
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Learning Disentangled Graph Convolutional
Networks Locally and Globally
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Abstract— Graph convolutional networks (GCNs) emerge as1

the most successful learning models for graph-structured data.2

Despite their success, existing GCNs usually ignore the entangled3

latent factors typically arising in real-world graphs, which results4

in nonexplainable node representations. Even worse, while the5

emphasis has been placed on local graph information, the global6

knowledge of the entire graph is lost to a certain extent. In this7

work, to address these issues, we propose a novel framework8

for GCNs, termed LGD-GCN, taking advantage of both local9

and global information for disentangling node representations in10

the latent space. Specifically, we propose to represent a disen-11

tangled latent continuous space with a statistical mixture model,12

by leveraging neighborhood routing mechanism locally. From the13

latent space, various new graphs can then be disentangled and14

learned, to overall reflect the hidden structures with respect to15

different factors. On the one hand, a novel regularizer is designed16

to encourage interfactor diversity for model expressivity in the17

latent space. On the other hand, the factor-specific information is18

encoded globally via employing a message passing along these new19

graphs, in order to strengthen intrafactor consistency. Extensive20

evaluations on both synthetic and five benchmark datasets show21

that LGD-GCN brings significant performance gains over the22

recent competitive models in both disentangling and node classi-23

fication. Particularly, LGD-GCN is able to outperform averagely24

the disentangled state-of-the-arts by 7.4% on social network25

datasets.26

Index Terms— (Semi-)supervised node classification, disen-27

tangled representation learning, graph convolutional networks28

(GCNs), local and global learning.29

I. INTRODUCTION30

GRAPHS are emerging as an insightful structured mod-31

eling technique for capturing the similarity between32

data samples and identifying the relationship between enti-33

ties [1]–[5]. To mine the domain-specific knowledge in34

graph-structured data, graph convolutional networks (GCNs)35
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Fig. 1. Visualization of the disentangled latent units w.r.t. four latent
factors on a synthetic graph. Several works have been made toward graph
disentanglement learning, e.g., DisenGCN [17] and independence promoted
graph disentangled network (IPGDN) [18]. They are all heavily relying on
the local graph information, and here, we only take DisenGCN, the basic
one, as an example for intuitive comparison. Points with a different color
indicate the disentangled latent units (for all nodes) of a different latent factor.
In sharp contrast to DisenGCN, our LGD-GCN displays a highly disentangled
pattern with strong interfactor diversity and intrafactor consistency; it indicates
high (low) correlations between intrafactor (interfactor) features. (a) Disen-
GCN (local approach). (b) LGD-GCN (Ours).

were proposed to integrate topological patterns and con- 36

tent features for node classification [6]. In the past years, 37

GCNs have demonstrated excellent expressive power that 38

leads to the growing popularity in various graph learn- 39

ing tasks, such as node classification, link prediction, and 40

recommendation [7]–[9]. 41

Notably, most existing GCN models in the literature [6], 42

[10]–[13] focus on exploiting the local graph information and 43

take a holistic approach, i.e., they interpret the node neighbor- 44

hood as a perceptual whole while ignoring the within distinc- 45

tions. Yet a real-world graph typically contains heterogeneous 46

node relations, driven by the entanglement of many latent 47

factors. For example, a user in a social network usually links 48

with others for various reasons, such as family, work, and/or 49

hobby, which typically stores partial information in different 50

types. The holistic approaches fail to capture the expressive 51

partial information due to the neglect of the underlying factors, 52

thereby rendering the learned representations heavily entan- 53

gled and less informative. On the other hand, while the benefits 54

of modeling data both locally and globally have been well 55

demonstrated in various machine learning models [14], there 56

are a few variants of GCNs (e.g., [15], [16]) incorporating 57

both local and global graph information. 58

Recently, several works [17]–[21] make attempts to disen- 59

tangle the latent factors behind graph data through neighbor- 60

hood partition. Despite the novel design, they mostly rely 61
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on local node neighborhoods only, similar to most GCNs,62

which may bring unexpected issues. First, the information63

from local ranges can be significantly varied across the entire64

graph. Solely depending on it, they could easily produce65

latent representations that lose consensus cluster centroids with66

respect to different factors. This consequently may weaken67

the intrafactor correlation and interfactor separability between68

disentangled features, therefore leading to diminished inter-69

pretability. Second, the local neighborhood information can be70

scarce and limited, especially in sparse graphs, which prohibits71

models from learning informative node aspects and yielding72

a favorable performance boost. A detailed discussion will be73

given later in Section II-C.74

In this work, to address above-mentioned issues, we pro-75

pose a novel local and global disentanglement for GCNs76

(LGD-GCN). The core idea is that we learn disentangled77

node representations by mining both local and global graph78

information. In particular, we first present a local disentan-79

glement on nodes by partitioning their observable neigh-80

bors with the neighborhood routing mechanism. Then, the81

global information is attained by modeling the overall den-82

sities of nodes while considering different factors and fur-83

ther disclosing the hidden node relations from different84

angles.85

To this end, a statistical mixture modeling is performed86

on disentangled latent units to derive a latent continuous87

space. This enables a different density covering all the nodes,88

specific to a latent factor, in a different subspace [22], [23].89

Accordingly, a novel regularizer is developed for promoting90

interfactor diversity. It encourages the separability between91

these latent units according to different factors and captures92

the uncorrelated information. After that, we manage to build93

a different new graph with sparse properties by only connect-94

ing nearby neighbors within a different spatial region. These95

new graphs overall reflect the underlying data structures, i.e.,96

the hidden node relations, in different aspects. Employing a97

message passing scheme over them can efficiently encode98

the global information specific to different factors. This fur-99

ther strengthens intrafactor consistency, i.e., the correlation100

between disentangled features w.r.t. the same factor. Therefore,101

the disentangled informativeness of the model can be enhanced102

in the output space. In sharp contrast to the local approach for103

graph disentanglement, Fig. 1 clearly visualizes the benefit of104

learning disentangled node representations both locally and105

globally.106

In a nutshell, our contributions are summarized as follows.107

1) We show through empirical analysis that the existing dis-108

entangled approaches may produce latent representations109

with weakly disentangled factors when solely relying on110

the local graph information. Therefore, the performance111

gain of these disentangled approaches becomes marginal112

when it comes to sparse graphs.113

2) To overcome the above-mentioned limitations, we pro-114

pose a novel framework for GCNs (LGD-GCN) to dis-115

entangle the latent factors underlying the graph data in116

a more effective way. Specifically, by leveraging neigh-117

borhood routing locally and message passing globally,118

LGD-GCN can disentangle node representations with119

Fig. 2. Relative improvements of DisenGCN upon GCN while varying the
average neighborhood sizes of the graph synthesized with four latent factors.
It can be observed that the boost performance of DisenGCN is becoming
minor as the average neighborhood sizes decrease.

promoted interfactor diversity and strengthened intrafac- 120

tor consistency. 121

3) Extensive evaluations of synthetic and five real-world 122

datasets show the superiority of the proposed LGD-GCN 123

over the state-of-the-arts both quantitatively and quali- 124

tatively. Specifically, LGD-GCN averagely outperforms 125

the disentangled state-of-the-arts by 7.5%, 7.2%, 1.7%, 126

2.3%, and 1.6% on Blogcatalog, Flickr, Cora, Citeseer, 127

and Pubmed datasets, respectively. 128

II. BACKGROUND AND MOTIVATION 129

A. Graph Convolutional Networks 130

GCNs are powerful machine learning models for tackling 131

analytical tasks on graph-structured data [7]. Let G = (V, E) 132

denotes a graph with node set V and edge set E . Given two 133

distinct nodes i, j ∈ V , we define (i, j) ∈ E if nodes i and 134

j are connected by an edge, and the neighborhood of node 135

i as Ni = { j |(i, j) ∈ E}. For attributed graphs, nodes are 136

associated with a raw feature matrix H ∈ R|V |× f with the 137

transpose of each raw being the initial features hi ∈ R
f for 138

each node i , where f is the number of raw features per node. 139

In the past years, an increasing number of GCN variants have 140

been developed, which can be divided into two categories, 141

including spectral-based [6], [24], [25] and spatial-based [10], 142

[11], [26]–[28] methods. Most of them can be generalized with 143

a message passing framework [29], where node attributes are 144

exchanged locally through the edges followed by a neighbor- 145

hood aggregation 146

h′i ← COMBINE(hi , AGGREGATE({h j |∀ j ∈ Ni })). 147

The features of neighbors are first aggregated together and 148

then passed to the center node to update its hidden states 149

hi through combination. Albeit promising in several learning 150

tasks, most GCNs focus on modeling local neighborhoods 151

only and treat them as a perceptual whole. Consequently, the 152

learned node representations usually lose the global knowledge 153

of the entire graph and tend to be nonexplainable. 154

B. Disentangled Node Representation Learning 155

Disentangled representation learning aims to reveal the 156

explanatory latent variables behind data for generating a mean- 157

ingful representation to admit intuitive explanations [30], [31]. 158

Massive works have been developed on that topic [32]–[36]. 159
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Fig. 3. Illustration of our LGD-GCN layer with M = 3 latent factors, where A and H denote the adjacency matrix and feature matrix of the input graph,
respectively. First, the node representations are locally disentangled by leveraging the neighborhood routing mechanism. These disentangled representations are
then modeled in a latent continuous space, promoted with interfactor diversity, from which various new graphs are built for further aggregation to strengthen
intrafactor consistency.

It has been proven that disentangled representation is less160

susceptible to complex variants and more robust to adversarial161

attacks [30], [37]. However, most works are only applicable162

to the Euclidean data structure. Recently, DisenGCN [17]163

made the first attempt toward disentangled node representation164

learning. Since then, works [18]–[21] extending it start to165

emerge in the field of graph learning.166

DisenGCN [17] hypothesizes that nodes on the graph are167

connected mainly due to different kinds of relationship caused168

by different factors m (m = 1, 2, . . . , M). It aims to identify169

these latent factors in order to learn disentangled node repre-170

sentations. Specifically, the node features, {hi ∈ R f |∀i ∈ V },171

are first projected onto M subspaces in different channels.172

In each channel m, the hidden states zi,m ∈ Rd/M for each173

node i is given by174

zi,m = σ
(
WT

m hi + bm
)∥∥σ

(
WT

m hi + bm
)∥∥

2

(1)175

where Wm ∈ R f×(d/M) and bm ∈ Rd/M are learnable para-176

meters, and σ is an activation function. Then, DisenGCN177

employs a neighborhood routing mechanism [17, Algorithm-1]178

(denoted as NRM in this article) to partition each node179

neighborhood into M clusters, from which the information is180

aggregated independently to produce disentangled latent units,181

e.g., {ẑi,1, ẑi,2, . . . , ẑi,M } for node i , describing different node182

aspects. Finally, the disentangled node representation, ĥi ∈ R
d ,183

can be attained by vector column concatenation184

ĥi = ẑi,1 ⊕ ẑi,2 ⊕ · · · ⊕ ẑi,M . (2)185

C. Limitations of Current Disentangled Approaches186

While the current disentangled state-of-the-arts reveal cer-187

tain latent factors and demonstrate good performance in many188

scenarios [19]–[21], we argue that they are prone to pro-189

duce weakly disentangled representations and yield limited190

performance boost because of their heavy reliance on local191

graph information. To illustrate, we conduct two empirical192

investigations over a graph synthesized with four latent factors193

(see details in Section IV-A2 for data generation). For simpli- 194

fication, we only take DisenGCN [17] as an example, because 195

the other disentangled state-of-the-arts are mainly built on it. 196

First, we visualize the disentangled latent units of Disen- 197

GCN using t-stochastic neighbor embedding (SNE) [38] in 198

Fig. 1(a). At the microlevel, we can observe the separability 199

between points with different colors in some regions. When 200

it comes to the macrolevel, all points unexpectedly fall into 201

discrete clusters and are mixed together, indicating a weak 202

disentanglement. As DisenGCN generates disentangled latent 203

units that preserve some specific micromeanings of the fac- 204

tor but lose the consistent macromeaning (intrafactor consis- 205

tency), this limits its potential in attaining higher performance. 206

Additionally, DisenGCN only considers disentangling repre- 207

sentations in different channels without ensuring their diversity 208

w.r.t. different factors (interfactor diversity). The learned rep- 209

resentations are thus prone to preserve redundant information, 210

as illustrated in Fig. 1(a). 211

Second, we further augment the synthetic graph by tuning 212

the p value (which controls the density of the synthetic graph 213

as described in Section IV-A2) to generate graphs with dif- 214

ferent average neighborhood sizes. We then train GCN [6], 215

the typical holistic approach, and DisenGCN for multilabel 216

classification, and plot the relative improvements of Disen- 217

GCN upon GCN in Fig. 2. From Fig. 2, the improvements 218

drop from approximately 5% to 0% as the average neighbor- 219

hood size decreases from 40 to 3. The results are consistent 220

with the theoretical analysis in that DisenGCN relies on local 221

information only. When the graph is sparse (with limited local 222

information), DisenGCN is inevitably getting less effective. 223

D. Graph Structure Learning 224

Structure information plays a key role in graph learning 225

and GCNs. Unfortunately, real-world data are typically noisy 226

and incomplete, and hence, tend to generate imperfect or 227

even poor graph structures [39]. To address this issue, many 228

researchers try to remove noisy edges and infer the hidden 229

relations between nodes so that an appropriate graph structure 230
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can be better learned [40]. These studies can generally be231

divided into two categories. The first one takes the approach of232

metric learning. It aims to learn a metric to decide whether two233

nodes are connected or not based on their features, and update234

the original structure with the new one by, e.g., interpolation.235

Representative ideas include [24], [41]–[43]. The other one236

assumes that graphs are generated by sampling edges from237

a certain distribution [44]–[46]. These works focus on prob-238

abilistic modeling and train graph neural networks with the239

sampled graphs. Our work focuses on inferring the underlying240

node relations in the disentangled feature space, thereby falling241

into the group of metric learning. Another work related to242

ours is FactorGCN [47], which factorizes a graph into multiple243

subgraphs by edge clipping and uses them to learn graph-level244

representation from different angles. Different from it, our245

approach generates multiple new graphs from a latent space246

and employs a message passing along them to characterize247

nodes in different aspects.248

III. LOCAL AND GLOBAL DISENTANGLEMENT249

We present a novel framework for GCNs, termed LGD-250

GCN, to learn disentangled node representations both locally251

and globally, as presented in Fig. 3. By leveraging the neigh-252

borhood routing mechanism [17] first, we attain disentangled253

latent units preserving local graph information w.r.t. different254

factors. Then, we propose to further incorporate global graph255

information. To this end, our LGD-GCN discloses the under-256

lying factor-aware relations between nodes and utilizes them257

to learn better disentangled representations with promoted258

interfactor diversity and strengthened intrafactor consistency.259

All the details are illustrated in the following subsections with260

notations defined in Table I for easy reading.261

A. Modeling Latent Continuous Space262

We assume that the disentangled latent unit ẑ follows a263

Gaussian mixture distribution expressed as264

p(ẑ) =
M∑

m=1

q(m)N (ẑ;μm,�m)265

where μm ∈ Rd/M and �m ∈ R(d/M)×(d/M) are the mean and266

covariance associated with factor m in latent space, and q(m)267

is the prior probability of factor m and set as (1/M) for equal268

consideration. To employ this assumption for space modeling,269

we maximize the conditional likelihood of disentangled latent270

units given their associated factor, i.e., p(ẑi,m|m) for each node271

i and factor m. It turns out to be equivalent to minimizing the272

negative log term by removing constants273

Lspace
i,m = (ẑi,m − μm)T �−1

m (ẑi,m − μm). (3)274

Its functionality is quite similar to some supervised embed-275

ding methods [23], [48]–[52] that collapse categories into276

a low-dimensional embedding with the reduced within-class277

pairwise distance. Instead of constraining pairwise sam-278

ples, we introduce the Mahalanobis distance [53] between279

each latent unit ẑi,m and its globally inferred center μm .280

Accordingly, a latent continuous space can be derived with281

TABLE I

COMMON NOTATIONS

more compact data (sub-)manifolds, where the latent units are 282

encouraged to be more discriminative with respect to their 283

factor density. 284

Finally, the regularization for space modeling is given by 285

averaging over nodes and factors 286

Lspace = 1

|V |M
∑
i∈V

M∑
m=1

Lspace
i,m . (4) 287

B. Promoting Interfactor Diversity 288

Diversity-promoting learning aims to encourage different 289

components in latent space models to stay mutually uncor- 290

related and different and has been widely studied [54], [55]. 291

In Section III-A, we have derived a latent continuous space 292

by independently modeling the density of each disentangled 293

factor. However, the approximated distributions with different 294

factors could still be overlapped [54]. Consequently, the dis- 295

entangled latent units may preserve redundant information and 296

lose informativeness. To cope with this problem, we propose 297

to promote diversity among different latent factors in order to 298

capture the uncorrelated information. 299

Particularly, we define factor diversity with respect to the 300

probabilities of a sampled latent unit staying close to different 301

factor densities. Inspired by the determinant point process [56], 302
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Algorithm 1 LGD-GCN’s Layer

Input: {hi ∈ Rdin |∀i ∈ V}, where din = f in the first layer
and din = d in the hidden layer.

Output: {h′i ∈ Rd |∀i ∈ V}.
1: for i ∈ V do
2: zi,1, zi,2, . . . , zi,M ← hi by Eq. (1).
3: end for
4: for i ∈ V do
5: // Leverage NRM with T routing iterations.
6: ẑi,m ← {zi,m} ∪ {z j,m|∀ j ∈ Ni },∀m = 1, 2, . . . , M .
7: end for
8: // Promoting Inter-factor Diversity.
9: Minimize Lspace and Ldiv by Eq. (4) and Eq. (6).

10: // Strengthening Intra-factor Consistency.
11: for m = 1, 2, . . . , M do
12: Am ← {ẑi,m|∀i ∈ V} by k-Nearest-Neighbors.
13: {ẑ′i,m|∀i ∈ V } ← {ẑi,m|∀i ∈ V} with Am by Eq. (7).
14: end for
15: h′i ← ẑ′i,1 ⊕ ẑ′i,2 ⊕ · · · ⊕ ẑ′i,M ,∀i ∈ V .

we formulate the factor diversity for each node i as303

Fdiv
i = det

(
L̂T

i L̂i
)

(5)304

where L̂i = [(Li,1/‖Li,1‖2), (Li,2/‖Li,2‖2), . . . ,305

(Li,M/‖Li,M‖2)] ∈ R
M×M , and Li,m = [N (ẑi,m;μ1,�1),306

N (ẑi,m;μ2,�2), . . . , N (ẑi,m ;μM ,�M)]T is a vector in M307

dimensions, which contains the conditional likelihoods308

of a disentangled latent unit ẑi,m given M different309

factors. By the property of determinant [57], Fdiv
i is310

equal to the square of the volume spanned by the set311

{(Li,1/‖Li,1‖2), (Li,2/‖Li,2‖2), . . . , (Li,M /‖Li,M‖2)}, which312

offers elegantly an intuitive geometric interpretation,313

as shown in Fig. 3. To promote factor diversity, we introduce314

the diversity promoting regularizer as315

Ldiv = − 1

|V|
∑
i∈V

log
(Fdiv

i

)
(6)316

with the following proposition.317

Proposition 1: Minimizing Lspace and Ldiv simultaneously318

as L = λspaceLspace + λdivLdiv encourages the separatability319

between different factor densities, where λspace and λdiv are320

positive regularization constants.321

Proof: Penalizing Lspace in (4) models the density of each322

factor with a latent continuous space, where most latent units323

stay close to their centers. In other words, they will have the324

largest conditional likelihood according to their factors, i.e.,325

Li,m = max{Li,1, Li,2, . . . , Li,M } for ẑi,m . On the other hand,326

as (Li,m/‖Li,m‖2) is normalized, the maximum value of Fdiv
i327

is 1 and can only be attained when Li,1, Li,2, . . . , Li,M are328

orthogonal to each other. Therefore, minimizing Ldiv in (6)329

further emphasizes the maximal value in vector Li,m and330

promotes its discretization, thereby disjointing the possible331

overlaps between different factor densities. As a consequence,332

the disentangled latent units are encouraged to be separated333

spatially with respect to different factors.334

This process can essentially prune the redundancy, enhance 335

the disentangled informativeness, and finally promote the 336

interfactor diversity. 337

C. Strengthening Intrafactor Consistency 338

Although node relations can naturally be available in a 339

graph, we believe that they are imperfect for disentangled 340

graph learning due to data corruption or missing informa- 341

tion. Take a huge and sparse graph as an example. It is 342

difficult for most nodes to absorb sufficient information from 343

their small neighborhood, especially in the case of the aver- 344

age neighborhood size being much less than the number of 345

latent factors to be disentangled. On the other hand, the 346

original graph is essentially constructed from the raw fea- 347

ture space of nodes and may not contain the desired topol- 348

ogy after projecting node features in different channels for 349

disentangling. To alleviate this issue, we propose to dis- 350

close the hidden relations between nodes from a latent space 351

and utilize them to encode more information, which proves 352

beneficial. 353

The modeled latent space as described in Section III-A 354

embeds the disentangled latent units of all the nodes, specific 355

to a different factor, into a different subspace, from which a 356

new graph can naturally be constructed by connecting nearby 357

neighbors. These graphs are expected to reflect the overall 358

structured information from different angles and disclose the 359

hidden node relations w.r.t. different factors. Then, the disen- 360

tangled latent units are allowed to propagate on their latent 361

graphs followed by a neighborhood aggregation. As such, 362

the factor-specific information can be encoded globally and 363

selectively for nodes, further strengthening the intrafactor 364

consistency. Actually, there are many ways to construct latent 365

graphs, and we list three popular ones here. 366

1) k-Nearest-Neighbors [58] (kNN): Two samples i and j 367

are connected in a kNN graph if either of them belongs 368

to k-nearest neighbors of the other. Formally, the adja- 369

cency matrix is given as 370

AkNN
[i, j ] =

{
1, P(i, j) ≤ P(i, ik) or P( j, jk)

0, otherwise
371

where P(·) denotes pairwise distance, and ik and jk are 372

the kth nearest neighbors of samples i and j , respec- 373

tively. 374

2) Continuous k-Nearest-Neighbors [59] (CkNN): It pro- 375

vides a less discrete version of kNN in case of modeling 376

data samples, which are not uniformly distributed 377

ACkNN
[i, j ] =

{
1, P(i, j) < δ

√P(i, ik)P( j, jk)

0, otherwise
378

where δ is a scalar parameter controlling the density of 379

the generated graphs. 380

3) ε-Ball [60]: Two samples i and j are connected in a ε- 381

Ball graph if their distance is smaller than some scalar 382

value ε 383

Aε-Ball
[i, j ] =

{
1, P(i, j) < ε

0, otherwise.
384
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In this article, we uniformly apply kNN [58] algorithm on385

{zi,m |i ∈ V} with P(·) being the Euclidean distance and attain386

a latent graph for each factor m with adjacency matrix Am .387

On the other hand, there are also multiple choices on message388

passing frameworks from the basic to state-of-the-arts, e.g.,389

GCN [6], graph attention network (GAT) [11], graph isomor-390

phism network (GIN) [61], FAGCN [62], and so on, for encod-391

ing information on these latent graphs. In our LGD-GCN,392

we found that simply applying the basic GCN-aggregator gives393

us satisfactory results and the privilege of low computational394

cost. Therefore, the disentangled latent units are updated as395

follows:396

Ẑ′m ← D̂
− 1

2
m ÂmD̂

− 1
2

m Ẑm (7)397

where Âm = Am + I, D̂m = Dm + I, Dm is the degree matrix,398

and Ẑm represents the feature matrix with each row being399

ẑT
i,m for each node i in V . Particularly, we call this proposed400

module latent aggregation denoted LG.401

Algorithm 2 LGD-GCN’s Optimization Procedure

Params: {(μ(l)
m ∈ R

d
M ,�(l)

m ∈ R
d
M× d

M )|∀m = 1, 2, . . . , M,
∀l = 1, 2, . . . , L} and � = {θ(1), θ (2), . . . , θ (L)}

1: Initialize {(μ(l)
m ,�(l)

m )|∀m = 1, 2, . . . , M,∀l = 1, 2, . . . , L}
and � with random values.

2: Initialize h(0)
i with hi .

3: for number of training epochs do
4: // Forward propagation
5: for l = 1, 2, . . . , L do
6: {h(l)

i |∀i ∈ V} ← Fθ (l) ({h(l−1)
i |∀i ∈ V})

7: Calculate L(l)
space and L(l)

div by Eq. (4) and Eq. (6).
8: end for
9: Calculate Ltotal with (λspace, λdiv ) by Eq. (8).

10: // Back propagation
11: for l = 1, 2, . . . , L do
12: Update θ(l) with −∇θ (l)Ltotal .
13: Update μ(l)

m ,�(l)
m ,∀m = 1, 2, . . . , M:

14: {h(l)
i |∀i ∈ V} ← Fθ (l) ({h(l−1)

i |∀i ∈ V})
15: z(l)

i,1 ⊕ z(l)
i,2 ⊕ · · · ⊕ z(l)

i,M ← h(l)
i ,∀i ∈ V

16: for m = 1, 2, . . . , M do
17: μnew

m ← 1
|V |

∑
i∈V z(l)

i,m

18: �new
m ← 1

|V |
∑

i∈V(z(l)
i,m − μnew

m )(z(l)
i,m − μnew

m )T

19: μ(l)
m ← (1−Ur )μ

(l)
m +Urμ

new
m

20: �(l)
m ← (1−Ur )�

(l)
m +Ur�

new
m

21: end for
22: end for
23: end for

D. Network Architecture402

We detail the general network architecture of the pro-403

posed LGD-GCN in this section. The pseudocode of an404

LGD-GCN’s layer is presented in Algorithm 1, which can405

be stacked to exploit graph data sufficiently. In this work,406

by appending one single layer of our model after DisenGCN,407

we can even observe significant performance gain as later408

discussed in Section IV. Specifically, we adopt the ReLU409

activation function in (1) and apply dropout [63] at the end410

TABLE II

DATASET STATISTICS

of each LGD-GCN’s layer, and is only enabled in training. 411

We can then have the output of layer l as {h(l)
i |∀i ∈ V} = 412

Dropout(Fθ (l) ({h(l−1)
i |∀i ∈ V})), where 1 ≤ l ≤ L, h(0)

i 413

is initialized with the raw features hi , L denotes the layer 414

number, and Fθ (l) refers to LGD-GCN’s lth layer. This work 415

focuses on node classification tasks with the output repre- 416

sentations {h(L)
i ∈ Rd |∀i ∈ V}. We denote Yi ∈ RC as 417

the class prediction for node i , which can then be calcu- 418

lated as σ(WT h(L)
i + b) with σ being softmax and sig- 419

moid, respectively, for single-label (multiclass) and multil- 420

abel node classification, where W ∈ Rd×C , b ∈ RC , and 421

C denotes the number of class. Suppose we have training 422

set Vtrn and the ground truth label set {Yi ∈ RC |∀i ∈ 423

Vtrn} in one hot encoding. Then, the loss for classification 424

task Lt can be expressed as −(1/|Vtrn|) ∑Vtrn
i Y

T
i log(Yi ) and 425

−(1/|Vtrn|) ∑Vtrn
i [YT

i log((Yi)) + (1 − Yi)
T log(1 − Yi )] for 426

single-label (multiclass) and multilabel node classification, 427

separately. Combing the derived regularization terms in (4) 428

and (6), we have the final optimization objective 429

Ltotal = Lt +
L∑

l=1

λ(l)
(
λspaceL(l)

space + λdivL(l)
div

)
(8) 430

where L(l)
space and L(l)

div are the regularization terms calculated 431

in the lth layer, λspace and λdiv are the corresponding regu- 432

larization coefficients, and λ(l) is taken as 10l−L to grow the 433

impact of L(l)
space and L(l)

div as the layer goes deeper within a 434

proper range. 435

E. Computational Analysis 436

In this section, we provide a brief computational analysis 437

of the proposed LGD-GCN. Compared with DisenGCN in 438

training, our LGD-GCN additionally needs to compute the 439

means and covariance matrixes of Gaussian mixtures in (4). 440

In our work, instead of learning them with stochastic gradient, 441

we employ iterative updating with newly computed values 442

from latent features as detailed in Algorithm 2. This opti- 443

mization technique is not unique to our work but has been 444

widely adopted in multiple research fields [64]–[66]. It not 445

only enables a lighter computational cost in a low-dimensional 446

latent space but also provides a stable convergent property as 447

empirically verified in our experiments. On the other hand, 448

we have theoretically analyzed the time complexity of our 449

model as O( f d|V| + 2|E |d + (|V| + (d − 1)k)|V|), where 450

the overhead part compared with DisenGCN is O((|V| + 451

(d − 1)k)|V|) brought by the inference of latent graphs. 452

It suggests that the additional computational cost is mostly 453
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influenced by data size, of which the empirical study is pro-454

vided in Sections IV-A–IV-E. We argue that our proposed455

LGD-GCN is still reasonably efficient in practice, especially456

when we consider the significant performance gains as verified457

in our experiments.458

IV. EXPERIMENTS459

In this section, we show the effectiveness of our LGD-GCN460

with experiments on five real-world and one synthetic datasets461

in node classification and factor disentanglement. We also462

study the convergence behavior and computational complexity463

of our model in comparison with DisenGCN. Finally, parame-464

ter sensitivity and module ablation study are provided.465

A. Experimental Setup466

1) Real-World Datasets: Blogcatalog [67] is a community467

of online blogging where users are connected by following468

each other, labeled by predefined categories of interests, and469

given features generated based on their personal descriptions.470

Flickr [67] is a multimedia sharing platform, where the users471

follow each other online with interest tags and joined groups,472

respectively, being their features and labels. Cora, Citeseer,473

and Pubmed [68] are three typically sparse citation networks474

whose average neighborhood sizes are 3.9, 2.8, and 4.5,475

respectively. Their nodes are documents connected by undi-476

rected citations and assigned with one topic for each as well as477

features of bags-of-words. Data statistics are listed in Table II.478

2) Synthetic Dataset: To investigate the behavior of479

LGD-GCN on graphs with an arbitrary number of latent fac-480

tors, we also construct synthetic graphs. In detail, we first481

generate m Erdős-Rényi random graphs with 1000 nodes and482

16 classes, where nodes connect each other with probability483

p if they are in the same class, with probability q otherwise.484

Then, we merge these generated graphs, by summing the485

adjacency matrix and turning the element-value bigger than486

zero to one, to obtain the final synthetic graphs with m latent487

factors. There are 16 × m classes, and each node is assigned488

with m labels according to the original ones in the m random489

graphs. The rows of the adjacency matrix are taken as the node490

representations. Following [17], we set q to 3e−5 and tune p491

value such that the average neighborhood size is around 40.492

3) Baselines: We compare our model with a number of493

mainstream GCN methods, including the state-of-the-arts,494

as the baselines: 1) MoNet [69] makes the first attempt to495

generalize convolutional neural networks to non-Euclidean496

graph data; 2) GCN [6] approximates the graph Laplacian with497

Chebyshev expansion; 3) GraphSAGE [10] is an inductive498

framework for large graph learning where we only consider499

one of its variant with GCN aggregator; 4) GAT [11] com-500

bines the attention mechanism with graph neural networks501

to aggregate information with important neighbors; 5) simple502

graph convolution (SGC) [12] simplifies GCN by removing503

nonlinearities; 6) JK-Net [13] leverage multihop neighborhood504

of nodes to capture structure-aware information; 7) Disen-505

GCN [17] partitions node neighborhood to learn disentangled506

node representations; 8) IPGDN [18] further extends Dis-507

enGCN [17] with promoted independence between different508

TABLE III

MODEL HYPERPARAMETERS

factors; and 9) FactorGCN [47] employs a graph factorization 509

to disentangle different graph aspects. 510

4) Implementation Details: For all the baselines and our 511

model, we set d = 64 as the hidden dimension for a fair 512

comparison, and tune the hyperparameters on the valida- 513

tion split of each dataset using Optuna [70] for efficiency. 514

Following DisenGCN, we set T = 7 as the number of 515

routing iterations. For semisupervised node classification on 516

real-world datasets, we apply dropout ∼ {0, 0.05, . . . , 1} 517

with step 0.05, learning rate ∼ [1e−3, 5e−1], weight decay 518

∼ [1e−4, 5e−1], update rate ∼ [0.1, 0.9] for μm and �m , 519

the number of layers ∼ {1, 2, . . . , 10}, the number of channel 520

M ∼ {2, 4, . . . , 16} with step 2, and m
(d/m)� as the hidden 521

dimension in our model when m is not divisible by d . For 522

multilabel classification on the synthetic dataset, with a slight 523

difference, we apply learning rate ∼ [5e−4, 5e−3], and weight 524

decay ∼ [1e−3, 1e−2]. With the best hyperparame- 525

ters, we train models within 1000 epochs using the 526

early-stopping strategy with patience of 100 epochs and 527

report the average performance in ten runs on the test 528

split. For reproducibility, we specify our used hyperparame- 529

ters in Table III, and our implementation can be found at 530

https://github.com/jingweio/LGD-GCN. 531

B. Quantitative Evaluation 532

In this section, we evaluate our model quantitatively in tasks 533

of semisupervised node classification and multilabel node clas- 534

sification. 535

1) Semisupervised Node Classification: We consider two 536

settings of data split, to avoid the experimental bias as argued 537

in [72] and [73]. One is a standard split. For Blogcatalog and 538

Flickr, we adopt the split from [46] as their standard splits. 539

For Cora, Citeseer, and Pubmed, we follow the experimental 540

protocol established by [6] and [11]. Another is multiple ran- 541

dom splits for cross validation. For each dataset, we uniformly 542

sample the same number of instances as the standard split 543

and repeat it ten times. Then, the hyperparameters are only 544

searched over the standard split, and the average performance 545

in 100 runs is reported with ten random splits and ten dif- 546

ferent model initializations. The classification accuracies are 547

summarized in Table IV. 548

As observed, for social networks, the disentangled 549

approaches including DisenGCN, IPGDN, and ours outper- 550

form the holistic approaches. This is partly because the users 551

tend to have multiple different relationships (family, friend, 552
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TABLE IV

SEMISUPERVISED CLASSIFICATION ACCURACIES (%) ON THE STANDARD SPLIT (LEFT) AND MULTIPLE RANDOM SPLITS (RIGHT)

TABLE V

MICRO-F1 (LEFT) AND MACRO-F1 (RIGHT) SCORES (%) ON SYNTHETIC GRAPHS WITH DIFFERENT NUMBER OF LATENT FACTORS

Fig. 4. Feature correlation analysis. The latent features are obtained on the test split of the graph, synthesized with four latent factors, by the trained DisenGCN
and our LGD-GCN. LGD-GCN∗ denotes LGD-GCN w/o the module LG. (a) DisenGCN (first Layer). (b) DisenGCN (second Layer). (c) LGD-GCN (first
Layer). (d) LGD-GCN (second Layer). (e) LGD-GCN∗ (second Layer).

and/or college) between their neighbors, and learning represen-553

tations that recognize and disentangle the underlying factors554

could better describe the users from different angles. Although555

FactorGCN also considers different types of node relations,556

it fails on some networks and even performs worse than557

the holistic approaches. One main reason is that FactorGCN558

focuses on capturing different graph aspects from a global559

view while ignoring the local details important for node-level560

classification. On the other hand, our model achieves signif-561

icant performance gains upon the disentangled state-of-the-562

arts averagely by 7.5% and 7.2% on Blogcatalog and Flickr,563

respectively. This demonstrates the benefits brought by fur-564

ther capturing rich global information. Importantly, real-world565

social networks may be updated quickly, i.e., the users could566

frequently follow, or meet new friends. Therefore, the static567

network in a certain state cannot reflect the “true” relations568

between users. In this circumstance, the proposed LGD-GCN569

is able to connect the far-reached but potentially related users570

by globally inferring the underlying graph structures, which571

may explain why significant performance improvement can be572

attained. In particular, for citation networks which are typically573

sparse, our model is able to boost the performance by a margin574

of 1.9% on average, showing its effectiveness in absorbing575

extra information from a global range.576

2) Multilabel Node Classification: To validate the disen-577

tangling ability of the proposed LGD-GCN quantitatively,578

we apply MLP, i.e., a multilayer perception, GCN, DisenGCN,579

and our model to train synthetic graphs with a various number580

of latent factors for multilabel node classification. Specifically, 581

we randomly split each dataset into train/validation/test as 582

0.6/0.2/0.2, measured model performance in both micro-F1 583

and macro-F1 scores, and report them in Table V. From 584

the results, our model consistently outperforms others while 585

varying the number of latent factors. Especially, LGD-GCN 586

significantly outperforms DisenGCN by (Micro-F1) 4.6% and 587

(Macro-F1) 4.3% on the synthetic graph with six latent 588

factors. 589

C. Qualitative Evaluation 590

To gain more understanding of our proposed method, 591

we conduct various qualitative experiments to take closer 592

examinations in parallel with DisenGCN. These evaluations 593

focus on the disentanglement performance and the learned 594

embeddings’ informativeness. 595

1) Visualization of Disentangled Representations: We plot 596

in Fig. 1(b) a 2-D visualization of the learned representations 597

w.r.t. four latent factors on the synthetic graph. Compared with 598

that of DisenGCN in Fig. 1(a), our model displays a highly 599

disentangled pattern, evidenced by the intrafactor compactness 600

and interfactor separability. It also indicates that the common 601

type of factor-specific information is captured, and globally 602

shared by all nodes. 603

2) Correlation of Disentangled Features: The correlation 604

analysis of the latent features learned by DisenGCN and our 605

model is presented in Fig. 4. As observed, our model show- 606

cases a more blockwise correlation pattern, which becomes 607
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Fig. 5. Visualization of node embeddings learned by DisenGCN. (a) Blogcatalog. (b) Flickr. (c) Cora. (d) Citeseer.

Fig. 6. Visualization of node embeddings learned by LGD-GCN (ours). (a) Blogcatalog. (b) Flickr. (c) Cora. (d) Citeseer.

Fig. 7. Convergence behavior of DisenGCN and the proposed LGD-GCN. (a) Blogcatalog. (b) Flickr. (c) Cora. (d) Citeseer. (e) Pubmed.

denser in the second layer. We also analyze the feature cor-608

relation of our model while ablating the module LG, denoted609

as LGD-GCN∗ in Fig. 4(e). Though the blockwise pattern in610

Fig. 4(e) can still be observed, it is obviously weaker than that611

of LGD-GCN in Fig. 4(d). This verifies the significance of LG.612

The captured global information, specific to each latent factor,613

strengthens the correlation between the intrafactor features and614

enhances the interpretability and disentangling power.615

3) Visualization of Node Embeddings: Figs. 5 and 6 provide616

an intuitive comparison between the learned node embeddings617

of DisenGCN and our model. It can be observed that the pro-618

posed LGD-GCN generally learns better node embeddings and619

exhibits a high intraclass similarity and interclass difference.620

By absorbing rich global information specific to each latent621

factor, our model learns more informative node aspects, and622

thus, leads to superior discriminative power.623

D. Convergence Behavior and Complexity Analysis624

In Fig. 7, we plot the evolution of the testing accuracy for625

DisenGCN and the proposed LGD-GCN. In general, Disen-626

GCN fluctuates significantly by epochs and is prone to get627

stuck into a local optimum, while our model appears more628

stable and able to converge to a higher peak. For complex-629

ity analysis, we first report the average training time (ms)630

per epoch in Table VI. On average, LGD-GCN is around631

TABLE VI

AVERAGE TRAINING TIME (MS) PER EPOCH

11.4% and 53.3% slower than DisenGCN on small datasets 632

(Cora and Citeseer) and large datasets (Pubmed, Blogcata- 633

log, and Flickr). That is mainly caused by the computation 634

of latent graphs with the complexity of O(|V|2). However, 635

with the significant performance gain, we believe that such 636

costs may be worthwhile especially when the computational 637

capability and stability are being steadily empowered. On the 638

other hand, as we have the time complexity of our model as 639

O( f d|V| + 2|E |d + (|V| + (d − 1)k)|V|), there should be no 640

tradeoff between the channel number M and running time. 641

However, our experimental findings show that the inference 642

time of LGD-GCN gets approximately 0.02 ms increased with 643

one channel added, which is mainly owing to the additional 644

time consumed by looping channels in our implementation. 645

E. Parameter and Ablation Analysis 646

In this section, we investigate the sensitivity of three essen- 647

tial hyperparameters and perform ablation analysis over the 648

proposed different modules. 649

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Liverpool. Downloaded on August 26,2022 at 14:04:03 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Analysis of parameter λspace . (a) Blogcatalog. (b) Flickr. (c) Cora. (d) Citeseer. (e) Pubmed.

Fig. 9. Analysis of parameter λdiv. (a) Blogcatalog. (b) Flickr. (c) Cora. (d) Citeseer. (e) Pubmed.

Fig. 10. Analysis of parameter k. (a) Blogcatalog. (b) Flickr. (c) Cora. (d) Citeseer. (e) Pubmed.

Fig. 11. Analysis of parameter M. (a) Blogcatalog. (b) Flickr. (c) Cora. (d) Citeseer. (e) Pubmed.

Fig. 12. Analysis of parameter M on a synthetic graph.

1) Analysis of Space Modeling Coefficient λspace: We plot650

the learning performance of our model w/o Ldiv while651

varying λspace in (8). For example, we adopt a range of652

{0, 0.01, 0.05, 0.1, 0.5, 1} on Flickr and report the learning653

performance in Fig. 8(b). In general, the accuracy goes up654

first and then drops; a promising result can be attained by655

choosing λspace from [0.05, 0.5]. Similar trends can also be656

observed in the other four datasets.657

2) Analysis of Diversity Coefficient λdiv: We also examine658

the effect of λdiv by varying its value. For example, λdiv is659

changed from 0 to 0.5 on Citeseer. The results are shown660

in Fig. 9. Basically, λdiv is relatively robust within [0, 0.1]661

for all the datasets except for Flickr whose stable range is662

[0, 0.05]. Once out of that range, the results drop to a low663

point, suggesting that overly emphasizing diversity could be664

harmful to model performance.665

3) Analysis of Density Parameter k: Fig. 10 displays the666

impact of k. The results are relatively stable while selecting667

k around 4 for Cora as well as Citeseer and 10 for the rest.668

However, as k is larger, the accuracy performance deteriorates669

obviously. Such a trend may be caused by noisy edges in cases670

of a large k, which leads to inappropriate information sharing.671

4) Analysis of Channel Number M: We test the effect of672

channel number M on real-world datasets in Fig. 11. As can673

be observed, LGD-GCN attains its highest accuracy with the674

TABLE VII

ABLATION ANALYSIS

channel number around 16 for Blogcatalog and 8 for Flickr. 675

In comparison, the ideal channel number is relatively smaller 676

on citation networks, where LGD-GCN performs the best 677

with M being 4. We also study its influence on the synthetic 678

graph with eight predefined factors as a typical example. From 679

Fig. 12, our model performs the best when the number of 680

channels is around 8, the true number of the latent factors. 681

5) Ablation Analysis: We validate the contributions of the 682

proposed modules denoted by Lspace, Ldiv, and LG in node 683

classification. From Table VII, we can see that both modules 684

can independently and jointly improve the accuracy. 685

V. CONCLUSION 686

We argue that most GCNs have inherited issues due to 687

their entangled representations and/or heavy reliance on local 688

graph information. Motivated by this problem, we propose 689

a novel framework termed LGD-GCN to learn disentangled 690

node representations both locally and globally. LGD-GCN is 691

capable of disclosing the hidden node relations pertinent to 692

each latent factor. Specifically, we first present a disentangled 693

latent continuous space with Gaussian mixtures, from which 694

various new graphs w.r.t. different factors can be learned and 695

disentangled. These graphs reflect the latent structure infor- 696

mation, i.e., the hidden relations between nodes, overall from 697

different angles. We then utilize them to aggregate and capture 698

the factor-specific information globally, which strengthens the 699
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intrafactor consistency. Moreover, to avoid the mistakenly700

preserved confounding of the factors, we also promote the701

interfactor diversity by a novelly designed regularizer along702

with the latent space modeling. Extensive experiments over703

synthetic and five real-world datasets well demonstrate the704

improved classification accuracy and disentangling ability over705

the state-of-the-arts both quantitatively and qualitatively.706

In this article, we model the disentangled latent space707

with the Gaussian mixture model and weigh each mixture708

equally for simplicity. Despite its efficiency, this may not be709

optimal or even valid in many real scenarios. In the future,710

it would be important and beneficial to investigate a more711

flexible and applicable way of describing the disentangled712

latent space. Additionally, compared with other disentangled713

state-of-the-arts only relying on the local graph information,714

our LGD-GCN shows a higher algorithm complexity because715

of its denser computational cost of inferring the latent graph716

information globally. Therefore, another interesting direction717

for future work is to deploy a lighter algorithm to learn the718

latent graphs without losing informativeness.719
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