10,095 research outputs found

    Incremental stability of hybrid dynamical systems

    Get PDF
    International audienceThe analysis of incremental stability typically involves measuring the distance between any two solutions of a given dynamical system at the same time instant, which is problematic when studying hybrid dynamical systems. Indeed, hybrid systems generate solutions defined with respect to hybrid time instances (that consists of both the continuous time elapsed and the discrete time, which is the number of jumps experienced so far), and two solutions of the same hybrid system may not be defined at the same hybrid time instant. To overcome this issue, we present novel definitions of incremental stability for hybrid systems based on graphical closeness of solutions. As we will show, defining incremental asymptotic stability with respect to the hybrid time yields a restrictive notion, such that we also investigate incremental asymptotic stability notions with respect to the continuous time only or the discrete time only, respectively. In this manner, two (effectively dual) incremental stability notions are attained, called jump-and flow incremental asymptotic stability. To present Lyapunov conditions for these two notions, in both cases, we resort to an extended hybrid system and we prove that the stability of a well-defined set for this extended system implies incremental stability of the original system. We can then use available Lyapunov conditions to infer the set stability of the extended system. Various examples are provided throughout the paper, including an event-triggered control application and a bouncing ball system with Zeno behaviour, that illustrate incremental stability with respect to continuous time or discrete time, respectively

    Backstepping controller synthesis and characterizations of incremental stability

    Full text link
    Incremental stability is a property of dynamical and control systems, requiring the uniform asymptotic stability of every trajectory, rather than that of an equilibrium point or a particular time-varying trajectory. Similarly to stability, Lyapunov functions and contraction metrics play important roles in the study of incremental stability. In this paper, we provide characterizations and descriptions of incremental stability in terms of existence of coordinate-invariant notions of incremental Lyapunov functions and contraction metrics, respectively. Most design techniques providing controllers rendering control systems incrementally stable have two main drawbacks: they can only be applied to control systems in either parametric-strict-feedback or strict-feedback form, and they require these control systems to be smooth. In this paper, we propose a design technique that is applicable to larger classes of (not necessarily smooth) control systems. Moreover, we propose a recursive way of constructing contraction metrics (for smooth control systems) and incremental Lyapunov functions which have been identified as a key tool enabling the construction of finite abstractions of nonlinear control systems, the approximation of stochastic hybrid systems, source-code model checking for nonlinear dynamical systems and so on. The effectiveness of the proposed results in this paper is illustrated by synthesizing a controller rendering a non-smooth control system incrementally stable as well as constructing its finite abstraction, using the computed incremental Lyapunov function.Comment: 23 pages, 2 figure

    Symbolic models for nonlinear control systems without stability assumptions

    Full text link
    Finite-state models of control systems were proposed by several researchers as a convenient mechanism to synthesize controllers enforcing complex specifications. Most techniques for the construction of such symbolic models have two main drawbacks: either they can only be applied to restrictive classes of systems, or they require the exact computation of reachable sets. In this paper, we propose a new abstraction technique that is applicable to any smooth control system as long as we are only interested in its behavior in a compact set. Moreover, the exact computation of reachable sets is not required. The effectiveness of the proposed results is illustrated by synthesizing a controller to steer a vehicle.Comment: 11 pages, 2 figures, journa

    Bounded Verification with On-the-Fly Discrepancy Computation

    Get PDF
    Simulation-based verification algorithms can provide formal safety guarantees for nonlinear and hybrid systems. The previous algorithms rely on user provided model annotations called discrepancy function, which are crucial for computing reachtubes from simulations. In this paper, we eliminate this requirement by presenting an algorithm for computing piece-wise exponential discrepancy functions. The algorithm relies on computing local convergence or divergence rates of trajectories along a simulation using a coarse over-approximation of the reach set and bounding the maximal eigenvalue of the Jacobian over this over-approximation. The resulting discrepancy function preserves the soundness and the relative completeness of the verification algorithm. We also provide a coordinate transformation method to improve the local estimates for the convergence or divergence rates in practical examples. We extend the method to get the input-to-state discrepancy of nonlinear dynamical systems which can be used for compositional analysis. Our experiments show that the approach is effective in terms of running time for several benchmark problems, scales reasonably to larger dimensional systems, and compares favorably with respect to available tools for nonlinear models.Comment: 24 page
    corecore