994 research outputs found

    A Causal Disentangled Multi-Granularity Graph Classification Method

    Full text link
    Graph data widely exists in real life, with large amounts of data and complex structures. It is necessary to map graph data to low-dimensional embedding. Graph classification, a critical graph task, mainly relies on identifying the important substructures within the graph. At present, some graph classification methods do not combine the multi-granularity characteristics of graph data. This lack of granularity distinction in modeling leads to a conflation of key information and false correlations within the model. So, achieving the desired goal of a credible and interpretable model becomes challenging. This paper proposes a causal disentangled multi-granularity graph representation learning method (CDM-GNN) to solve this challenge. The CDM-GNN model disentangles the important substructures and bias parts within the graph from a multi-granularity perspective. The disentanglement of the CDM-GNN model reveals important and bias parts, forming the foundation for its classification task, specifically, model interpretations. The CDM-GNN model exhibits strong classification performance and generates explanatory outcomes aligning with human cognitive patterns. In order to verify the effectiveness of the model, this paper compares the three real-world datasets MUTAG, PTC, and IMDM-M. Six state-of-the-art models, namely GCN, GAT, Top-k, ASAPool, SUGAR, and SAT are employed for comparison purposes. Additionally, a qualitative analysis of the interpretation results is conducted

    Learning Disentangled Representations in Signed Directed Graphs without Social Assumptions

    Full text link
    Signed graphs are complex systems that represent trust relationships or preferences in various domains. Learning node representations in such graphs is crucial for many mining tasks. Although real-world signed relationships can be influenced by multiple latent factors, most existing methods often oversimplify the modeling of signed relationships by relying on social theories and treating them as simplistic factors. This limits their expressiveness and their ability to capture the diverse factors that shape these relationships. In this paper, we propose DINES, a novel method for learning disentangled node representations in signed directed graphs without social assumptions. We adopt a disentangled framework that separates each embedding into distinct factors, allowing for capturing multiple latent factors. We also explore lightweight graph convolutions that focus solely on sign and direction, without depending on social theories. Additionally, we propose a decoder that effectively classifies an edge's sign by considering correlations between the factors. To further enhance disentanglement, we jointly train a self-supervised factor discriminator with our encoder and decoder. Throughout extensive experiments on real-world signed directed graphs, we show that DINES effectively learns disentangled node representations, and significantly outperforms its competitors in the sign prediction task.Comment: 26 pages, 11 figure

    Learning Disentangled Graph Convolutional Networks Locally and Globally

    Get PDF

    Towards Better Generalization with Flexible Representation of Multi-Module Graph Neural Networks

    Full text link
    Graph neural networks (GNNs) have become compelling models designed to perform learning and inference on graph-structured data. However, little work has been done to understand the fundamental limitations of GNNs for scaling to larger graphs and generalizing to out-of-distribution (OOD) inputs. In this paper, we use a random graph generator to systematically investigate how the graph size and structural properties affect the predictive performance of GNNs. We present specific evidence that the average node degree is a key feature in determining whether GNNs can generalize to unseen graphs, and that the use of multiple node update functions can improve the generalization performance of GNNs when dealing with graphs of multimodal degree distributions. Accordingly, we propose a multi-module GNN framework that allows the network to adapt flexibly to new graphs by generalizing a single canonical nonlinear transformation over aggregated inputs. Our results show that the multi-module GNNs improve the OOD generalization on a variety of inference tasks in the direction of diverse structural features

    Controllable Recommenders using Deep Generative Models and Disentanglement

    Get PDF
    In this paper, we consider controllability as a means to satisfy dynamic preferences of users, enabling them to control recommendations such that their current preference is met. While deep models have shown improved performance for collaborative filtering, they are generally not amenable to fine grained control by a user, leading to the development of methods like deep language critiquing. We propose an alternate view, where instead of keyphrase based critiques, a user is provided 'knobs' in a disentangled latent space, with each knob corresponding to an item aspect. Disentanglement here refers to a latent space where generative factors (here, a preference towards an item category like genre) are captured independently in their respective dimensions, thereby enabling predictable manipulations, otherwise not possible in an entangled space. We propose using a (semi-)supervised disentanglement objective for this purpose, as well as multiple metrics to evaluate the controllability and the degree of personalization of controlled recommendations. We show that by updating the disentangled latent space based on user feedback, and by exploiting the generative nature of the recommender, controlled and personalized recommendations can be produced. Through experiments on two widely used collaborative filtering datasets, we demonstrate that a controllable recommender can be trained with a slight reduction in recommender performance, provided enough supervision is provided. The recommendations produced by these models appear to both conform to a user's current preference and remain personalized.Comment: 10 pages, 1 figur

    Regulatory Independence and Political Interference: Evidence from EU Mixed-Ownership Utilities’ Investment and Debt

    Get PDF
    This paper examines the investment and financial decisions of a sample of 92 EU regulated utilities, taking into account key institutional features of EU public utilities, such as: a) regulation by agencies with various degrees of independence; b) partial ownership of the state in the regulated firm; and c) the government’s political orientation, which may ultimately influence the regulatory climate to be either more pro-firm or more pro-consumers. Our results show that regulatory independence matters for both investment and financial decisions. Investment increases under an Independent Regulatory Agency (IRA), while ownership has no effect. Leverage also increases when the IRA is in place, especially so if the regulated firm is privately controlled. Finally political orientation does matter, as firm investment increases under more conservative (pro-firm) governments, but this effect appears to revert when the IRA is in place.Regulated Utilities, Investment, Capital Structure, Private and State Ownership, Regulatory Independence, overnment’s Political Orientation
    • …
    corecore