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a b s t r a c t

The eccentricity of a vertex is the maximum distance from it to another vertex and the
average eccentricity ecc(G) of a graph G is the mean value of eccentricities of all vertices
of G. The average eccentricity is deeply connected with a topological descriptor called
the eccentric connectivity index, defined as a sum of products of vertex degrees and
eccentricities. In this paper we analyze extremal properties of the average eccentricity,
introducing two graph transformations that increase or decrease ecc(G). Furthermore,
we resolve four conjectures, obtained by the system AutoGraphiX, about the average
eccentricity and other graph parameters (the clique number and the independence
number), refute one AutoGraphiX conjecture about the average eccentricity and the
minimum vertex degree and correct one AutoGraphiX conjecture about the domination
number.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let G = (V , E) be a connected simple graph with n = |V | vertices and m = |E| edges. Let deg(v) denote the degree of
the vertex v. Let δ = δ(G) be the minimum vertex degree, and ∆ = ∆(G) be the maximum vertex degree of a graph G.

For vertices u, v ∈ V , the distance d(u, v) is defined as the length of a shortest path between u and v in G. The eccentricity
of a vertex is the maximum distance from it to any other vertex,

ε(v) = max
u∈V

d(u, v).

The radius of a graph r(G) is the minimum eccentricity of any vertex. The diameter of a graph d(G) is the maximum
eccentricity of any vertex in the graph, or the greatest distance between any pair of vertices. For an arbitrary vertex v ∈ V
it holds that r(G) ≤ ε(v) ≤ d(G). A vertex c of G is called central if ε(c) = r(G). The center C(G) is the set of all central
vertices in G. An eccentric vertex of a vertex v is a vertex farthest away from v. Every tree has exactly one or two central
vertices [1].

The average eccentricity of a graph G is the mean value of eccentricities of vertices of G,

ecc(G) =
1
n


v∈V

ε(v).

For example, we have the following formulas for the average eccentricity of the complete graph Kn, complete bipartite
graph Kn,m, hypercube Hn, path Pn, cycle Cn and star Sn,

ecc(Kn) = 1 ecc(Kn,m) = 2 ecc(Qn) = n

ecc(Pn) =
1
n


3
4
n2

−
1
2
n


ecc(Cn) =

n
2


ecc(Sn) = 2 −

1
n
.
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Dankelmann et al. [2] presented some upper bounds and formulas for the average eccentricity regarding the diameter
and theminimumvertex degree. Furthermore, they examine the change in the average eccentricitywhen a graph is replaced
by a spanning subgraph, in particular the two extreme cases: taking a spanning tree and removing one edge. Dankelmann
and Entringer [3] studied the average distance of Gwithin various classes of graphs.

In theoretical chemistry molecular structure descriptors (also called topological indices) are used for modeling physico-
chemical, pharmacological, toxicological, biological and other properties of chemical compounds [4]. There exist several
types of such indices, especially those based on vertex and edge distances [5,6]. Arguably the best known of these indices is
the Wiener indexW , defined as the sum of distances between all pairs of vertices of the molecular graph [7]

W (G) =


u,v∈V

d(u, v).

Besides of use in chemistry, it was independently studied due to its relevance in social science, architecture, and graph
theory.

Sharma et al. [8] introduced a distance–based molecular structure descriptor, the eccentric connectivity index, which is
defined as

ξ c
= ξ c(G) =


v∈V

deg(v) · ε(v).

The eccentric connectivity index is deeply connected to the average eccentricity, but for each vertex v, ξ c(G) takes one
local property (vertex degree) and one global property (vertex eccentricity) into account. For k-regular graph G, we have
ξ c(G) = k · n · ecc(G).

The index ξ c was successfully used for mathematical models of biological activities of diverse nature. The eccentric
connectivity index has been shown to give a high degree of predictability of pharmaceutical properties, and provide leads for
the development of safe and potent anti-HIV compounds [9–11]. The investigation of its mathematical properties started
only recently, and has so far resulted in determining the extremal values and the extremal graphs [12,13], and also in a
number of explicit formulas for the eccentric connectivity index of several classes of graphs [14] (for a recent survey see [15]).

The AutoGraphiX (AGX) computer system was developed by the GERAD group from Montréal [16–18]. AGX is
an interactive software designed to help find conjectures in graph theory. It uses the Variable Neighborhood Search
metaheuristic (Hansen and Mladenović [19,20]) and data analysis methods to find extremal graphs with respect to one
or more invariants. Recently there has been vast research regarding AGX conjectures and a series of papers on various
graph invariants have been written: average distance [21], independence number [22], proximity and remoteness [23],
largest eigenvalue of adjacency and Laplacian matrix [24], Randić index [25,26], connectivity and distance measures [27],
etc. In this paper we continue this work and resolve other conjectures from the thesis [16], available online at
http://www.gerad.ca/~agx/.

Recall that the vertex connectivity ν of G is the smallest number of vertices whose removal disconnects G and the edge
connectivity κ of G is the smallest number of edges whose removal disconnects G. Sedlar et al. [28] studied the lower and
upper bounds of ecc − δ, ecc + δ and ecc/δ, the lower bound for ecc · δ, and similar relations by replacing δ with ν and κ .

The paper is organized as follows. In Section 2 we introduce a simple graph transformation that increases the average
eccentricity and characterize the extremal tree with maximum average eccentricity among trees on n vertices with given
maximum vertex degree. In Section 3 we resolve a conjecture about the upper bound of the sum ecc + α, where α is the
independence number. In Section 4, we characterize the extremal graph having maximum value of average eccentricity in
the class of n-vertex graphs with given clique number ω. In Section 5, we refute a conjecture about the maximum value
of the product ecc · δ. We close the paper in Section 6 by restating some other AGX conjecture for the future research and
correcting a conjecture about ecc + γ , where γ denotes the domination number.

2. The average eccentricity of trees with given maximum degree

Theorem 2.1. Let w be a vertex of a nontrivial connected graph G. For nonnegative integers p and q, let G(p, q) denote the graph
obtained from G by attaching to vertexw pendent paths P = wv1v2 . . . vp and Q = wu1u2 . . . uq of lengths p and q, respectively.
If p ≥ q ≥ 1, then

ecc(G(p, q)) < ecc(G(p + 1, q − 1)).

Proof. Since after this transformation the longer path has increased and the eccentricities of vertices of G are either the
same or increased by one, we will consider three simple cases based on the longest path from the vertex w in the graph G.
Denote by ε′(v) the eccentricity of vertex v in G(p + 1, q − 1).
Case 1. The length of the longest path from the vertex w in G is greater than p. This means that the vertex of G, most
distant from w is the most distant vertex for all vertices of P and Q . It follows that ε′(v) = ε(v) for all vertices
w, v1, v2, . . . , vp, u1, u2, . . . , uq−1, while the eccentricity of uq increased by p + 1 − q. Therefore,

ecc(G(p + 1, q − 1)) − ecc(G(p, q)) ≥
p + 1 − q

|V (G)| + p + q
> 0.

http://www.gerad.ca/~agx/
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Fig. 1. The broom B(11, 6).

Case 2. The length of the longest path from the vertex w in G is less than or equal to p and greater than q. This means that
either the vertex of G that is most distant from w or the vertex vp is the most distant vertex for all vertices of P , while for
the vertices w, u1, u2, . . . , uq the most distant vertex is vp. It follows that ε′(v) ≥ ε(v) for vertices v1, v2, . . . , vp, while
ε′(v) = ε(v) + 1 for vertices w, u1, u2, . . . , uq−1. Also the eccentricity of uq increased by at least 1, and consecutively

ecc(G(p + 1, q − 1)) − ecc(G(p, q)) ≥
q + 1

|V (G)| + p + q
> 0.

Case 3. The length of the longest path from the vertex w in G is less than or equal to q. This means that the pendent vertex
most distant from the vertices of P and Q is either vp or uq, depending on the position. Therefore, for each vertex in G the
eccentricity increased by 1. Using the average eccentricity of a path P ∪ Q , we have

ecc(G(p + 1, q − 1)) − ecc(G(p, q)) ≥
|V (G)|

|V (G)| + p + q
> 0.

Since G is a nontrivial graph with at least one vertex, we have strict inequality.
This completes the proof. �

Chemical trees (trees with maximum vertex degree at most four) provide the graph representations of alkanes [4]. It is
therefore a natural problem to study trees with boundedmaximumdegree. The path Pn is the unique treewith∆ = 2, while
the star Sn is the unique tree with ∆ = n − 1. Therefore, we can assume that 3 ≤ ∆ ≤ n − 2.

The broom B(n, ∆) is a tree consisting of a star S∆+1 and a path of length n−∆−2 attached to an arbitrary pendent vertex
of the star (see Fig. 1). It is proven that among trees with maximum vertex degree equal to ∆, the broom B(n, ∆) uniquely
minimizes the Estrada index [29], the largest eigenvalue of the adjacency matrix [30], distance spectral radius [31], etc.

Theorem 2.2. Let T ≁= B(n, ∆) be an arbitrary tree on n vertices with maximum vertex degree ∆. Then

ecc(B(n, ∆)) > ecc(T ).

Proof. Fix a vertex v of degree ∆ as a root and let T1, T2, . . . , T∆ be the trees attached at v. We can repeatedly apply the
transformation described in Theorem2.1 at any vertex of degree at least threewith largest eccentricity from the root in every
tree Ti, as long as Ti does not become a path.When all trees T1, T2, . . . , T∆ turn into paths, we can again apply transformation
from Theorem 2.1 at the vertex v as long as there exist at least two paths of length greater than one, further increasing the
average eccentricity. Finally, we arrive at the broom B(n, ∆) as the unique tree with maximum average eccentricity. �

By direct verification, it holds

ecc(B(n, ∆)) =
1
n


(n − ∆ + 2)(3(n − ∆ + 1) + 1)

4


+ (n − ∆ + 1)(∆ − 2)


.

If ∆ > 2, we can apply the transformation from Theorem 2.1 at the vertex of degree ∆ in B(n, ∆) and obtain B(n, ∆−1).
Thus, we have the following chain of inequalities

ecc(Sn) = ecc(B(n, n − 1)) < ecc(B(n, n − 2)) < · · · < ecc(B(n, 3)) < ecc(B(n, 2)) = ecc(Pn).

Also, it follows that B(n, 3) has the second maximum average eccentricity among trees on n vertices. On the other hand,
the addition of an arbitrary edge in G cannot increase the average eccentricity and clearly ε(v) ≥ 1 with equality if and only
if deg(v) = n − 1.

Theorem 2.3. Among graphs on n vertices, the path Pn attains the maximum average eccentricity, while the complete graph Kn
attains the minimum average eccentricity.

Note that Corollary 1 from [2] is a part of this theorem.
A starlike tree is a tree with exactly one vertex of degree at least 3. We denote by S(n1, n2, . . . , nk) the starlike tree of

order n having a branching vertex v and

S(n1, n2, . . . , nk) − v = Pn1 ∪ Pn2 ∪ · · · ∪ Pnk ,
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where n1 ≥ n2 ≥ · · · ≥ nk ≥ 1. Clearly, the numbers n1, n2, . . . , nk determine the starlike tree up to isomorphism and
n = n1 + n2 + · · · + nk + 1. The starlike tree BS(n, k) ∼= S(n1, n2, . . . , nk) is balanced if all paths have almost equal lengths,
i.e., |ni − nj| 6 1 for every 1 6 i < j 6 k.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two integer arrays of length n. We say that x majorizes y and write
x ≻ y if the elements of these arrays satisfy following conditions:

(i) x1 > x2 > · · · > xn and y1 > y2 > · · · > yn,
(ii) x1 + x2 + · · · + xk > y1 + y2 + · · · + yk, for every 1 6 k < n,
(iii) x1 + x2 + · · · + xn = y1 + y2 + · · · + yn.

Theorem 2.4. Let p = (p1, p2, . . . , pk) and q = (q1, q1, . . . , qk) be two arrays of length k > 2, such that p ≻ q and
n − 1 = p1 + p2 + · · · + pk = q1 + q2 + · · · + qk. Then

ecc(S(p1, p2, . . . , pk)) ≥ ecc(S(q1, q2, . . . , qk)), (1)

with equality if and only if pi = qi for all 1 ≤ i ≤ k.

Proof. We will proceed by induction on the size of the array k. For k = 2, we can directly apply transformation from
Theorem 2.1 on tree S(q1, q2) several times, in order to get S(p1, p2). Assume that the inequality (1) holds for all lengths less
than k. If there exists an index 1 6 m < k such that p1 + p2 + · · · + pm = q1 + q2 + · · · + qm, we can apply the induction
hypothesis on two parts S(q1, q2, . . . , qm) ∪ S(qm+1, qm+2, . . . , qk) and get S(p1, p2, . . . , pm) ∪ S(pm+1, pm+2, . . . , pk).
Otherwise, we have strict inequalities p1 + p2 + · · · + pm > q1 + q2 + · · · + qm for all indices 1 6 m < k and note that
qk > pk ≥ 1. We can transform tree S(q1, q2, . . . , qk) into S(q1 + 1, q2, . . . , qk−1, qk − 1). The condition p ≻ q is preserved,
and we can continue until the array q transforms into p, while at every step we increase the average eccentricity. �

Corollary 2.5. Let T = S(n1, n2, . . . , nk) be a starlike tree with n vertices and k pendent paths. Then

ecc(B(n, k)) ≥ ecc(T ) ≥ ecc(BS(n, k)).

The left equality holds if and only if T ∼= B(n, k) and the right equality holds if and only if T ∼= BS(n, k).

Definition 2.6. Let uv be a bridge of the graph G and let H and H ′ be the nontrivial components of G, such that u ∈ H and
v ∈ H ′. Construct the graph G′ by identifying the vertices u and v (and call this vertex also u′) with additional pendent edge
u′v′. We say that G′

= σ(G, uv) is a σ -transform of G.

Theorem 2.7. Let G′
= σ(G, uv) be a σ -transform of G. Then,

ecc(G′) < ecc(G).

Proof. Let x be a vertex on the maximum distance from u in the graph H and let y be a vertex on the maximum distance
from v in the graph H ′. Without loss of generality assume that d(u, x) ≥ d(v, y). It can be easily seen that for arbitrary
vertex w ∈ G different from v and y, it holds that εG(w) ≥ εG′(w). For the vertex ywe have εG(y) = d(y, v) + 1+ d(u, x) >
d(y, u′) + d(u′, x) = εG′(y). For the vertex v we have εG(v) = 1 + d(u, x) = 1 + d(u′, x) = εG′(v′). Finally, we have strict
inequality


w∈G ε(w) >


w∈G′ ε(w′) and the result follows. �

Using the previous theorem, one can easily prove that the star Sn is the unique tree with minimal value of the average
eccentricity ecc(Sn) = 2 −

1
n among trees with n vertices. Furthermore, by repeated use of σ transformation, the graph S ′

n
(obtained from a star Sn with additional edge connecting two pendent vertices) hasminimal value of the average eccentricity
ecc(S ′

n) = 2 −
1
n among unicyclic graphs with n vertices. This can be alternatively proven in the following way: let G be the

extremal unicyclic graphwithminimal value of the average eccentricity. IfG contains the vertex of degree n−1, thenG ∼= S ′
n,

otherwise there are no vertices of degree n − 1 and the eccentricity of all vertices is larger than 2, i.e. ecc(G) > 2.

3. Conjecture regarding the independence number

A set of vertices S in a graph G is independent if no neighbor of a vertex of S belongs to S. The independence number
α = α(G) is the maximum cardinality of any independent set of G.

Conjecture 3.1 (A.478-U). For every n ≥ 4 it holds

α(G) + ecc(G) ≤


3n2

− 2n − 1
4n

+
n + 1
2

if n is odd

3n2
− 4n − 4
4n

+
n + 2
2

if n is even
,

with equality if and only if G ∼= Pn for odd n and G ∼= B(n, 3) for even n.
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Clearly, the sum α(G) + ecc(G) is maximized for some tree. Let T ∗ be an extremal tree and let P = v0v1 . . . vd be a
diametrical path of T ∗. The maximum possible independence number of this tree is

 d+1
2


+ n − d − 1.

Lemma 3.2. Let T be an arbitrary tree on n vertices, not isomorphic to a path Pn. Then there is a pendent vertex v such that for
each u ∈ T it holds

εT (u) = εT−v(u).

Proof. Let d be a diameter of T , and let P = v0v1 . . . vd be a diametrical path of the tree T . Since each tree has exactly one or
two center vertices, these vertices belong to P . Therefore, for each vertex u ∈ T , the eccentricity of u is equal to d(u, v0) or
d(u, vd). There exist a pendent vertex v different than v0 and vd, whose removal does not change the eccentricities of other
vertices of T . This completes the proof. �

By finding a pendent vertex fromLemma3.2 and reattaching it to v1 or vd−1, we do not increase the value ofα(G)+ecc(G),
while keeping the diameter the same. It follows that the broom tree B(n, n − d + 1) has the same value α(G) + ecc(G) as
the extremal tree T ∗. By direct calculation we have

ecc(B(n, ∆)) + α(B(n, ∆)) =
1
n


(n − ∆ + 2)(3(n − ∆ + 2) − 2)

4


+ (n − ∆ + 1)(∆ − 2)


+


n − ∆ + 2

2


+ (∆ − 2)

=


5n
4

−
∆(∆ − 2)

4n
−

1
2

if n − ∆ is even

5n
4

−
∆(∆ − 2)

4n
−

1
4n

if n − ∆ is odd
.

For ∆ = 2 and ∆ = 3, we have

ecc(B(n, 2)) + α(B(n, 2)) =


5n
4

−
1
2

if n is even

5n
4

−
1
4n

if n is odd

ecc(B(n, 3)) + α(B(n, 3)) =


5n
4

−
3
4n

−
1
2

if n is odd

5n
4

−
3
4n

−
1
4n

if n is even

It follows that for n ≥ 3 themaximum value of ecc(G)+α(G) is achieved uniquely for B(n, 2) ∼= Pn if n is odd, and for B(n, 3)
if n is even. This completes the proof of Conjecture 3.1.

Remark 3.3. Actually the extremal trees are double brooms D(d, a, b), obtained from the path Pd−1 by attaching a
endvertices to one end and b endvertices to the other end of the path Pd+1. The double broom has diameter d, order
n = d + a + b + 1 and the same average eccentricity as the broom B(n, n − d + 1). The authors in [2] showed
that the extremal graph with the maximum average eccentricity for given order n and radius r is any double broom of
diameter 2r .

4. Conjecture regarding the clique number

The clique number of a graph G is the size of a maximal complete subgraph of G and it is denoted as ω(G).
The lollipop graph LP(n, k) is obtained from a complete graph Kk and a path Pn−k+1, by joining one of the end vertices of

Pn−k+1 to one vertex of Kk (see Fig. 2). An asymptotically sharp upper bound for the eccentric connectivity index is derived
independently in [32,33], with the extremal graph LP(n, ⌊n/3⌋). Furthermore, it is shown that the eccentric connectivity
index grows no faster than a cubic polynomial in the number of vertices.

Conjecture 4.1 (A.488-U). For every n ≥ 4 the maximum value of ecc(G) · ω(G) is achieved for some lollipop graph.

Let C be an arbitrary clique of size k. Since the removal of the edges potentially increases ecc(G), we can assume that trees
are attached to the vertices of C . Then by applying Theorem2.1,we get the graph composed of the clique C and pendent paths
attached to the vertices of C . Using the transformation similar to G(p, q) → G(p + 1, q − 1) where we increase the length
of the longest path attached to C , it follows that the extremal graph is exactly LP(n, k). Since ecc(LP(n, k)) = ecc(B(n, k)),
we have
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Fig. 2. The lollipop graph LP(12, 8).

Fig. 3. The graph PC(5, 4) with 27 vertices.

ecc(LP(n, k)) · ω(LP(n, k)) =
1
n

·


(n − k − 2)ecc(Pn−k−2) + (n − k + 1)(k − 2)


· k

=
k
n

·


−k2 − 2k(−1 + n) + n(2 + 3n)

4


.

Let f (x) = x

−x2 + 2x − 2xn + 2n + 3n2


and f ′(x) = −3x2 − 4x(n− 1) + n(3n+ 2). By simple analysis for x ∈ [1, n],

it follows that the function f (x) achieves themaximum value exactly for the larger root of the equation f ′(x) = 0. Therefore,
the maximum value of ecc(G) · ω(G) is achieved for integers closest to

k∗
=

1
3


2 − 2n +


4 − 2n + 13n2


.

5. Conjecture regarding the minimum vertex degree

A matching in a graph G is a set of edges in which no two edges are adjacent. A vertex is matched (or saturated) if it
is incident to an edge in the matching; otherwise the vertex is unmatched. A perfect matching (or 1-factor) is a matching
which matches all vertices of the graph.

Conjecture 5.1 (A.100-U). For every n ≥ 4 it holds

δ(G) · ecc(G) ≤


2n − 2 if n is even

(n − 2)

2 −

1
2


if n is odd ,

with equality if and only if G ∼= Kn \ M, where M is a perfect matching if n is even, or a perfect matching on n − 1 vertices with
an additional edge between the non-saturated vertex and another vertex if n is odd.

Let Kn \ {uv} be the graph obtained from a complete graph Kn by deleting the edge uv. Define the almost-path-clique
graph PC(k, δ) from a path Pk by replacing each vertex of degree 2 by the graph Kδ+1\{uivi}, i = 2, 3, . . . , k−1 and replacing
pendent vertices by the graphs Kδ+2 \ {u1v1} and Kδ+2 \ {ukvk}. Furthermore, for each i = 1, 2, . . . , k− 1 the vertices ui and
vi+1 are adjacent (see Fig. 3).

The graph PC(k, δ) has n = k(δ + 1) + 2 vertices and minimum vertex degree δ. Assume that k is an even number. For
each i = 1, 2, . . . , k

2 , we have the following contributions of the vertices in Kδ+1 \ {uivi}:

• the vertex ui has eccentricity 3k
2 + 3

 k
2 − i


= 3k − 3i,

• the vertex vi has eccentricity 3k
2 + 2 + 3

 k
2 − i


= 3k − 3i + 2,

• the remaining δ − 1 or δ vertices have eccentricity 3k
2 + 1 + 3

 k
2 − i


= 3k − 3i + 1.



A. Ilić / Computers and Mathematics with Applications 64 (2012) 2877–2885 2883

Finally, the average eccentricity of the graph PC(k, δ) is equal to

ecc(PC(k, δ)) =
2
n

·


3k − 2 +

k/2
i=1

(3k − 3i) + (3k − 3i + 2) + (δ − 1)(3k − 3i + 1)



=
1

k(δ + 1) + 2
·


9δk2

4
+

9k2

4
+

11k
2

−
δk
2

− 4


=
9k
4

−
1
2

+
3(k − 2)

2(kδ + k + 2)
.

The product of the average eccentricity and the minimum vertex degree is equal to

ecc(PC(k, δ)) · δ(PC(k, δ)) =
9kδ
4

−
δ

2
+

3δ(k − 2)
2(kδ + k + 2)

.

For each k ≥ δ ≥ 10 we have the following inequality
9kδ
4

−
δ

2
> 2(kδ + k + 2) − 4,

which is equivalent with

kδ − 8k − 2δ = k(δ − 8) − 2δ > 0.

This refutes Conjecture 5.1, and one can easily construct similar counterexamples for odd k ornnot of the form k(δ+1)+2.
Note that this construction is very similar to the one described in [2], but is derived independently.

6. Concluding remarks

In this paper we studied the mathematical properties of the average eccentricity ecc(G) of a connected graph G, which is
deeply connected with the eccentric connectivity index. We resolved or refuted five conjectures on the average eccentricity
and other graph invariants — clique number, independence number and minimum vertex degree.

We conclude the paper by restating some other conjectures dealing with the average eccentricity. All conjectures were
generated by AGX system [16] and we also verified them on the set of all graphs with ≤ 10 vertices and trees with ≤ 20
vertices (with the help of Nauty [34] for the generation of non-isomorphic graphs).

The Randić index of a graph G is defined as

Ra(G) =


uv∈E

1
√
deg(v) · deg(u)

.

Conjecture 6.1 (A.462-L). For every n ≥ 4 it holds

Ra(G) + ecc(G) ≥
√
n − 1 + 2 −

1
n
,

with equality if and only if G ∼= Sn.

Conjecture 6.2 (A.464-L). For every n ≥ 4 it holds

Ra(G) · ecc(G) ≥


n
2

if n ≤ 13
√
n − 1 ·


2 −

1
n


if n > 13

,

with equality if and only if G ∼= Kn for n ≤ 13 or G ∼= Sn for n > 13.

Conjecture 6.3 (A.458-L). For every n ≥ 4 it holds

λ(G) + ecc(G) ≥
√
n − 1 +


2 −

1
n


,

with equality if and only if G ∼= Sn, where λ(G) is the largest eigenvalue of the adjacency matrix of G.

Conjecture 6.4 (A.460-L). For every n ≥ 4 it holds

λ(G) · ecc(G) ≥
√
n − 1 ·


2 −

1
n


,

with equality if and only if G ∼= Sn.
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Conjecture 6.5 (A.479-U). For every n ≥ 4 the maximum value of ecc(G)/α(G) is achieved for some graph G composed of two
cliques linked by a path.

Conjecture 6.6 (A.492-U). For every n ≥ 4 the maximum value of ecc(G) · χ(G) is achieved for some lollipop graph, where
χ(G) denotes the chromatic number of G.

A dominating set of a graph G is a subset D of V such that every vertex not in D is joined to at least one member of D by
some edge. The domination number γ (G) is the number of vertices in a smallest dominating set for G [35].

Conjecture 6.7 (A.464-L). For every n ≥ 4 it holds

γ (G) + ecc(G) ≤




n + 1
3


+

(3n + 1)n
4(n − 1)

if n is odd and n ≢ 1(mod 3)
n + 1
3


+

3n − 2
4

if n is even and n ≢ 1(mod 3)

13n − 16
12

−
3
4n

if n is odd and n ≡ 1(mod 3)

13n − 16
12

−
1
n

if n is even and n ≡ 1(mod 3)

,

with equality if and only if G ∼= Pn for n ≢ 1(mod 3) or G is a tree with D = n − 2 and γ =
 n+1

3


for n ≡ 1(mod 3).

We tested this conjecture and derived the following corrected version

Conjecture 6.8 (A.464-L). For every n ≥ 4 it holds

γ (G) + ecc(G) ≤


n
3


+

1
n


3
4
n2

−
1
2
n


if n ≢ 0(mod 3)

n
3

+ 2 −
3
n

+
1
n


3
4
(n − 1)2 −

1
2
(n − 1)


if n ≡ 0(mod 3)

,

with equality if and only if G ∼= Pn for n ≢ 0(mod 3) or G ∼= Dn for n ≡ 0(mod 3), where Dn ∼= S(n−4, 2, 1) is a tree obtained
from a path Pn−1 = v1v2 . . . vn−1 by attaching a pendent vertex to v3.

Similarly as for the independence number, the extremal graphs are trees. The domination number of a path Pn is
 n

3


,

and since the path has maximum average eccentricity in order to prove the conjecture one has to consider trees with n
3


< γ ≤

 n
2


.

It would be also interesting to determine extremal regular (cubic) graphs with respect to the average eccentricity, or
to study some other derivative indices (such as eccentric distance sum [36], or augmented and super augmented eccentric
connectivity indices [37]).
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