36 research outputs found

    Laver and set theory

    Full text link
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.Accepted manuscrip

    Indestructibility of compact spaces

    Full text link
    In this article we investigate which compact spaces remain compact under countably closed forcing. We prove that, assuming the Continuum Hypothesis, the natural generalizations to ω1\omega_1-sequences of the selection principle and topological game versions of the Rothberger property are not equivalent, even for compact spaces. We also show that Tall and Usuba's "ℵ1\aleph_1-Borel Conjecture" is equiconsistent with the existence of an inaccessible cardinal.Comment: 18 page

    Forcing indestructibility of MAD families

    Get PDF
    AbstractLet A⊆[ω]ω be a maximal almost disjoint family and assume P is a forcing notion. Say A is P-indestructible if A is still maximal in any P-generic extension. We investigate P-indestructibility for several classical forcing notions P. In particular, we provide a combinatorial characterization of P-indestructibility and, assuming a fragment of MA, we construct maximal almost disjoint families which are P-indestructible yet Q-destructible for several pairs of forcing notions (P,Q). We close with a detailed investigation of iterated Sacks indestructibility

    Kurepa-trees and Namba-forcing

    Get PDF
    We show that compact cardinals and {\rm MM} are sensitive to λ\lambda-closed forcings for arbitrarily large λ\lambda. This is done by adding 'regressive' λ\lambda-Kurepa-trees in either case. We argue that the destruction of regressive Kurepa-trees with {\rm MM} requires the use of Namba forcing

    Combinatorial Properties and Dependent choice in symmetric extensions based on L\'{e}vy Collapse

    Get PDF
    We work with symmetric extensions based on L\'{e}vy Collapse and extend a few results of Arthur Apter. We prove a conjecture of Ioanna Dimitriou from her P.h.d. thesis. We also observe that if VV is a model of ZFC, then DC<κDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system ⟨P,G,F⟩\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is κ\kappa-distributive and F\mathcal{F} is κ\kappa-complete. Further we observe that if VV is a model of ZF + DCκDC_{\kappa}, then DC<κDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system ⟨P,G,F⟩\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is κ\kappa-strategically closed and F\mathcal{F} is κ\kappa-complete.Comment: Revised versio

    Set-Theoretic Geology

    Full text link
    A ground of the universe V is a transitive proper class W subset V, such that W is a model of ZFC and V is obtained by set forcing over W, so that V = W[G] for some W-generic filter G subset P in W . The model V satisfies the ground axiom GA if there are no such W properly contained in V . The model W is a bedrock of V if W is a ground of V and satisfies the ground axiom. The mantle of V is the intersection of all grounds of V . The generic mantle of V is the intersection of all grounds of all set-forcing extensions of V . The generic HOD, written gHOD, is the intersection of all HODs of all set-forcing extensions. The generic HOD is always a model of ZFC, and the generic mantle is always a model of ZF. Every model of ZFC is the mantle and generic mantle of another model of ZFC. We prove this theorem while also controlling the HOD of the final model, as well as the generic HOD. Iteratively taking the mantle penetrates down through the inner mantles to what we call the outer core, what remains when all outer layers of forcing have been stripped away. Many fundamental questions remain open.Comment: 44 pages; commentary concerning this article can be made at http://jdh.hamkins.org/set-theoreticgeology

    Inner models with large cardinal features usually obtained by forcing

    Full text link
    We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal \kappa for which 2^\kappa=\kappa^+, another for which 2^\kappa=\kappa^++ and another in which the least strongly compact cardinal is supercompact. If there is a strongly compact cardinal, then there is an inner model with a strongly compact cardinal, for which the measurable cardinals are bounded below it and another inner model W with a strongly compact cardinal \kappa, such that H_{\kappa^+}^V\subseteq HOD^W. Similar facts hold for supercompact, measurable and strongly Ramsey cardinals. If a cardinal is supercompact up to a weakly iterable cardinal, then there is an inner model of the Proper Forcing Axiom and another inner model with a supercompact cardinal in which GCH+V=HOD holds. Under the same hypothesis, there is an inner model with level by level equivalence between strong compactness and supercompactness, and indeed, another in which there is level by level inequivalence between strong compactness and supercompactness. If a cardinal is strongly compact up to a weakly iterable cardinal, then there is an inner model in which the least measurable cardinal is strongly compact. If there is a weakly iterable limit \delta of <\delta-supercompact cardinals, then there is an inner model with a proper class of Laver-indestructible supercompact cardinals. We describe three general proof methods, which can be used to prove many similar results
    corecore