using genetic information in drug therapy may improve public health and lower health care costs. Warfarin, an anticoagulant commonly used to prevent and control blood clots, is complicated to use because the optimal dose varies greatly among patients. If the dose is too strong the risk of serious bleeding increases and if the dose is too weak, the risk of stroke increases. We estimate the health benefits and the resulting savings in health care costs by using personalized warfarin dosing decisions based on appropriate genetic testing. We estimate that formally integrating genetic testing into routine warfarin therapy could allow American warfarin users to avoid 85,000 serious bleeding events and 17,000 strokes annually. We estimate the reduced health care spending from integrating genetic testing into warfarin therapy to be 1.1billionannually,witharangeofabout1.1 billion annually, with a range of about 100 million to $2 billion.
    • …
    corecore