
Computing and Informatics, Vol. 27, 2008, 581–591

INDEPENDENCE AND DOMINATION
IN PATH GRAPHS OF TREES

Ľudov́ıt Niepel, Anton Černý

Department of Mathematics and Computer Science
Kuwait University
P.O. Box 5969, Safat, 13060, Kuwait
e-mail: {cerny, niepel}@sci.kuniv.edu.kw

Manuscript received 15 February 2006

Communicated by Hong Zhu

Abstract. The problems of determining the maximum cardinality of an indepen-
dent set of vertices and the minimum cardinality of a maximal independent set of
vertices of a graph are known to be NP-complete. We provide efficient algorithms
for finding these values for path graphs of trees.

Keywords: Path graph, dominating set, independent set

1 INTRODUCTION

The problem of domination is one of the most studied problems in graph theory ([5]).
It is well known and generally accepted that the problem of determining the dom-
ination number of an arbitrary graph is a difficult one. Since this problem has
been shown to be NP-complete, it is generally thought to require exponential time
in the order of the graph. Because of this the attention is turned to the study of
classes of graphs for which the domination problem can be solved in polynomial
time. For line graphs, the problem of finding the cardinality of maximal indepen-
dent dominating set can be solved in polynomial time. On the other hand, finding
the cardinality of the minimal dominating set in the line graph of an arbitrary graph
is NP-complete ([6]).

In this paper we investigate the domination problem for path graphs. Path
graphs were introduced by Broersma and Hoede in [2] as a natural generalization of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS,...

https://core.ac.uk/display/267941203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

582 Ľ. Niepel, A. Černý

line graphs. A path graph is defined as follows. Let G be a graph, k ≥ 1 and Pk be
the set of all paths of length k (i.e., with k+1 vertices) in G. The vertex set of path
graph Pk(G) is the set Pk. Two vertices of Pk(G) are joined by an edge if and only
if their intersection is a path of length k− 1, and their union forms either a cycle or
a path of length k+1. In this paper we restrict ourselves to path graphs with k = 2.
A characterization of P2-path graphs was given in [10]. The connectivity and metric
properties of P2-path graphs were studied in [1, 7, 8]. The independence of P2-path
graphs and P3-path graphs was studied in [9]. A survey of results in domination
and independence on graphs can be found in the monograph [5].

A set S of vertices of a graph G is a dominating set if any vertex from V (G) is
in S or it is adjacent to some vertex in S. A set S of vertices is called independent if
no two vertices of S are adjacent. It is clear that maximal independent set of vertices
is also dominating. The maximum cardinality of an independent set of vertices is
denoted as β0(G). The number i(G) is the minimum cardinality of a maximal
independent set; or, which is the same, the minimum cardinality of an independent
dominating set. It is known that to find exact value of any of the parameters
β0(G) and i(G) is NP-hard for general graphs. In paper [9] the authors presented
a randomized algorithm for finding the value β0(P (G)) where P is a P2 or P3 path-
graph operator. Exact values of β0(P (G)) were found for some special classes of
graphs. It was also shown that applying this algorithm with greedy strategy may
give incorrect results for trees.

In the present paper we give a characterization of maximal independent sets in
P2-path graphs and then we provide efficient algorithms for finding β0(P2(G)) and
i(P2(G)) if G is any tree.

2 BASIC NOTIONS

For a finite set V , let
(
V

2

)
= {{a, b}; a, b ∈ V and a 6= b}. A (undirected) graph is

a pair G = (V, E) where V is a finite set – the set of vertices of G and E ⊆
(
V

2

)
is the

set of edges of G. The sets of vertices and edges of G will be alternatively denoted as
V (G) and E(G), respectively. The undirected edge {a, b} (where always a 6= b) will
be denoted as ab; hence ab = ba. A subgraph of a graph G is a graph G′ = (V ′, E ′)
where V ′ ⊆ V and E ′ ⊆ E; we write G′ ⊆ G. A subgraph G′ of G is induced in
G if G′ = (V (G′),

(
V (G′)

2

)
∩ E(G)). Let G1, G2 be two subgraphs of a graph G.

Their union and intersection are the subgraphs G1∪G2 = (V (G1)∪V (G2), E(G1)∪
E(G2)) and G1 ∩G2 = (V (G1) ∩ V (G2), E(G1) ∩E(G2)) of G, respectively. A path
of length r ≥ 0 in G is a subgraph ({a0, a1, . . . , ar}, {a0a1, a1a2, . . . , ar−1ar}) of
G where the vertices a0, a1, . . . , ar are pairwise distinct. This subgraph will be
denoted as a0a1 · · · ar (sometimes in parentheses); hence a0a1 · · · ar = arar−1 · · · a0.
This notation allows us to identify a path ({a},∅) of length 0 with the vertex
a and a path ({a, b}, {ab}) with the edge ab. For example, if a ∈ V (G), G − a
denotes the graph (V (G) − {a}, E(G) ∩

(
V (G)−{a}

2

)
). A cycle of length r ≥ 2 in G

is a subgraph ({a0, a1, . . . , ar−1}, {a0a1, a1a2, . . . , ar−2ar−1, ar−1a0}) of G where the

Independence and Domination in Path Graphs of Trees 583

vertices a0, a1, . . . , ar−1 are pairwise distinct. A graph G is isomorphic to a graph H
if there is a bijection f : V (G)→ V (H) such that E(H) = {f(a)f(b); ab ∈ E(G)}.

A directed (oriented) graph is a pair G = (V, E) where V is a finite set – the set
of vertices of G and E ⊆ V × V is the set of directed (oriented) edges of G. The

directed edge 〈a, b〉 (where possibly a = b) will be denoted as
−→
ab or

←−
ba. For a vertex

v ∈ V , in deg v = |{u ∈ V ;−→uv ∈ E}| and out deg v = |{u ∈ V ;−→vu ∈ E}|.

The path operator is a generalization of the well-known line operator. The result
of the path operator Pr, r ≥ 1, on a graph G is the graph Pr(G) with the vertex
set V (Pr(G)) consisting of all paths of length r in G and the edge set E(Pr(G))
consisting of all pairs p1p2 where p1∩p2 is a path of length r−1 and p1∪p2 is a path
or a cycle of length r + 1. A graph isomorphic to Pr(G) for some graph G is called
Pr-path graph.

3 MAXIMAL INDEPENDENT SETS OF VERTICES

In this part we describe a connection between maximal independent sets in P2-path
graphs and special orientations of original graphs. We will omit the subscript 2 in
the notation of operator P2. We shall use the notion of mixed graph for a graph
that contains both oriented and non-oriented edges, such that there is at most one
oriented or not oriented edge between any pair of vertices. A mixed graph is a triple

Ĝ = (V, E,
−→
E) such that (V, E) is an undirected graph and (V,

−→
E) is a directed

graph without loops. We denote Ê = {ab; ab ∈ E or
−→
ab ∈

−→
E or

−→
ba ∈

−→
E }. We will

alternatively use the notation V (Ĝ) = V, E(Ĝ) = E,
−→
E (Ĝ) =

−→
E and Ê(Ĝ) = Ê. For

a vertex v ∈ V , in deg v = |{u ∈ V ;−→uv ∈
−→
E }| and out deg v = |{u ∈ V ;−→vu ∈

−→
E }|.

A semi-oriented graph is a mixed graph with the set E ∪
−→
E containing at most

one of the edges −→uv,−→vu, uv for each pair of vertices u 6= v. We will say that Ĝ is
a semi-orientation of the graph (V (Ĝ), Ê(Ĝ)) (complete orientation if E(Ĝ) = ∅).

A vertex in the graph P (G) is a path abc in G. We will call b the root of
this path. Let S be a set of vertices of the path graph P (G) of a graph G. We
will associate with S a mixed graph by assigning orientation to some edges in the

following way: for each vertex abc ∈ S we direct the edge ab as
−→
ab (and bc as

−→
cb).

Lemma 1. Let G = (V, E) be a graph and S an independent set of vertices in

P (G). Let Ĝ be a mixed graph with V (Ĝ) = V ,
−→
E (Ĝ) = {

−→
ab; abc ∈ S for some

c ∈ V } and E(Ĝ) = {ab ∈ E;
−→
ab /∈

−→
E (Ĝ) and

−→
ba /∈

−→
E (Ĝ)}. Then

1.1 Ĝ is a semi-oriented graph.

1.2 Let v ∈ V (Ĝ). Either there is no edge of the form −→uv in
−→
E (Ĝ) or

−→
E (Ĝ) contains at least two such edges

If S is maximal then
1.3 For each uv ∈ E(Ĝ), if vw ∈ E(G) for some w ∈ V − {u} then

−→vw ∈
−→
E (Ĝ).

584 Ľ. Niepel, A. Černý

Proof. The set S does not contain two adjacent vertices abc and bad (where, pos-

sibly, d = c), therefore
−→
E (Ĝ) cannot contain an edge

−→
ab together with

−→
ba; hence

1.1 is true. The condition 1.2 is clear from the construction of Ĝ, since abc = cba

and
−→
E (Ĝ) contains the edge

−→
cb together with

−→
ab. Let now S be maximal and let

uv ∈ E(Ĝ). If, for a vertex w ∈ V − {u}, either ←−vw ∈
−→
E (Ĝ) or vw ∈ E(Ĝ) then

uvw /∈ S and S ∪ {uvw} is an independent set. Indeed, if, for some x ∈ V (Ĝ),

xuv ∈ S, then −→vu ∈ E(Ĝ) and if vwx ∈ S then −→vw ∈ E(Ĝ). �

Lemma 2. Let Ĝ be a semi-orientation of a graph G = (V, E). Let S
Ĝ
= {abc;

−→
ab ∈

−→
E (Ĝ) and

−→
cb ∈

−→
E (Ĝ)}. Then S

Ĝ
is an independent set of vertices in P (G). If Ĝ

satisfies the conditions 1.2 and 1.3 of Lemma 1 then S
Ĝ
is maximal.

Proof. The set S
Ĝ

cannot contain two adjacent vertices abc and bcd (where d is

not necessarily distinct from a), since
−→
E (Ĝ) then should contain both the edge

−→
cb

and the edge
−→
bc . Hence the set S

Ĝ
is independent. Assume that Ĝ satisfies 1.2

and 1.3. To prove that S
Ĝ
is maximal, assume in contrary that there is a vertex

abc ∈ V (P (G))− S
Ĝ
such that S

Ĝ
∪ {abc} is an independent set in P (G). Then at

least one of the edges
−→
ab,
−→
cb is not in

−→
E (Ĝ); assume it is

−→
ab. Then

−→
ba cannot be in

E(Ĝ) since, following 1.2, there is x ∈ V (G) such that −→xa ∈ E(Ĝ) and the vertex

xab ∈ S
Ĝ
adjacent to abc. On the other hand, ab cannot be in E(Ĝ), since then 1.3

implies
−→
bc ∈ E(Ĝ) and, following 1.2, there is x ∈ V (G) such that −→xc ∈ E(Ĝ); the

vertex xcb ∈ S
Ĝ
is then adjacent to abc. �

The size of S
Ĝ
from Lemma 2 can be expressed by counting the pairs of oriented

edges headed in the same vertex v by the formula

|S
Ĝ
| =

∑

v∈V (Ĝ)

(
in deg v

2

)
. (1)

We will call the number
(
in deg v

2

)
, being the number of vertices in S

Ĝ
rooted at

vertex v, the contribution of vertex v. Hence finding, for a given graph G, a maximal
independent vertex set in P (G) of maximum/minimum size is equivalent to finding

the maximum/minimum size of the set S
Ĝ

among all semi-orientations Ĝ of G
satisfying 1.2 and 1.3 of Lemma 1:

β0(P (G)) = max
Ĝ

∑
v∈V (Ĝ)

(
in deg v

2

)

i(P (G)) = min
Ĝ

∑
v∈V (Ĝ)

(
in deg v

2

) (2)

As there exist exponentially many (with respect to the size of the graph) semi-
orientations of G, the formulas (2) do not provide an efficient method for finding the
values of β0(P (G)) and i(P (G)). We will show that in the case when G is a tree,
these values can be determined efficiently.

Independence and Domination in Path Graphs of Trees 585

4 THE ALGORITHMS

Starting from now we will consider a fixed non-empty tree T . We chose randomly
a vertex r (the root of T).

Our algorithms for computing the values β0(P2(G)) and i(P2(G)) will apply
the standard dynamic programming technique on trees. We will compute auxiliary

values
−→
Mv,
←−
Mv in the former case and mv,

−→mv,
←−mv in the latter case, for a semi-

oriented tree rooted in vertex v, using the corresponding values for subtrees of
an internal vertex v, while the values for leaves will be obtained in a straight way.
The auxiliary values will depend on the orientation of the edge connecting v to its
parent. To be able to use for r the same formula as for other vertices v, we add
a new (dummy) vertex d and the edge rd. We denote the resulting new tree as T ′.
For each vertex v from T there is now a unique parent u in T ′ being the vertex
preceding v on the path from d to v; the vertex v will be called the child of u.
If a vertex is named v, its parent will always be named u. We denote as Tv the
subtree of T ′ induced by the set of vertices consisting of u and all vertices, which
can be reached from u by a path starting by uv (Figure 1). For a semi-orientation

T̂ of Tv we partition the set Nv = {w ∈ V (T);wv ∈ E(T), w 6= u} of children of v

into three subsets N T̂
v = {w ∈ Nv;wv ∈ E(T̂)},

−→
N T̂

v = {w ∈ Nv;
−→wv ∈

−→
E (T̂)} and

←−
N T̂

v = {w ∈ Nv;
←−wv ∈

−→
E (T̂)},

d

r

u
v

Tv

Fig. 1. The tree Tv

We will first consider the problem of finding β0(P (T)). We start by a general
note. Assume, for a graph G, a maximal independent set S in P (G) of maximum

size and the semi-orientation Ĝ of G corresponding to S as in Lemma 1. If we add
orientation to the edges from E(Ĝ) in an arbitrary way, still the independent set
from Lemma 2 will be S. Therefore to find the maximum in the first formula of (2),

586 Ľ. Niepel, A. Černý

it is enough to consider only complete orientations of G. Moreover, we need not limit
ourselves by conditions 1.2 and 1.3, since we may look for a maximum independent
set in a wider class of independent sets than just the maximal ones.

In the following formulas defining the parameters
−→
Mv and

←−
Mv for the tree Tv

the maximum is taken for all complete orientations T̂−→uv, T̂←−uv of Tv containing the
edge −→uv,←−uv, respectively.

−→
Mv = max

T̂−→uv

|S
T̂−→uv
|
←−
Mv = max

T̂←−uv

|S
T̂←−uv
|. (3)

Clearly, β0(P (T)) =
←−
M r. The following lemma follows from the formula (1).

The combinatorial number in each formula in the lemma is the contribution of the
vertex v. The orientation of the edge uv into v participates in this contribution.

Lemma 3.
−→
Mv =

∑

w∈
−→
N T̂

v

←−
Mw+

∑

w∈
←−
N T̂

v

−→
Mw+

(
|
−→
N T̂

v |+1
2

)

←−
Mv =

∑

w∈
−→
N T̂

v

←−
Mw+

∑

w∈
←−
N T̂

v

−→
Mw+

(
|
−→
N T̂

v |
2

) (4)

where T̂ denotes the complete orientation of Tv containing the edge −→uv (in the case

of
−→
Mv) or

←−uv (in the case of
←−
M v), for which the maximum is achieved in (3).

The formulas from (4) can be rewritten as

−→
Mv =

∑

w∈Nv

←−
Mw+

∑

w∈
←−
N T̂

v

(
−→
Mw−

←−
Mw)+

(
|
−→
N T̂

v |+1
2

)

←−
Mv =

∑

w∈Nv

←−
Mw+

∑

w∈
←−
N T̂

v

(
−→
Mw−

←−
Mw)+

(
|
−→
N T̂

v |
2

)
.

(5)

Our algorithm will perform the depth-first search of the tree T ′ starting from
the dummy vertex d. Each vertex v 6= d will be processed at the last visit during

the search. The processing consists of the computation of the two parameters
−→
M v

and
←−
Mv In the moment of processing of v the values of all these two parameters

will be available for all children of v. However, we must find, separately for each
of the two parameters, which choice of orientations of the edges wv provides the

maximum value of the formulas in (5). For example, in the case of
−→
Mv we have to

maximize
∑

w∈
−→
N T̂

v

(
−→
Mw−

←−
Mw)+

(
|
−→
N T̂

v |+1
2

)
since

∑

w∈Nv

←−
Mw is a constant not depending on

the actual orientation of the edges vw. To avoid checking all possible orientations,

we will sort the sequence of differences
−→
Mw−

←−
Mw and use the fact that if k = |

−→
N T̂

v |

is fixed, then
∑

w∈
−→
N T̂

v

(
−→
Mw−

←−
Mw) reaches the maximum if it involves the k largest dif-

ferences
−→
Mw−

←−
Mw. Then we find the maximum of the particular expression from (5)

Independence and Domination in Path Graphs of Trees 587

among all possible values 1 ≤ k ≤ deg v − 1. The resulting value
←−
M r is then equal

to β0(P (T)).

Algorithm 1. Input: A tree T . Output: β0(P2(T)).
1. Choose any vertex r in T . Add a dummy vertex d and the edge rd to T .
2. Call the recursive procedure Process(r,d)

3. Return
←−
M r.

Procedure Process(v,u)
1. N := {w ∈ V (T)|vw ∈ E(T), v 6= u}; p := |N |;

2. if p = 0 then {
−→
Mv := 0;

←−
Mv := 0; return}

3. for each w ∈ N call Process(w,v)

4. s :=
∑

w∈Nv

←−
Mw;

5. sort the differences dw =
←−
Mw−

−→
Mw, w ∈ N , resulting in a sequence d1 ≥ d2 ≥

· · · ≥ dp.

6.
−→
M v := s+ max

0≤k≤p
(
(
k+1
2

)
+

k∑
i=1

di);
←−
M v := s+ max

0≤k≤p
(
(
k

2

)
+

k∑
i=1

di);

7. return

Let us now turn to the problem of finding i(P (T)). Let v be vertex in T . We
will say that a semi-orientation of Tv is good if it satisfies 1.2 (except for vertex u)
and 1.3 of Lemma 1. Exempting u from condition 1.2 allows us to consider the
orientation ←−uv of the edge uv, which may be possible if Tv is considered within

the whole tree T , and the orientation
−→
rd in the tree T ′ = Tr. We have to find

the minimum size of a maximal independent set of vertices in P (T) corresponding

to a good semi-orientation of the tree T ′ containing
−→
rd. In the following formulas

defining the parameters mv,
−→mv and ←−mv for the tree Tv, the minimum is taken

for all good semi-orientations T̂uv, T̂−→uv, T̂←−uv of Tv containing the edge uv,−→uv,←−uv,
respectively.

mv = min
T̂uv

|S
T̂uv
| −→mv = min

T̂−→uv

|S
T̂−→
uv

| ←−mv = min
T̂←−uv

|S
T̂←−
uv

|. (6)

If no semi-orientation of Tv containing the particular edge exists, the minimum in (6)
takes by default the value ∞. Clearly, i(P (T)) =←−mr.

We will first identify cases when the parameters from (6) take the value ∞. We

denote N∞v = {w ∈ Nv;mw = ∞},
−→
N∞v = {w ∈ Nv;

←−mw = ∞} and
←−
N∞v = {w ∈

Nv;
−→mw =∞}.

Lemma 4. Let v ∈ V (T). Then 1. ←−mv <∞, 2. mv <∞ iff
←−
N∞v = ∅, 3. −→mv <∞

iff v is not a leaf.

Proof.

1. We have to prove that there always exists a good semi-orientation of the tree Tv

containing −→vu. We will prove it by induction based on the height h of the tree Tv.

588 Ľ. Niepel, A. Černý

If h = 1 then v is a leaf. The semi-orientation containing only −→vu is good. Let
us now assume that the height of Tv is h ≥ 2 and the assertion is true for all
trees Tw of height smaller than h. If v has only one child w then either w is
a leaf or w has children. If w is a leaf then there is a good semi-orientation of Tv

consisting of wv and −→vu, else take for each child z of w the good semi-orientation
of Tz containing −→zw and add to the union of these semi-orientations the edges
−→vw and −→vu. The resulting mixed graph is a good semi-orientation of Tv. If v has
at least two children, then a good semi-orientation of Tv is obtained as follows:
take for each child z of v the good semi-orientation of Tz containing

−→zv and add
to the union of these semi-orientations the edge −→vu.

2. The assertion follows from condition 1.3 of Lemma 1.

3. If v is a leaf then 1.2 of Lemma 1 implies that −→mv = ∞. If v is not a leaf,
then a good semi-orientation can be constructed by taking for each child z of v
the good semi-orientation of Tz containing −→zv (which exists, following 1.) and
adding the edge −→uv.

�

Corollary 5. Let v ∈ V (T). Then
−→
N∞v = ∅.

As in the case of Lemma 3, the following Lemma 6 follows from the formula (1).

The sum of zero terms is by default 0. The condition 1.3 implies that |N T̂
v | ≤ 1

and if uv is not oriented as ←−uv then |N T̂
v | = ∅. If the edge uv is not oriented then

←−
N T̂

v = Nv.

Lemma 6. Let v ∈ V (T).

1. If
←−
N∞v = ∅ then mv =

∑

w∈Nv

−→mw.

2. If v is a leaf then −→mv = ∞, else −→mv =
∑

w∈
−→
N T̂

v

←−mw+
∑

w∈
←−
N T̂

v

−→mw+
(
|
−→
N T̂

v |+1
2

)
(in this

case
←−
N∞v ⊆

−→
N T̂

v).

3.

←−mv =

mw0
+

∑

w∈
←−
N T̂

v

−→mw if N T̂
v = {w0}

(in this case
←−
N∞v ⊆ {w0})

∑

w∈
−→
N T̂

v

←−mw+
∑

w∈
←−
N T̂

v

−→mw+
(
|
−→
N T̂

v |
2

)
if N T̂

v = ∅

(in this case
←−
N∞v ⊆

−→
N T̂

v).

where T̂ denotes the semi-orientation of Tv containing the edge uv (in the case
of mv),

−→uv (in the case of −→mv) or
←−uv (in the case of←−mv), for which the minimum

Independence and Domination in Path Graphs of Trees 589

is achieved in (6). In the second case for −→mv and in the case of←−mv the condition
is fulfilled.

The algorithm for finding the value i(P (T)) is based on similar ideas as Algo-
rithm 1. This time we are looking for minimum instead of the maximum and we

must take into consideration that no edge can be oriented from a vertex from
←−
N∞v

into v. Therefore the algorithm will sort just those differences −→mw−
←−mw where w

belongs to
←−
NOK

v = Nv −
←−
N∞v . The first case in 2. of Lemma 6 may take place if w0

is from NOK
v = {w ∈ Nv;mw <∞} and Nv − {w] ⊆

←−
NOK

v .

Algorithm 2. Input: A tree T . Output: i(P2(T)).
1. Choose any vertex r in T . Add a dummy vertex d and the edge rd to T .
2. Call the recursive procedure Process(r,d)
3. Return ←−mr.
Procedure Process(v,u)
1. N := {w ∈ V (T)|vw ∈ E(T), v 6= u}; p := |N |;
←−
NOK := {w ∈ N ;−→mw <∞};

←−
N∞ := {w ∈ N ;−→mw =∞};←−p OK := |NOK|;

NOK := {w ∈ N ;mw <∞}; pOK := |NOK|;
2. if p = 0 then {mv := 0;−→mv :=∞; ←−mv := 0; return}
3. for each w ∈ N call Process(w,v)

4. s :=
∑

w∈NOK

←−mw; t :=
∑

w∈
←−
NOK

−→mw

5. sort the differences dw = −→mw−
←−mw, w ∈

←−
NOK, resulting in a sequence d1 ≤ d2 ≤

· · · ≤ d←−p OK .

6. mv :=∞;−→mv := s+ min
0≤k≤←−p OK

(
(
k+1
2

)
+

k∑
i=1

di);
←−mv := s+ min

0≤k≤←−p OK ,k 6=1
(
(
k

2

)
+

k∑
i=1

di);

7. if ←−p OK ≥ p− 1

then {if
←−
N∞ = {w0} then q := mw0

+ t
else { q := min

w∈N
(mw + t−−→mw);mv := t}

←−mv := min(←−mv, q)}
8. return

Note: The value ∞ may be assigned to the variable q in Step 7.

Analysis of Algorithms 1 and 2 We will analyze Algorithm 2 only. The time
and space complexity of Algorithm 1 is clearly not greater than that of Algorithm 2.
Let the tree T consist of n vertices. The space used by Algorithm 2 is O(n). The
total running time of the algorithm can be computed as the sum of the times spent by
processing each node (steps 1, 4, 5, 6, 7). Let pv be the number computed in step 1 of
the call of Process(v, u). All the sets in step 1 can be constructed in the time O(pv).
The computation of the sums in step 4 and the minimum in step 7 take time O(pv),
as well. The sums in step 6 can be computed by increments with increasing k;
computing the minimum takes time O(pv). Therefore each of the steps 1, 4, 6 and 7

590 Ľ. Niepel, A. Černý

requires time O(pv). The complexity of sorting in step 5 depends on the algorithm
used. Sorting by comparison requires time O(pv log pv). Using algorithms like Radix
Sort or Bucket Sort ([3]) will not improve the performance, since pv can be as large
as n and logn bits are necessary for its encoding. However, since pv is limited
by n, sorting may be performed here using the van Emde Boas trees ([4]), in time
O(pv log log pv). Hence processing the node v can be done in time O(pv log log pv).
Then the total time spent by the algorithm is O(

∑
v∈V (T)

pv log log pv). Since pv is the

number of children of v in the depth-first search tree and each vertex is a child of
exactly one vertex, we have

∑
v∈V (T)

pv = n. Then log log pv < log logn and the time

complexity of the algorithm is O(
∑

v∈V (T)

pv log log pv) = O((
∑

v∈V (T)

pv) log logn) =

O(n log logn). The result is summarized in the following theorem.

Theorem 7. Let T be a tree consisting of n vertices. The values β0(P2(T)) and
i(P2(T)) can be found in time O(n log logn), using the space O(n).

Acknowledgement

The authors are grateful to an unknown referee for his helpful comments, which led
to an improvement of the result. The work of the first author was supported by
Kuwait University Research Grant No. SM01/05.

REFERENCES

[1] Balbuena, C.—Ferrero, D.: Edge-Connectivity and Super Edge-Connectivity of
P2-Path Graphs. Discrete Mathematics, Vol. 269, 2003, pp. 13–20.

[2] Broersma, H. J.—Hoede, C.: Path Graphs. Graph Theory, Vol. 13, 1989,
pp. 427–444.

[3] Cormen, T.H.—Leiserson, C.E.—R.L.: Introduction to Algorithms. 2nd ed.
Cambridge, MIT Press, 2001.

[4] Peter van Emde Boas, P.—Kaas, R.—Zijlstra, E.: Design and Implemen-
tation of an Efficient Priority Queue. Mathematical Systems Theory, Vol. 10, 1977,
pp. 99–127.

[5] Haynes, T.W.—Hedetniemi, S. T.—Slater, P. J.: Fundamentals of Domina-
tion in Graphs. 1st ed. New York: Marcel Dekker, 1998.

[6] Haynes, T.W.—Hedetniemi, S. T.—Slater, P. J.: Domination in Graphs: Ad-
vanced Topics. 1st ed. New York: Marcel Dekker, 1998.

[7] Knor, M.—Niepel, Ľ.: Diameter in Iterated Path Graphs. Discrete Mathematics,
Vol. 233, 2001, pp. 151–161.

[8] Knor, M..—Niepel, Ľ.: Centers in Path Graphs. JCISS, Vol. 24, 1999, pp. 79–86.

[9] Knor, M..—Niepel, Ľ.: Independence Number in Path Graphs. Computing and
Informatics, Vol. 23, 2004, pp. 179–187.

Independence and Domination in Path Graphs of Trees 591

[10] Li, H.—Lin, Y.: On the Characterization of Path Graphs. J. Graph Theory, Vol. 17,

1993, pp. 463–466.

Ľudov́ıt Niepel received the master degree in mathematics
from Comenius University, Bratislava, in 1974, and the Ph.D.
degree in geometry and topology from Comenius University in
1980. Currently, he is an associate professor at Kuwait Univer-
sity. His research interests include graph theory and computer
graphics.

Anton �Cern�y received the master degree in mathematics from
Comenius University, Bratislava, in 1976, and the Ph.D. de-
gree in computer science from Czechoslovak Academy of Scien-
ces, Prague, in 1985. Currently, he is an associate professor at
Kuwait University. His research interests include combinatorics
on words and graph theory.

