3,039 research outputs found

    Chasing diagrams in cryptography

    Full text link
    Cryptography is a theory of secret functions. Category theory is a general theory of functions. Cryptography has reached a stage where its structures often take several pages to define, and its formulas sometimes run from page to page. Category theory has some complicated definitions as well, but one of its specialties is taming the flood of structure. Cryptography seems to be in need of high level methods, whereas category theory always needs concrete applications. So why is there no categorical cryptography? One reason may be that the foundations of modern cryptography are built from probabilistic polynomial-time Turing machines, and category theory does not have a good handle on such things. On the other hand, such foundational problems might be the very reason why cryptographic constructions often resemble low level machine programming. I present some preliminary explorations towards categorical cryptography. It turns out that some of the main security concepts are easily characterized through the categorical technique of *diagram chasing*, which was first used Lambek's seminal `Lecture Notes on Rings and Modules'.Comment: 17 pages, 4 figures; to appear in: 'Categories in Logic, Language and Physics. Festschrift on the occasion of Jim Lambek's 90th birthday', Claudia Casadio, Bob Coecke, Michael Moortgat, and Philip Scott (editors); this version: fixed typos found by kind reader

    Secure and Privacy-Preserving Average Consensus

    Full text link
    Average consensus is fundamental for distributed systems since it underpins key functionalities of such systems ranging from distributed information fusion, decision-making, to decentralized control. In order to reach an agreement, existing average consensus algorithms require each agent to exchange explicit state information with its neighbors. This leads to the disclosure of private state information, which is undesirable in cases where privacy is of concern. In this paper, we propose a novel approach that enables secure and privacy-preserving average consensus in a decentralized architecture in the absence of any trusted third-parties. By leveraging homomorphic cryptography, our approach can guarantee consensus to the exact value in a deterministic manner. The proposed approach is light-weight in computation and communication, and applicable to time-varying interaction topology cases. A hardware implementation is presented to demonstrate the capability of our approach.Comment: 7 pages, 4 figures, paper is accepted to CPS-SPC'1

    On the Cryptographic Hardness of Local Search

    Get PDF
    We show new hardness results for the class of Polynomial Local Search problems (PLS): - Hardness of PLS based on a falsifiable assumption on bilinear groups introduced by Kalai, Paneth, and Yang (STOC 2019), and the Exponential Time Hypothesis for randomized algorithms. Previous standard model constructions relied on non-falsifiable and non-standard assumptions. - Hardness of PLS relative to random oracles. The construction is essentially different than previous constructions, and in particular is unconditionally secure. The construction also demonstrates the hardness of parallelizing local search. The core observation behind the results is that the unique proofs property of incrementally-verifiable computations previously used to demonstrate hardness in PLS can be traded with a simple incremental completeness property
    • …
    corecore