3,408 research outputs found

    Inferring an Indeterminate String from a Prefix Graph

    Get PDF
    An \itbf{indeterminate string} (or, more simply, just a \itbf{string}) \s{x} = \s{x}[1..n] on an alphabet Σ\Sigma is a sequence of nonempty subsets of Σ\Sigma. We say that \s{x}[i_1] and \s{x}[i_2] \itbf{match} (written \s{x}[i_1] \match \s{x}[i_2]) if and only if \s{x}[i_1] \cap \s{x}[i_2] \ne \emptyset. A \itbf{feasible array} is an array \s{y} = \s{y}[1..n] of integers such that \s{y}[1] = n and for every i∈2..ni \in 2..n, \s{y}[i] \in 0..n\- i\+ 1. A \itbf{prefix table} of a string \s{x} is an array \s{\pi} = \s{\pi}[1..n] of integers such that, for every i∈1..ni \in 1..n, \s{\pi}[i] = j if and only if \s{x}[i..i\+ j\- 1] is the longest substring at position ii of \s{x} that matches a prefix of \s{x}. It is known from \cite{CRSW13} that every feasible array is a prefix table of some indetermintate string. A \itbf{prefix graph} \mathcal{P} = \mathcal{P}_{\s{y}} is a labelled simple graph whose structure is determined by a feasible array \s{y}. In this paper we show, given a feasible array \s{y}, how to use \mathcal{P}_{\s{y}} to construct a lexicographically least indeterminate string on a minimum alphabet whose prefix table \s{\pi} = \s{y}.Comment: 13 pages, 1 figur

    Computing Covers Using Prefix Tables

    Get PDF
    An \emph{indeterminate string} x=x[1..n]x = x[1..n] on an alphabet Σ\Sigma is a sequence of nonempty subsets of Σ\Sigma; xx is said to be \emph{regular} if every subset is of size one. A proper substring uu of regular xx is said to be a \emph{cover} of xx iff for every i∈1..ni \in 1..n, an occurrence of uu in xx includes x[i]x[i]. The \emph{cover array} γ=γ[1..n]\gamma = \gamma[1..n] of xx is an integer array such that γ[i]\gamma[i] is the longest cover of x[1..i]x[1..i]. Fifteen years ago a complex, though nevertheless linear-time, algorithm was proposed to compute the cover array of regular xx based on prior computation of the border array of xx. In this paper we first describe a linear-time algorithm to compute the cover array of regular string xx based on the prefix table of xx. We then extend this result to indeterminate strings.Comment: 14 pages, 1 figur

    Naming the largest number: Exploring the boundary between mathematics and the philosophy of mathematics

    Full text link
    What is the largest number accessible to the human imagination? The question is neither entirely mathematical nor entirely philosophical. Mathematical formulations of the problem fall into two classes: those that fail to fully capture the spirit of the problem, and those that turn it back into a philosophical problem

    Modelling and Analysing Access Control Policies in XACML 3.0

    Get PDF

    MODELLING EXPECTATIONS WITH GENEFER- AN ARTIFICIAL INTELLIGENCE APPROACH

    Get PDF
    Economic modelling of financial markets means to model highly complex systems in which expectations can be the dominant driving forces. Therefore it is necessary to focus on how agents form their expectations. We believe that they look for patterns, hypothesize, try, make mistakes, learn and adapt. AgentsÆ bounded rationality leads us to a rule-based approach which we model using Fuzzy Rule-Bases. E. g. if a single agent believes the exchange rate is determined by a set of possible inputs and is asked to put their relationship in words his answer will probably reveal a fuzzy nature like: "IF the inflation rate in the EURO-Zone is low and the GDP growth rate is larger than in the US THEN the EURO will rise against the USD". æLowÆ and ælargerÆ are fuzzy terms which give a gradual linguistic meaning to crisp intervalls in the respective universes of discourse. In order to learn a Fuzzy Fuzzy Rule base from examples we introduce Genetic Algorithms and Artificial Neural Networks as learning operators. These examples can either be empirical data or originate from an economic simulation model. The software GENEFER (GEnetic NEural Fuzzy ExplorER) has been developed for designing such a Fuzzy Rule Base. The design process is modular and comprises Input Identification, Fuzzification, Rule-Base Generating and Rule-Base Tuning. The two latter steps make use of genetic and neural learning algorithms for optimizing the Fuzzy Rule-Base.

    On a symbolic representation of non-central Wishart random matrices with applications

    Full text link
    By using a symbolic method, known in the literature as the classical umbral calculus, the trace of a non-central Wishart random matrix is represented as the convolution of the trace of its central component and of a formal variable involving traces of its non-centrality matrix. Thanks to this representation, the moments of this random matrix are proved to be a Sheffer polynomial sequence, allowing us to recover several properties. The multivariate symbolic method generalizes the employment of Sheffer representation and a closed form formula for computing joint moments and cumulants (also normalized) is given. By using this closed form formula and a combinatorial device, known in the literature as necklace, an efficient algorithm for their computations is set up. Applications are given to the computation of permanents as well as to the characterization of inherited estimators of cumulants, which turn useful in dealing with minors of non-central Wishart random matrices. An asymptotic approximation of generalized moments involving free probability is proposed.Comment: Journal of Multivariate Analysis (2014
    • …
    corecore