[}

'_VF'

A 4

Murdoch

UNIVERSITY

MURDOCH RESEARCH REPOSITORY

This is the author’s final version of the work, as accepted for publication
following peer review but without the publisher’s layout or pagination.
The definitive version is available at :

http://dx.doi.org/10.1016/j.edurev.2017.01.001

Alatabbi, A., Sohel Rahman, M. and Smyth, W.F. (2015) Computing covers
using prefix tables. Discrete Applied Mathematics, 212 . pp. 2-9.

http://researchrepository.murdoch.edu.au/id/eprint/27326/

Copyright: © 2015 Elsevier B.V.
It is posted here for your personal use. No further distribution is permitted.

http://dx.doi.org/10.1016/j.edurev.2017.01.001
http://researchrepository.murdoch.edu.au/id/eprint/27326/

1412.3016v2 [cs.DS] 27 Feb 2015

arXiv

Computing Covers Using Prefix Tables *

Ali Alatabbi', M. Sohel Rahman **2, and W. F. Smyth!34

! Department of Informatics, King’s College London
ali.alatabbi@kcl.ac.uk
2 Department of Computer Science & Engineering
Bangladesh University of Engineering & Science
msrahman@cse.buet.ac.bd
3 Algorithms Research Group, Department of Computing & Software
McMaster University
smyth@mcmaster.ca
4 School of Engineering & Information Technology
Murdoch University, Western Australia

Abstract. An indeterminate string x = x[1..n] on an alphabet X is
a sequence of nonempty subsets of X; x is said to be regular if every
subset is of size one. A proper substring w of regular x is said to be
a cover of x iff for every ¢ € 1..n, an occurrence of u in x includes
x[i]. The cover array v = 4[l..n] of x is an integer array such that
~[i] is the longest cover of x[l..i]. Fifteen years ago a complex, though
nevertheless linear-time, algorithm was proposed to compute the cover
array of regular & based on prior computation of the border array of @.
In this paper we first describe a linear-time algorithm to compute the
cover array of regular & based on the prefix table of &. We then extend
this result to indeterminate strings.

1 Introduction

The idea of a quasiperiod or cover of a string x was introduced almost a
quarter-century ago by Apostolico & Ehrenfeucht [4]: a proper substring u of x
such that every position in « lies within an occurrence of w. Thus, for example,
u = aba is a cover of ¢ = ababaababa. In [5] a linear-time algorithm was described
to compute the shortest cover of x; this contribution was followed by linear-time
algorithms to compute

e the shortest cover of every prefix of @ [9];
e all the covers of x [17,18];
e all the covers of every prefix of x [16].

* This work was supported in part by the Natural Sciences & Engineering Research
Council of Canada.

** Partially supported by a Commonwealth Academic Fellowship and an ACU Titular
Fellowship, both funded by the UK Government. Currently on a sabbatical leave
from BUET.

2 Alatabbi, Rahman and Smyth.

A border of a string x is a possibly empty proper prefix of x that is also a
suffix of . (Thus a cover of @ is necessarily also a border of x.) In the border
array B = B[l..n] of the string * = x[l..n], B[i] is the length of the longest
border of @[1..i]. Since for B[i] # 0, B[B]¢]] is the length of a border of = as well
as the length of the longest border of x[1..3[i]] [2,20], it follows that 3 provides
all the borders of every prefix of . For example:

123456780910
z=abababaaba (1)
B=0012345123

As shown in [16], the cover array ~ has a similar cascading property, giving
the lengths of all the covers of every prefix of x in a compact form:

123456780910
¥y=0002345003

Here «[1..7] has covers uy = z[1..5] = ababa and us = ®[1..3] = aba, while
the entire string « has cover ug. The main result of [16] is an algorithm that
computes v = v[1..n] from 3 = B[1..n] in O(n) time, while making no reference
to the underlying string «.

The results outlined above all apply to a regular string — that is, a string
x such that each entry x[i] is constrained to be a one-element subset of a given
set X called the alphabet. In this paper we show how to extend these ideas and
algorithms to an indeterminate string x — that is, such that each x[i] can be
any nonempty subset of X. Observe that every regular string is indeterminate.

The idea of an indeterminate string was first introduced in [12], then studied
further in the 1980s as a “generalized string” [1]. Over the last 15 years Blanchet-
Sadri has written numerous papers on the properties of “strings with holes” (each
x[i] is either a one-element subset of X' or X itself), together with a monograph
on the subject [8]; while other authors have studied indeterminate strings in
their full generality, together with related algorithms [6,10,14,15,19,21-23]. In
the specific context of this paper, Vordcek & Melichar [24] have done pioneering
work on the computation of covers and related structures in generalized strings
using finite automata.

For indeterminate strings, equality of letters is replaced by the idea of a
“match” [14]: x[i] matches z[j] (written x[i] ~ x[7]) if and only if z[i]Nx[j] # 0,
while @ ~ y if and ouly if |x| = |y| and corresponding positions in x and y all
match. It is important to note that matching is nontransitive: b =~ {b,c} = ¢,
but b % c.

It is [10] that provides the point of departure for our contribution, as we
now explain. The prefix table ® = w[l..n] of x[l..n] is an integer array such
that 7[1] = n and, for every ¢ € 2..n, [i] is the length of the longest substring
occurring at position ¢ of & that matches a prefix of . Thus, for our example

(1):

Computing Covers Using Prefiz Tables 3

1 23456780910
x=abababaaba

w=10030301301

It turns out [7] that the prefix table and the border array are “equivalent” for
regular strings; that is, each can be computed from « in linear time, and each
can be computed from the other, without reference to x, also in linear time.
However, for indeterminate strings, this is not true: the prefix table continues
to determine all the borders of every prefix of @, while the border array, due to
the intransitivity of matching, is no longer reliable in identifying borders shorter
than the longest one. Consider, for example:

12 3
x=a{a,b}d
B=0 1 2

Here x does not have a border of length B[3[3]] = 1; on the other hand,
7 = 320 correctly identifies all the borders of every prefix of .

Moreover, it was shown in [10] that every feasible array — that is, every
array y = y[l..n] such that y[1] = n and for every ¢ € 2..n, y[i] € 0.n—
i+1 — is a prefix table of some (indeterminate) string. Thus there exists a
many-many correspondence between all possible prefix tables and all possible
indeterminate strings. Furthermore, [21] describes an algorithm to compute the
prefix table of any indeterminate string, while [3] gives an algorithm to compute
a lexicographically least indeterminate string corresponding to a given prefix
table.

At this point let us discuss our motivation more precisely. First, realize that
to exploit the fullest functionality of a border array of an indeterminate string we
need to resort to the extended definition of the border array which in fact requires
quadratic space [6,14,19]: unlike the border array of a regular string, which is
a simple array of integers, the border array of an indeterminate string is an
array of lists of integers. Here at each position, the list gives all possible borders
for that prefix. On the other hand, the prefix array, even for the indeterminate
string, remains a simple one-dimensional array, just as for a regular string. It thus
becomes of interest to make use of the prefix table rather than the border array
whenever possible, in order to extend the scope of computations to indeterminate
strings.

In Section 2 of this paper, we describe a linear-time algorithm to compute
the cover array -« of a regular string « directly from its prefix table 7. Then,
Section 3 describes a limited extension of this algorithm to indeterminate strings.
Finally, Section 4 outlines future research directions, especially making use of
prefix tables to extend the utility and applicability of other data structures to
indeterminate strings.

4 Alatabbi, Rahman and Smyth.

2 Prefix-to-Cover for a Regular String

In this section we describe our basic ©(n)-time Algorithm PCR to compute the
cover array v = ~[1..n] of a regular string = x[1..n] directly from its prefix
table w = w[l..n]. In fact, as noted in the Introduction, 4 actually provides
all the covers of every prefix of x. Central to our algorithm are the following
definitions:

Definition 1. If, for a positioni € 1..n, w[i| > 0, then R; = [i, i+x[i]—-1] is said
to be the range at i of length w[i; the ranges R; and Ry, i’ > i, are connected
if and only if ' <i+w[i] <i'+w[i'].

Notably, in what follows, for the sake of brevity, we may slightly abuse the
notation R; = [i,i+[i]—1] by simply saying R; = =[i].

Definition 2. Position j in 7 is said to be live at position i’ > j if and only
if there exists a sequence of h > 1 connected ranges R;,,Ri,,...,R;, , each of
length at least j, such that i1 < j+1, ip+w[in)—1 > i'. Otherwise, j is said to
be dead at i'.

Thus x[1..n] has a cover x[l..j], j < n, if and only if j is live at n and the
final connected range R;, satisfies i, +m[ip]—1 = n.

The strategy of Algorithm PCR (Figure 1) is to perform an on-line left-to-
right scan of 7, identifying connected ranges R;. This process may be complex.
Within range R; there may exist two (or more) positions iy > i and i3 > 41 that
define ranges R;, and R;,, both connected to R;; of these, PCR processes R; first,
followed by R;,, then, if R;, and R;, are connected (they may not be), by R;,.
For example, consider®

1 234567891011 1213 141516 17 18 19
x=babababbabababababdba)
=190503017070706 04020
=00023450030507070 0

(

3
|

2
7

2

Here the pairs of ranges (Rg, Ri10), (Rs, R12) and (Rj0, R12) are all connected:
PCR will process positions 8-14 in Rg, followed by 15-16 in Rjg, then 17-18 in
Ry and finally position 19 in Ry4.

Algorithm PCR processes each connected range R; twice, first in left-to-right
order, beginning at position ¢/ = lastlim + 1, where lastlim is the current
rightmost position for which « has already been determined, and ending at
7" = lim > lastlim, the rightmost position in R;. Corresponding to each i’ is
the length j° = i’ —i+1 of the prefix of R; (hence also of x) that may extend
a sequence of covering substrings of length j'. In order to determine whether
or not j' is live at i’, PCR maintains an array maxzlive[l..n], using the following
values:

5 Thanks to Alice Heliou, Laboratoire d’Informatique de I’Ecole Polytechnique,
Palaiseau, France.

Computing Covers Using Prefiz Tables 5

procedure PCR (7,)
~[1..n] <= 0™; mazxlive[l..n] < O™
lastlim < 1; i <+ 2
while lastlim < n do
j = mli]
if 7 =0 then
> No range extends beyond lastlim, so 1,2,...,i—1 are all dead.
if i > lastlim then
mazlive[i—1] + —1; lastlim <+ i
else
lim < ¢+5—1
if lim > lastlim then
j « (lastlim+1) — i
> Initial setting of maxlive and .
for i’ < lastlim+1 to lim do
Jei'+1
if (maxzlivel[j'] =0 and ' < 2j")
or maxlivelj'] > i —j’ then
> j' is a cover of x[l..7'].
mazxlive[j'] «+ i'; y[i'] + j
else
> j' is ruled out as a cover.
maxlive[j'] + —1
> Reset maxlive and «y in case of multiple covers.
for i’ < lim downto lastlim+1 do
3" ']
> A cover of z[1..5'] is also a cover of x[1..7'].
while j” > 0 and 0 < mazlive[j”] < i do
maxlive[j"] < i'; y[i'] + max(~[i'], ")
7" A"
Jei'-1
lastlim < lim
14 1+1

/

Fig. 1. Compute the cover array « of a regular string x from its prefix table .

6 Alatabbi, Rahman and Smyth.

maxlivelj’] = 0 : initial setting: position j’ not yet considered
i’ : §' live at ': x[1..7'] covered by x[1..5']

—1: 4" is (permanently) dead

However, it can happen that maxlive and < are not correctly set by the
left-to-right scan of R;:

Definition 3 ([16]). In the cover array =y, if there exists an integer k > 1 and

positions i > j > 0 such that v*[i] = j, then j is said to be the kth ancestor of
i in ~y. Thus the cover array determines a cover tree.

It may be that ~[i’] is set to zero because j’ is dead at 7', even though an
ancestor of j/ in the cover tree is live at ¢’; on the other hand, when ~[i'] = 7/,
so that ancestors of j' may also be live at 7', the mazlive values of the ancestors
may need to be adjusted. Thus a second right-to-left scan of R; is required, in
order to ensure that these updates are correct.

For example, in (2), we need to ensure that maxlive[5] = mazlive[3] = 18,
since both 5 and 3 are live ancestors of 7. A more subtle example is given in
(3), where at position 19 we need to recognize that both 5 and 3 are live, even
though 7 is dead, so that later, at position 22, we can recognize that 3 is live:

1 2345678910111213 14 15 16 17 18 19 20 21 22
x=Dbabababbababbabababbabd
7=2205030150301705030130
~=000234500305003050500

3)

1 1
) 3

Consider also

1 2345678910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
x=babababbababababbababbabababd
w=2205030170705030 0301705030
~=000234500305070 0305003050

15 1 5 1 (4)
70 5 3 5

Thus, using n additional words of storage and a double scan of each connected
range, Algorithm PCR is able to compute «. The time requirement is ©(2n) plus
the time required by the internal while loop; this loop updates maxlive[j’] at
most once for each ancestral position j’ in the range, thus requiring a total O(n)

time overall. Hence we have the following result:

Theorem 1. Given the prefix table 7 of a regular string x = x[1..n], Algorithm
PCR correctly computes the cover array v of & in O(n) time using an additional
n integers of space.

Computing Covers Using Prefiz Tables 7

1 2345678 9 101112131415 16 17 18 19 20 21 22 23
x=a baababaa baababaabababa

T=2301306011101308013030301
vy=00000303056056089101108 0 3
I d I
z[l..) el d) vzl (1.
| R] R | R
} k—c —z[l..dk—c
R | Ry |
iz[l..c]! e[l .c]! (1. .

Fig. 2. Showing two covers from ~(x), & = abaababaabaababaabababa (5)

Given a string x = abaababaabaababaabababa (5), the figure shows two covers
from ~y(x), namely ¢ = 3 and ¢ = 8, and also shows selected ranges from the
prefix array 7(x) that explicitly participate in the generation of these covers:
the ranges are R; = w[4] =3, Ry = 7[6] = 6, Ry» = w[9] = 11, Ry = w[14] =
8, Ry = 7T[21] =3.

3 Extensions to Indeterminate Strings

It turns out that for indeterminate strings there are two natural analogues of
the idea of “cover”.

Definition 4. A string * = x[1..n] is said to have a sliding cover of length
if and only if

(a) T has a suffix v of length |v| = k; and
(b) x has a proper prefiz w, |u| > |x|—k, with suffix v/ = v; and
(c) either u = v’ or else u has a cover of length k.

A sliding cover requires that adjacent or overlapping substrings of @ match,
but the nontransitivity of matching leaves open the possibility that nonadjacent
elements of the cover do not match. For example,

x = {a,b}c{a,c}{a,c}ca (6)

has a sliding cover of length k = 2 because {a,b}c = {a,c}{a,c} =~ ca, even
though {a,b}c # ca.

8 Alatabbi, Rahman and Smyth.

However, note that the very concept of “regularity of a string” in some sense
breaks down when we consider the concept of a sliding cover: now the “cover”
need not actually “match” the area it is covering. In fact, the above concept
even allows for a string to be a cover of an indeterminate string without being a
substring of the latter at all! This motivates the idea of a rooted cover of length
K, where every covering substring is required to match, not the preceding entry
in the cover, but rather the prefix of & of length k. A rooted cover is defined
simply by changing “suffix” to “prefix” in part (b) of Definition 4. The example
string (6) has no rooted cover, but the string &’ = {a,b}c{a,c}{a,c}ac has
both a sliding cover and a rooted cover of length 2. Notably, in the literature,
the concept of rooted cover is in fact used as the cover for an indeterminate
string [6].

3.1 Computing Rooted Covers

In this section we describe Algorithm PCInd (Fig. 3) to compute the set of rooted
covers I of a given indeterminate string @ € X" directly from its prefix table.
As will be shown below, the algorithm runs in linear time on average and O(n?)
time in the worst case.

Algorithm PCInd maintains a list £ to store the candidate rooted covers. The
algorithm also maintains an auxiliary push-down store D, which stores the list of
dead covers at each iteration i € [2..n]. The push-down store D will be used for
marking the dead covers so as to delete them at the end of each iteration. Lastly,
in order to determine whether or not the cover of length v is live at position 4,
the algorithm maintains an array maxzlive[l..n] the same as in Algorithm PCR.

Exploiting the fact that the rooted cover of an indeterminate string « is also
a border of it, the algorithm starts by identifying the set of candidate (rooted)
covers as defined below.

Definition 5. Let * € Y™ and let ©[l..n] be its prefix array. Then the set of
candidate (rooted) covers L of the whole string = is:

LCm: wheren[i]+i—1=n for2<i<n (7)

To populate the list of candidate covers, we start by computing the value
max = max(7n[2..n]). Then the algorithm initializes the list £ with the filtered
entries from the set {1,2,...,maz}, such that £ will only store the values that
satisfies y[i]| +i— 1 =n for i € [2..n].

During the execution of the main for loop, at each position ¢ € [2..n]. The
algorithm tests, for each candidate cover v in list £, whether or not v is active.
Based on the result of this test the algorithm appropriately updates the corre-
sponding entry in the maxlive array and marks the dead covers at position i,
by storing those in D which will be deleted at the end of each iteration using a
while loop.

After computing the array maxlive (at the end of the main for loop), we can
easily identify and report the set of rooted covers of the whole string & simply

Computing Covers Using Prefiz Tables 9

procedure PCInd(w, 1)
I' + ¢; L+ ¢; mazlive[l..n] + 0"
max + max(w[2..n])
> fill the list £ with the candidate covers from {1,2,...,max}
for i + 1 to maz do
> consider only border values
if 7[i]+i—1=|s| then
L
for i < 2 ton do
> D stores list of dead covers at position i
D+ o
for all (v e £) do
> skip values of v > 7li]
if (v > «[i]) then
break
t<—i+v—-1
if ((maxlive[v] =0 and ¢t < 2% v)
or (mazxlive[v] >t — v)) then
> cover v is still live
mazlive[v] =t
else
> cover v is dead
mazxlive[v] = —1
> mark cover v for deletion
push(D) <+ v
> remove the dead covers from L
while top(D) # 0 do
r < pop(D)
LT
> report the rooted covers
for i + 1 ton do
if maxlive[i] = n then
r&g

Fig. 3. Compute all rooted covers of indeterminate string from its prefix array.

by finding all the entries in the array mazxlive that have the value n (i.e., all
entries of the list of candidate covers that are still active).

A final note regarding the use of the push-down store D is in order. The
standard approach, when the programming language in use allows it, is to delete
some elements from a list while iterating through it. This can be done either: (1)
by iterating backwards through the list and then deleting within the for loop, or
(2) by identifying all items that need to be deleted and marking them with a flag
(in the first iteration), then (in the second iteration) removing all those items

10 Alatabbi, Rahman and Smyth.

which are flagged for deletion. However, in both cases (1) and (2), the algorithm
must loop through all the items in the list £ after each iteration. Alternatively,
keeping track of the items to remove in another list (e.g., in D) and then, after
all items have been processed, enumerating the remove list (D) and removing
each item from the list of candidate covers (£) requires only looping through D.

3.2 Analysis

Finding the value maxz in 7[2..n] can be done with a simple linear scan of the
array m. Computing the list £ of candidate covers can be done in O(n) time.
The main for loop will be executed exactly n times.

Within the loop the checking of the condition whether a cover is active or not
can be done in constant time for a particular value and hence the total testing
of live or dead for all candidate covers requires time proportional to |£|, which
is O(n) in the worst case. Note that the list £ tends to get smaller and smaller
as the iteration continues, because we keep removing dead covers from it after
each iteration. However, the complexity remains O(n) in the worst case (e.g.,
x=a").

Turning our attention to the while loop at the end of each iteration of the
main for loop, the processing of D to remove the dead covers also requires time
proportional to D, thus O(n) in the worst case since the total number of covers
is bounded by n. We conclude that the worst-case time requirement for the
main for loop is O(n?). The final for loop to report the list of rooted covers
requires time proportional to |mazlive| which is O(n). The algorithm requires
linear extra space to store the lists mazlive, £ and D. So we have the following
result:

Theorem 2. Given the prefix table m of an indeterminate string x = x[1..n|,
Algorithm PCInd correctly computes the set of rooted covers of the whole string
of ¢ in O(n?) time and linear space.

Finally, Bari et. al. [6] proved that the expected number of borders of an
indeterminate string is bounded by a constant. Since, in the beginning of Algo-
rithm PCInd we include only the borders in £, this means that the size of the
list £ and also D is bounded by a constant. Therefore, based on the analysis
presented above we can conclude that Algorithm PCInd runs in linear time on
average.

3.3 An Illustrative Example

Suppose m = {12,3,2,1,1,7,6,1,0,3,0,1}. We have maxz = 7. The simulation of
the algorithm is shown in Fig. 4. The algorithm initializes the set £ with the set
of candidate covers. Hence, we have £ = {1,3,6,7}. At iteration i = 6, we can
see that cover 3 becomes non-active, so the value maxlive[3] is set to —1 and
the cover 3 is removed from the set of candidate covers. Similarly, at iteration
i = 10, the cover 1 becomes non-active, so the value maxlive[l] is set to —1 and

Computing Covers Using Prefiz Tables 11

the cover 1 is removed from the set of candidate covers. After computing the
array mazlive, the list of rooted covers can be identified as all the positions 7 in
maaxlive where maxlive[i] = n. So the covers are 6 and 7 since mazxlive[6] = 12

and mazxlive[7] = 12. We have I" = {6, 7}.

i | maxlive L

2 | {2,0,4,0,0,0,0,0,0,0,0,0} {1,3,6,7}
3 {30400,0,0,0,0,0,0,0} {1,3,6,7}
4 | {4,0,4,0,0,0,0,0,0,0,0,0} {1,3,6,7}
5 | {5,0,4,0,0,0,0,0,0,0,0,0} {1,3,6,7}
6 | {6,0,—1,0,0,11,12,0,0,0,0,0} {1,6,7}
7 | {7,0,—-1,0,0,12,12,0,0,0,0,0} {1,6,7}

8 | {8,0,—1,0,0,12,12,0,0,0,0,0} {1,6,7}

9 | {8,0-1,0,0,12,12,0,0,0,0,0} {1,6,7}
10 | {-1,0,-1,0,0,12,12,0,0,0,0,0} | {6,7}

1 | {-1,0,-1,0,0,12,12,0,0,0,0,0} | {6,7}

12 | {-1,0,-1,0,0,12,12,0,0,0,0,0} | {6,7}

Fig. 4. The running values of Algorithm PCInd for a given string with prefix
array = = {12,3,2,1,1,7,6,1,0,3,0,1}

3.4 The experiment

To get an idea of how the algorithm behaves in practice, we have implemented
Algorithm PCInd and conducted a simple experimental study. The experiments
have been carried out on a Windows Server 2008 R2 64-bit Operating System,
with Intel(R) Core(TM) i7 2600 processor @ 3.40GHz having an installed mem-
ory (RAM) of 8.00 GB. The algorithm have been implemented in C# language
using Visual Studio 2010.

We have run Algorithm PCInd on a set of 100 randomly generated prefix
arrays for each length n € {100, 200,...,100,000} (averaged over 100 runs for
each length) and counted the average number of executions of the inner loop
of the algorithm. The resulting graph (Fig. 5) shows the average complexity of
Algorithm PCInd fluctuating around n. Note that the values n? in the graph are
scaled down by 10,000 (i.e., the curves are showing n?/10, 000) to have a better
view of the curves. The results show that the run time of the algorithm is close
to linear confirming the average case time complexity of O(n).

4 Future Directions

There are several data structures related to the cover array whose computation
may now be contemplated in the context of indeterminate strings. For example,
a recent paper [13] introduces new forms of “enhanced” cover array that are

12

Alatabbi, Rahman and Smyth.

900,000
N
800,000 /

e A N
0000 n2/10,000 /
—O0(nx|L|) pd
600,000 /
500,000
400,000 /

300,000 /
100,000 Py

number of operations

Fig. 5. The average running time of the Algorithm PCInd.

efficiently computed using the border array; using the cover array instead would
open the way for computation of variants of these structures also for indeter-
minate strings. Similarly, another recent paper [11] proposes efficient algorithms
for the computation of “seed” arrays (a seed of a string x is a cover of some
superstring of &) — these algorithms also may be similarly extended.

References

Karl Abrahamson, Generalized string matching, SIAM J. Computing 16—6
(1987) 1039-1051.

Alfred V. Aho, John E. Hopcroft & Jeffey D. Ullman, The Design & Analysis of
Computer Algorithms, Addison-Wesley (1974).

Ali Alatabbi, M. Sohel Rahman, & W. F. Smyth, Inferring an inde-
terminate string from a prefix graph, J. Discrete Algorithms (2014),
doi:10.1016/j.jda.2014.12.006.

Alberto Apostolico & Andrzej Ehrenfeucht, Efficient Detection of Quasi-
periodicities in Strings, Tech. Report No. 90.5, The Leonardo Fibonacci Institute,
Trento, Italy (1990).

Alberto Apostolico, Martin Farach & Costas S. Iliopoulos, Optimal superprimitiv-
ity testing for strings, Inform. Process. Lett. 89-1 (1991) 17-20.

Md. Faizul Bari, Mohammad Sohel Rahman & Rifat Shahriyar, Finding All Cov-
ers of an Indeterminate String in O(n) Time on Average, Stringology
(2009) 263-271.

Widmer Bland, Gregory Kucherov & W. F. Smyth, Prefix table construction
& conversion, Proc. 2/th IWOCA, Springer Lecture Notes in Computer Science
LNCS 8288 (2013) 41-53.

Francine Blanchet-Sadri, Algorithmic Combinatorics on Partial Words, Chapman
& Hall/CRC (2008) 385 pp.

D. Breslauer, An on-line string superprimitivity test, Inform. Process. Lett. 44-6
(1992) 345-347.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Computing Covers Using Prefiz Tables 13

Manolis Christodoulakis, P, J. Ryan, W. F. Smyth & Shu Wang,. Indeterminate
strings, prefix arrays & undirected graphs, CoRR abs/1406.5289 (2014).
Michalis Christou, Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Bartosz Szreder & Tomasz
Walen, Efficient seeds computation revisited, Proc. 22nd Annual Symp. Com-
binatorial Pattern Matching, Raffaele Giancarlo & Giovanni Manzini (eds.), Lec-
ture Notes in Computer Science, LNCS 6661, Springer-Verlag (2011) 350-363.
Michael J. Fischer & Michael S. Paterson, String-matching and other prod-
ucts, Complezity of Computation, Proc. SIAM-AMS 7 (1974) 113-125.

Tomas Flouri, C. S. Iliopoulos, Tomasz Kociumaka, Solon P. Pissis, Simon J.
Puglisi, W. F. Smyth & Wojciech Tyczyriski, Enhanced string covering, The-
oret. Comput. Sci. 506 (2013) 102-114.

Jan Holub & W. F. Smyth, Algorithms on indeterminate strings, Proc. 1jth
Australasian Workshop on Combinatorial Algs. (2003) 36-45.

Jan Holub, W. F. Smyth & Shu Wang, Fast pattern-matching on indetermi-
nate strings, J. Discrete Algorithms 6-1 (2008) 37-50.

Yin Li & W. F. Smyth, Computing the Cover Array in Linear Time, Algo-
rithmica 32—1 (2002) 95-106.

Dennis Moore & W. F. Smyth, An optimal algorithm to compute all the covers of
a string, Inform. Process. Lett. 50 (1994) 239-246.

Dennis Moore & W. F. Smyth, Correction to: An optimal algorithm to compute
all the covers of a string, Inform. Process. Lett. 54 (1995) 101-103.

Sumaiya Nazeen, M. Sohel Rahman & Rezwana Reaz, Indeterminate string
inference algorithms, J. Discrete Algorithms 10 (2012) 23-34.

Bill Smyth, Computing Patterns in Strings, Pearson Addison-Wesley (2003) 423
pp.

W. F. Smyth & Shu Wang, New perspectives on the prefix array, Proc. 15th
String Processing & Inform. Retrieval Symp., Springer Lecture Notes in Computer
Science LNCS 5280 (2008) 133-143.

W. F. Smyth & Shu Wang, A new approach to the periodicity lemma on
strings with holes, Theoret. Comput. Sci. 410-43 (2009) 4295-4302.

W. F. Smyth & Shu Wang, An adaptive hybrid pattern-matching algorithm
on indeterminate strings, Internat. J. Foundations of Computer Science 20—6
(2009) 985-1004.

M. Voracek & B. Melichar, Searching for regularities in generalized strings
using finite automata, Proc. Internat. Conf. on Numerical Analysis € Applied
Maths. Wiley-VCH (2005).

