4,301 research outputs found

    An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages

    Get PDF
    This paper studies the problem of frequency regulation in power grids under unknown and possible time-varying load changes, while minimizing the generation costs. We formulate this problem as an output agreement problem for distribution networks and address it using incremental passivity and distributed internal-model-based controllers. Incremental passivity enables a systematic approach to study convergence to the steady state with zero frequency deviation and to design the controller in the presence of time-varying voltages, whereas the internal-model principle is applied to tackle the uncertain nature of the loads.Comment: 16 pages. Abridged version appeared in the Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS 2014, Groningen, the Netherlands. Submitted in December 201

    Global Tracking Passivity--based PI Control of Bilinear Systems and its Application to the Boost and Modular Multilevel Converters

    Full text link
    This paper deals with the problem of trajectory tracking of a class of bilinear systems with time--varying measurable disturbance. A set of matrices {A,B_i} has been identified, via a linear matrix inequality, for which it is possible to ensure global tracking of (admissible, differentiable) trajectories with a simple linear time--varying PI controller. Instrumental to establish the result is the construction of an output signal with respect to which the incremental model is passive. The result is applied to the boost and the modular multilevel converter for which experimental results are given.Comment: 9 pages, 10 figure

    Integral control of port-Hamiltonian systems: non-passive outputs without coordinate transformation

    Full text link
    In this paper we present a method for the addition of integral action to non-passive outputs of a class of port-Hamiltonian systems. The proposed integral controller is a dynamic extension, constructed from the open loop system, such that the closed loop preserves the port-Hamiltonian form. It is shown that the controller is able to reject the effects of both matched and unmatched disturbances, preserving the regulation of the non-passive outputs. Previous solutions to this problem have relied on a change of coordinates whereas the presented solution is developed using the original state vector and, therefore, retains its physical interpretation. In addition, the resulting closed loop dynamics have a natural interpretation as a Control by Interconnection scheme.Comment: 8 pages, 2 figure

    Modeling and Control of High-Voltage Direct-Current Transmission Systems: From Theory to Practice and Back

    Full text link
    The problem of modeling and control of multi-terminal high-voltage direct-current transmission systems is addressed in this paper, which contains five main contributions. First, to propose a unified, physically motivated, modeling framework - based on port-Hamiltonian representations - of the various network topologies used in this application. Second, to prove that the system can be globally asymptotically stabilized with a decentralized PI control, that exploits its passivity properties. Close connections between the proposed PI and the popular Akagi's PQ instantaneous power method are also established. Third, to reveal the transient performance limitations of the proposed controller that, interestingly, is shown to be intrinsic to PI passivity-based control. Fourth, motivated by the latter, an outer-loop that overcomes the aforementioned limitations is proposed. The performance limitation of the PI, and its drastic improvement using outer-loop controls, are verified via simulations on a three-terminals benchmark example. A final contribution is a novel formulation of the power flow equations for the centralized references calculation
    corecore