15,486 research outputs found

    Algorithms for the indefinite and definite summation

    Full text link
    The celebrated Zeilberger algorithm which finds holonomic recurrence equations for definite sums of hypergeometric terms F(n,k)F(n,k) is extended to certain nonhypergeometric terms. An expression F(n,k)F(n,k) is called a hypergeometric term if both F(n+1,k)/F(n,k)F(n+1,k)/F(n,k) and F(n,k+1)/F(n,k)F(n,k+1)/F(n,k) are rational functions. Typical examples are ratios of products of exponentials, factorials, Γ\Gamma function terms, bin omial coefficients, and Pochhammer symbols that are integer-linear with respect to nn and kk in their arguments. We consider the more general case of ratios of products of exponentials, factorials, Γ\Gamma function terms, binomial coefficients, and Pochhammer symbols that are rational-linear with respect to nn and kk in their arguments, and present an extended version of Zeilberger's algorithm for this case, using an extended version of Gosper's algorithm for indefinite summation. In a similar way the Wilf-Zeilberger method of rational function certification of integer-linear hypergeometric identities is extended to rational-linear hypergeometric identities

    Computer algebra tools for Feynman integrals and related multi-sums

    Full text link
    In perturbative calculations, e.g., in the setting of Quantum Chromodynamics (QCD) one aims at the evaluation of Feynman integrals. Here one is often faced with the problem to simplify multiple nested integrals or sums to expressions in terms of indefinite nested integrals or sums. Furthermore, one seeks for solutions of coupled systems of linear differential equations, that can be represented in terms of indefinite nested sums (or integrals). In this article we elaborate the main tools and the corresponding packages, that we have developed and intensively used within the last 10 years in the course of our QCD-calculations

    Refined Holonomic Summation Algorithms in Particle Physics

    Full text link
    An improved multi-summation approach is introduced and discussed that enables one to simultaneously handle indefinite nested sums and products in the setting of difference rings and holonomic sequences. Relevant mathematics is reviewed and the underlying advanced difference ring machinery is elaborated upon. The flexibility of this new toolbox contributed substantially to evaluating complicated multi-sums coming from particle physics. Illustrative examples of the functionality of the new software package RhoSum are given.Comment: Modified Proposition 2.1 and Corollary 2.

    Lattice point problems and distribution of values of quadratic forms

    Full text link
    For d-dimensional irrational ellipsoids E with d >= 9 we show that the number of lattice points in rE is approximated by the volume of rE, as r tends to infinity, up to an error of order o(r^{d-2}). The estimate refines an earlier authors' bound of order O(r^{d-2}) which holds for arbitrary ellipsoids, and is optimal for rational ellipsoids. As an application we prove a conjecture of Davenport and Lewis that the gaps between successive values, say s<n(s), s,n(s) in Q[Z^d], of a positive definite irrational quadratic form Q[x], x in R^d, are shrinking, i.e., that n(s) - s -> 0 as s -> \infty, for d >= 9. For comparison note that sup_s (n(s)-s) 0, for rational Q[x] and d>= 5. As a corollary we derive Oppenheim's conjecture for indefinite irrational quadratic forms, i.e., the set Q[Z^d] is dense in R, for d >= 9, which was proved for d >= 3 by G. Margulis in 1986 using other methods. Finally, we provide explicit bounds for errors in terms of certain characteristics of trigonometric sums.Comment: 51 pages, published versio

    Recent Symbolic Summation Methods to Solve Coupled Systems of Differential and Difference Equations

    Full text link
    We outline a new algorithm to solve coupled systems of differential equations in one continuous variable xx (resp. coupled difference equations in one discrete variable NN) depending on a small parameter ϵ\epsilon: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ϵ\epsilon if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ϵ\epsilon-expansion of a ladder graph with 6 massive fermion lines

    The Abel-Zeilberger Algorithm

    Full text link
    We use both Abel's lemma on summation by parts and Zeilberger's algorithm to find recurrence relations for definite summations. The role of Abel's lemma can be extended to the case of linear difference operators with polynomial coefficients. This approach can be used to verify and discover identities involving harmonic numbers and derangement numbers. As examples, we use the Abel-Zeilberger algorithm to prove the Paule-Schneider identities, the Apery-Schmidt-Strehl identity, Calkin's identity and some identities involving Fibonacci numbers.Comment: 18 page
    corecore