35,555 research outputs found

    Game-theoretical control with continuous action sets

    Full text link
    Motivated by the recent applications of game-theoretical learning techniques to the design of distributed control systems, we study a class of control problems that can be formulated as potential games with continuous action sets, and we propose an actor-critic reinforcement learning algorithm that provably converges to equilibrium in this class of problems. The method employed is to analyse the learning process under study through a mean-field dynamical system that evolves in an infinite-dimensional function space (the space of probability distributions over the players' continuous controls). To do so, we extend the theory of finite-dimensional two-timescale stochastic approximation to an infinite-dimensional, Banach space setting, and we prove that the continuous dynamics of the process converge to equilibrium in the case of potential games. These results combine to give a provably-convergent learning algorithm in which players do not need to keep track of the controls selected by the other agents.Comment: 19 page

    Learning the Structure and Parameters of Large-Population Graphical Games from Behavioral Data

    Full text link
    We consider learning, from strictly behavioral data, the structure and parameters of linear influence games (LIGs), a class of parametric graphical games introduced by Irfan and Ortiz (2014). LIGs facilitate causal strategic inference (CSI): Making inferences from causal interventions on stable behavior in strategic settings. Applications include the identification of the most influential individuals in large (social) networks. Such tasks can also support policy-making analysis. Motivated by the computational work on LIGs, we cast the learning problem as maximum-likelihood estimation (MLE) of a generative model defined by pure-strategy Nash equilibria (PSNE). Our simple formulation uncovers the fundamental interplay between goodness-of-fit and model complexity: good models capture equilibrium behavior within the data while controlling the true number of equilibria, including those unobserved. We provide a generalization bound establishing the sample complexity for MLE in our framework. We propose several algorithms including convex loss minimization (CLM) and sigmoidal approximations. We prove that the number of exact PSNE in LIGs is small, with high probability; thus, CLM is sound. We illustrate our approach on synthetic data and real-world U.S. congressional voting records. We briefly discuss our learning framework's generality and potential applicability to general graphical games.Comment: Journal of Machine Learning Research. (accepted, pending publication.) Last conference version: submitted March 30, 2012 to UAI 2012. First conference version: entitled, Learning Influence Games, initially submitted on June 1, 2010 to NIPS 201

    Equilibrium Computation and Robust Optimization in Zero Sum Games with Submodular Structure

    Full text link
    We define a class of zero-sum games with combinatorial structure, where the best response problem of one player is to maximize a submodular function. For example, this class includes security games played on networks, as well as the problem of robustly optimizing a submodular function over the worst case from a set of scenarios. The challenge in computing equilibria is that both players' strategy spaces can be exponentially large. Accordingly, previous algorithms have worst-case exponential runtime and indeed fail to scale up on practical instances. We provide a pseudopolynomial-time algorithm which obtains a guaranteed (1−1/e)2(1 - 1/e)^2-approximate mixed strategy for the maximizing player. Our algorithm only requires access to a weakened version of a best response oracle for the minimizing player which runs in polynomial time. Experimental results for network security games and a robust budget allocation problem confirm that our algorithm delivers near-optimal solutions and scales to much larger instances than was previously possible.Comment: 20 pages, 8 figures. A shorter version of this paper appears at AAAI 201
    • …
    corecore