287 research outputs found

    Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm

    Get PDF
    In recent years, a variety of relevance feedback (RF) schemes have been developed to improve the performance of content-based image retrieval (CBIR). Given user feedback information, the key to a RF scheme is how to select a subset of image features to construct a suitable dissimilarity measure. Among various RF schemes, biased discriminant analysis (BDA) based RF is one of the most promising. It is based on the observation that all positive samples are alike, while in general each negative sample is negative in its own way. However, to use BDA, the small sample size (SSS) problem is a big challenge, as users tend to give a small number of feedback samples. To explore solutions to this issue, this paper proposes a direct kernel BDA (DKBDA), which is less sensitive to SSS. An incremental DKBDA (IDKBDA) is also developed to speed up the analysis. Experimental results are reported on a real-world image collection to demonstrate that the proposed methods outperform the traditional kernel BDA (KBDA) and the support vector machine (SVM) based RF algorithms

    Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    Get PDF
    Accomplishments are described for the first year effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) the results of the selective literature survey; (2) 8-, 16-, and 20-noded isoparametric plate and shell elements; (3) large deformation structural analysis; (4) eigenanalysis; (5) anisotropic heat transfer analysis; and (6) anisotropic electromagnetic analysis

    Incremental Principal Component Analysis Exact implementation and continuity corrections

    Full text link
    This paper describes some applications of an incremental implementation of the principal component analysis (PCA). The algorithm updates the transformation coefficients matrix on-line for each new sample, without the need to keep all the samples in memory. The algorithm is formally equivalent to the usual batch version, in the sense that given a sample set the transformation coefficients at the end of the process are the same. The implications of applying the PCA in real time are discussed with the help of data analysis examples. In particular we focus on the problem of the continuity of the PCs during an on-line analysis.Comment: accepted at http://www.icinco.org

    Information Surfaces in Systems Biology and Applications to Engineering Sustainable Agriculture

    Full text link
    Systems biology of plants offers myriad opportunities and many challenges in modeling. A number of technical challenges stem from paucity of computational methods for discovery of the most fundamental properties of complex dynamical systems. In systems engineering, eigen-mode analysis have proved to be a powerful approach. Following this philosophy, we introduce a new theory that has the benefits of eigen-mode analysis, while it allows investigation of complex dynamics prior to estimation of optimal scales and resolutions. Information Surfaces organizes the many intricate relationships among "eigen-modes" of gene networks at multiple scales and via an adaptable multi-resolution analytic approach that permits discovery of the appropriate scale and resolution for discovery of functions of genes in the model plant Arabidopsis. Applications are many, and some pertain developments of crops that sustainable agriculture requires.Comment: 24 Pages, DoCEIS 1

    Incremental learning in autonomous systems: evolving connectionist systems for on-line image and speech recognition

    Get PDF
    The paper presents an integrated approach to incremental learning in autonomous systems, that includes both pattern recognition and feature selection. The approach utilizes evolving connectionist systems (ECoS) and is applied on on-line image and speech pattern learning and recognition tasks. The experiments show that ECoS are a suitable paradigm for building autonomous systems for learning and navigation in a new environment using both image and speech modalities. © 2005 IEEE
    corecore