7,771 research outputs found

    Independence and Domination in Path Graphs of Trees

    Get PDF
    The problems of determining the maximum cardinality of an independent set of vertices and the minimum cardinality of a maximal independent set of vertices of a graph are known to be NP-complete. We provide efficient algorithms for finding these values for path graphs of trees

    A characterization of trees with equal 2-domination and 2-independence numbers

    Full text link
    A set SS of vertices in a graph GG is a 22-dominating set if every vertex of GG not in SS is adjacent to at least two vertices in SS, and SS is a 22-independent set if every vertex in SS is adjacent to at most one vertex of SS. The 22-domination number γ2(G)\gamma_2(G) is the minimum cardinality of a 22-dominating set in GG, and the 22-independence number α2(G)\alpha_2(G) is the maximum cardinality of a 22-independent set in GG. Chellali and Meddah [{\it Trees with equal 22-domination and 22-independence numbers,} Discussiones Mathematicae Graph Theory 32 (2012), 263--270] provided a constructive characterization of trees with equal 22-domination and 22-independence numbers. Their characterization is in terms of global properties of a tree, and involves properties of minimum 22-dominating and maximum 22-independent sets in the tree at each stage of the construction. We provide a constructive characterization that relies only on local properties of the tree at each stage of the construction.Comment: 17 pages, 4 figure

    Upper bounds on the k-forcing number of a graph

    Full text link
    Given a simple undirected graph GG and a positive integer kk, the kk-forcing number of GG, denoted Fk(G)F_k(G), is the minimum number of vertices that need to be initially colored so that all vertices eventually become colored during the discrete dynamical process described by the following rule. Starting from an initial set of colored vertices and stopping when all vertices are colored: if a colored vertex has at most kk non-colored neighbors, then each of its non-colored neighbors becomes colored. When k=1k=1, this is equivalent to the zero forcing number, usually denoted with Z(G)Z(G), a recently introduced invariant that gives an upper bound on the maximum nullity of a graph. In this paper, we give several upper bounds on the kk-forcing number. Notable among these, we show that if GG is a graph with order n2n \ge 2 and maximum degree Δk\Delta \ge k, then Fk(G)(Δk+1)nΔk+1+min{δ,k}F_k(G) \le \frac{(\Delta-k+1)n}{\Delta - k + 1 +\min{\{\delta,k\}}}. This simplifies to, for the zero forcing number case of k=1k=1, Z(G)=F1(G)ΔnΔ+1Z(G)=F_1(G) \le \frac{\Delta n}{\Delta+1}. Moreover, when Δ2\Delta \ge 2 and the graph is kk-connected, we prove that Fk(G)(Δ2)n+2Δ+k2F_k(G) \leq \frac{(\Delta-2)n+2}{\Delta+k-2}, which is an improvement when k2k\leq 2, and specializes to, for the zero forcing number case, Z(G)=F1(G)(Δ2)n+2Δ1Z(G)= F_1(G) \le \frac{(\Delta -2)n+2}{\Delta -1}. These results resolve a problem posed by Meyer about regular bipartite circulant graphs. Finally, we present a relationship between the kk-forcing number and the connected kk-domination number. As a corollary, we find that the sum of the zero forcing number and connected domination number is at most the order for connected graphs.Comment: 15 pages, 0 figure

    On the extremal properties of the average eccentricity

    Get PDF
    The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc(G)ecc (G) of a graph GG is the mean value of eccentricities of all vertices of GG. The average eccentricity is deeply connected with a topological descriptor called the eccentric connectivity index, defined as a sum of products of vertex degrees and eccentricities. In this paper we analyze extremal properties of the average eccentricity, introducing two graph transformations that increase or decrease ecc(G)ecc (G). Furthermore, we resolve four conjectures, obtained by the system AutoGraphiX, about the average eccentricity and other graph parameters (the clique number, the Randi\' c index and the independence number), refute one AutoGraphiX conjecture about the average eccentricity and the minimum vertex degree and correct one AutoGraphiX conjecture about the domination number.Comment: 15 pages, 3 figure
    corecore