By using a symbolic method, known in the literature as the classical umbral
calculus, the trace of a non-central Wishart random matrix is represented as
the convolution of the trace of its central component and of a formal variable
involving traces of its non-centrality matrix. Thanks to this representation,
the moments of this random matrix are proved to be a Sheffer polynomial
sequence, allowing us to recover several properties. The multivariate symbolic
method generalizes the employment of Sheffer representation and a closed form
formula for computing joint moments and cumulants (also normalized) is given.
By using this closed form formula and a combinatorial device, known in the
literature as necklace, an efficient algorithm for their computations is set
up. Applications are given to the computation of permanents as well as to the
characterization of inherited estimators of cumulants, which turn useful in
dealing with minors of non-central Wishart random matrices. An asymptotic
approximation of generalized moments involving free probability is proposed.Comment: Journal of Multivariate Analysis (2014