18,240 research outputs found

    An empirical learning-based validation procedure for simulation workflow

    Full text link
    Simulation workflow is a top-level model for the design and control of simulation process. It connects multiple simulation components with time and interaction restrictions to form a complete simulation system. Before the construction and evaluation of the component models, the validation of upper-layer simulation workflow is of the most importance in a simulation system. However, the methods especially for validating simulation workflow is very limit. Many of the existing validation techniques are domain-dependent with cumbersome questionnaire design and expert scoring. Therefore, this paper present an empirical learning-based validation procedure to implement a semi-automated evaluation for simulation workflow. First, representative features of general simulation workflow and their relations with validation indices are proposed. The calculation process of workflow credibility based on Analytic Hierarchy Process (AHP) is then introduced. In order to make full use of the historical data and implement more efficient validation, four learning algorithms, including back propagation neural network (BPNN), extreme learning machine (ELM), evolving new-neuron (eNFN) and fast incremental gaussian mixture model (FIGMN), are introduced for constructing the empirical relation between the workflow credibility and its features. A case study on a landing-process simulation workflow is established to test the feasibility of the proposed procedure. The experimental results also provide some useful overview of the state-of-the-art learning algorithms on the credibility evaluation of simulation models

    Towards Other Planetary Systems (TOPS): A technology needs identification workshop

    Get PDF
    The workshop identified a strong commonality between the technology needs for NASA's TOPS program and the technology needs that were identified for NASA's astrophysics program through its Astrotech 21 survey. The workshop encourages NASA to have the Solar System Exploration and Astrophysics Div. work cooperatively to share in technology studies that are common to both programs, rather than to conduct independent studies. It was also clear, however, that there are technology needs specific to TOPS, and these should be pursued by the Solar System Exploration Div. There are two technology areas that appear to be particularly critical to realizing the ultimate performance that is being sought under the TOPS program, these areas are metrology and optics. The former is critical in calibration and verification of instrument performance, while the latter is needed to provide optical systems of sufficient quality to conduct a search for and characterization of other planetary systems at the more extreme levels of performance identified in TOPS program

    On Timing Model Extraction and Hierarchical Statistical Timing Analysis

    Full text link
    In this paper, we investigate the challenges to apply Statistical Static Timing Analysis (SSTA) in hierarchical design flow, where modules supplied by IP vendors are used to hide design details for IP protection and to reduce the complexity of design and verification. For the three basic circuit types, combinational, flip-flop-based and latch-controlled, we propose methods to extract timing models which contain interfacing as well as compressed internal constraints. Using these compact timing models the runtime of full-chip timing analysis can be reduced, while circuit details from IP vendors are not exposed. We also propose a method to reconstruct the correlation between modules during full-chip timing analysis. This correlation can not be incorporated into timing models because it depends on the layout of the corresponding modules in the chip. In addition, we investigate how to apply the extracted timing models with the reconstructed correlation to evaluate the performance of the complete design. Experiments demonstrate that using the extracted timing models and reconstructed correlation full-chip timing analysis can be several times faster than applying the flattened circuit directly, while the accuracy of statistical timing analysis is still well maintained

    Towards an infrastructure for preparation and control of intelligent automation systems

    Get PDF
    In an attempt to handle some of the challenges of modern production, intelligent automation systems offer solutions that are flexible, adaptive, and collaborative. Contrary to traditional solutions, intelligent automation systems emerged just recently and thus lack the supporting tools and infrastructure that traditional systems nowadays take for granted. To support efficient development, commissioning, and control of such systems, this thesis summarizes various lessons learned during years of implementation. Based on what was learned, this thesis investigates key features of infrastructure for modern and flexible intelligent automation systems, as well as a number of important design solutions. For example, an important question is raised whether to decentralize the global state or to give complete access to the main controller.Moreover, in order to develop such systems, a framework for virtual preparation and commissioning is presented, with the main goal to offer support for engineers. As traditional virtual commissioning solutions are not intended for preparing highly flexible, collaborative, and dynamic systems, this framework aims to provide some of the groundwork and point to a direction for fast and integrated preparation and virtual commissioning of such systems.Finally, this thesis summarizes some of the investigations made on planning as satisfiability, in order to evaluate how different methods improve planning performance. Throughout the thesis, an industrial material kitting use case exemplifies presented perspectives, lessons learned, and frameworks

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Multibody modeling and verification

    Get PDF
    A summary of a ten week project on flexible multibody modeling, verification and control is presented. Emphasis was on the need for experimental verification. A literature survey was conducted for gathering information on the existence of experimental work related to flexible multibody systems. The first portion of the assigned task encompassed the modeling aspects of flexible multibodies that can undergo large angular displacements. Research in the area of modeling aspects were also surveyed, with special attention given to the component mode approach. Resulting from this is a research plan on various modeling aspects to be investigated over the next year. The relationship between the large angular displacements, boundary conditions, mode selection, and system modes is of particular interest. The other portion of the assigned task was the generation of a test plan for experimental verification of analytical and/or computer analysis techniques used for flexible multibody systems. Based on current and expected frequency ranges of flexible multibody systems to be used in space applications, an initial test article was selected and designed. A preliminary TREETOPS computer analysis was run to ensure frequency content in the low frequency range, 0.1 to 50 Hz. The initial specifications of experimental measurement and instrumentation components were also generated. Resulting from this effort is the initial multi-phase plan for a Ground Test Facility of Flexible Multibody Systems for Modeling Verification and Control. The plan focusses on the Multibody Modeling and Verification (MMV) Laboratory. General requirements of the Unobtrusive Sensor and Effector (USE) and the Robot Enhancement (RE) laboratories were considered during the laboratory development

    A lean assessment tool based on systems dynamics

    Get PDF
    Lean manufacturing is synonymous with a set of practices used in the identification and elimination of waste related with the manufacturing system, and focusing on what creates value for the customer. Lean assessment tools enable an overall audit of the performance of lean practices, and so are able to identify lean improvements. The interactions between lean practices and their improvements are often latent and need to be investigated: a systems approach can be used to disclose these hidden interactions. In this article, system dynamics is used as a lean assessment tool to assess and improve lean performance for a print packaging manufacturing system
    corecore