5 research outputs found

    Increasing Fairness and Efficiency using the MadMac Protocol in Ad Hoc Networks.

    No full text
    International audienceThe IEEE 802.11 MAC layer is known for its unfairness behavior in ad hoc networks. Introducing fairness in the 802.11 MAC protocol may lead to a global throughput decrease. It is still a real challenge to design a fair MAC protocol for ad hoc networks that is distributed, topology independent, that relies on no explicit information exchanges and that is efficient, i.e. that achieves a good aggregate throughput. The MadMac protocol deals with fairness and throughput by maximizing aggregate throughput when unfairness is solved. Fairness provided by MadMac is only based on information provided by the 802.11 MAC layer. MadMac has been tested in many configurations that are known to be unfair and compared with three protocols (IEEE 802.11 and two fair MAC protocols). In these configurations, MadMac provides a good aggregate throughput while solving the fairness issues

    Increasing Fairness and Efficiency Using the MadMac Protocol in Ad Hoc Networks

    No full text
    International audienceThe IEEE 802.11 MAC layer is known for its unfairness behavior in ad hoc networks. Introducing fairness in the 802.11 MAC protocol may lead to a global throughput decrease. It is still a real challenge to design a fair MAC protocol for ad hoc networks that is distributed, topology independent, that relies on no explicit information exchanges and that is efficient, i.e. that achieves a good aggregate throughput. The MadMac protocol deals with fairness and throughput by maximizing aggregate throughput when unfairness is solved. Fairness provided by MadMac is only based on information provided by the 802.11 MAC layer and adds a non-probabilistic modification in 802.11. MadMac has been tested in many configurations that are known to be unfair. In these configurations, MadMac provides a good aggregate throughput while solving the fairness issues

    Road-based routing in vehicular ad hoc networks

    Get PDF
    Vehicular ad hoc networks (VANETs) can provide scalable and cost-effective solutions for applications such as traffic safety, dynamic route planning, and context-aware advertisement using short-range wireless communication. To function properly, these applications require efficient routing protocols. However, existing mobile ad hoc network routing and forwarding approaches have limited performance in VANETs. This dissertation shows that routing protocols which account for VANET-specific characteristics in their designs, such as high density and constrained mobility, can provide good performance for a large spectrum of applications. This work proposes a novel class of routing protocols as well as three forwarding optimizations for VANETs. The Road-Based using Vehicular Traffic (RBVT) routing is a novel class of routing protocols for VANETs. RBVT protocols leverage real-time vehicular traffic information to create stable road-based paths consisting of successions of road intersections that have, with high probability, network connectivity among them. Evaluations of RBVT protocols working in conjunction with geographical forwarding show delivery rate increases as much as 40% and delay decreases as much as 85% when compared with existing protocols. Three optimizations are proposed to increase forwarding performance. First, one- hop geographical forwarding is improved using a distributed receiver-based election of next hops, which leads to as much as 3 times higher delivery rates in highly congested networks. Second, theoretical analysis and simulation results demonstrate that the delay in highly congested networks can be reduced by half by switching from traditional FIFO with Taildrop queuing to LIFO with Frontdrop queuing. Third, nodes can determine suitable times to transmit data across RBVT paths or proactively replace routes before they break using analytical models that accurately predict the expected road-based path durations in VANETs

    IEEE 802.11n WLAN์—์„œ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„ ์กฐ์ ˆ์„ ํ†ตํ•œ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ MAC ํ”„๋กœํ† ์ฝœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ์ตœ์ข…ํ˜ธ.์ตœ๊ทผ ์Šค๋งˆํŠธํฐ, ํƒœ๋ธ”๋ฆฟ PC ๋“ฑ์˜ ๋ฌด์„  ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ์˜ ์‚ฌ์šฉ์ด ๊ธ‰์ฆํ•จ์— ๋”ฐ๋ผ ๋ฌด์„  ๋žœ (wireless local area network (WLAN))์— ๋Œ€ํ•œ ์ˆ˜์š”๊ฐ€ ๋น ๋ฅด๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, IEEE 802.11 ํ‘œ์ค€์—์„œ ๊ธฐ๋ณธ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” MAC (medium access control) ํ”„๋กœํ† ์ฝœ์ธ DCF (distributed coordination function) ๋Š” single-cell ๋„คํŠธ์›Œํฌ์—์„œ MAC ํšจ์œจ (MAC efficiency) ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง€๋Š” ๋ฌธ์ œ์ ๊ณผ ad-hoc ๋„คํŠธ์›Œํฌ์—์„œ ๋…ธ๋“œ๊ฐ„์— ๊ณตํ‰์„ฑ ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ์ €ํ•˜ ๋˜๋Š” ๋ฌธ์ œ์ ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋„คํŠธ์›Œํฌ์—์„œ DCF๊ฐ€ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š” ๋ฌธ์ œ์ ์„ ๊ฐ๊ฐ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋‘ ๊ฐ€์ง€ ๋‹ค๋ฅธ ๋ฐฉ์‹์˜ MAC ํ”„๋กœํ† ์ฝœ๋“ค์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ MAC ํ”„๋กœํ† ์ฝœ์—์„œ๋Š” ํŒจํ‚ท (packet) ์ด๋‚˜ ํ”„๋ ˆ์ž„ (frame) ์˜ ํฌ๊ธฐ๊ฐ€ ์ •ํ•ด์ง€๋ฉด, ๊ฐ ๋…ธ๋“œ (node) ์˜ ๋ฐ์ดํ„ฐ ์ „์†ก ์†๋„์— ๋”ฐ๋ผ (data transmission rate) ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„ (frame transmission duration) ์ด ์ •ํ•ด์กŒ๋‹ค. ํ•˜์ง€๋งŒ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” IEEE 802.11n/ac/ad ํ‘œ์ค€์—์„œ ์‚ฌ์šฉํ•˜๋Š” ํ”„๋ ˆ์ž„ ๊ฒฐํ•ฉ (frame aggregation) ๊ณผ block ACK ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ์ •ํ™•ํžˆ ์กฐ์ ˆ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋งŒ์•ฝ ์ด์™€๊ฐ™์ด ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” ๋ฐ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์กฐ์ ˆ ํ•  ์ˆ˜ ์žˆ๊ฒŒ๋œ๋‹ค๋ฉด, ๋„คํŠธ์›Œํฌ ์ƒ์— ๊ฐ ๋…ธ๋“œ๋“ค์€ ์ถ”๊ฐ€์ ์ธ ์˜ค๋ฒ„ํ—ค๋“œ (overhead) ์—†์ด ์ž์‹ ์ด ์•Œ๋ ค์ฃผ๊ณ ์ž ํ•˜๋Š” ์ •๋ณด๋ฅผ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ์ด์šฉํ•˜์—ฌ ์ž์‹  ์ฃผ๋ณ€์˜ ๋…ธ๋“œ๋“ค์—๊ฒŒ ๊ฐ„์ ‘์ ์œผ๋กœ ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ฆ‰, ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ์ •ํ™•ํžˆ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์„ ํ†ตํ•ด์„œ ๊ธฐ์กด์˜ ์ปจํŠธ๋กค ๋ฉ”์‹œ์ง€ (control message) ๊ฐ€ ์ˆ˜ํ–‰ํ–ˆ๋˜ ์—ญํ• ์ธ ์ •๋ณด ์ „๋‹ฌ์˜ ์—ญํ• ์„ ์ˆ˜ํ–‰ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ด ์•„์ด๋””์–ด๋Š” ๊ฐ„๋‹จํ•˜์ง€๋งŒ, ๊ฐ ๋…ธ๋“œ๋“ค์ด ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ •๋ณด๋ฅผ ๊ตํ™˜ํ•˜๋Š”๋ฐ ํšจ๊ณผ์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๋‘ ๊ฐœ์˜ MAC ํ”„๋กœํ† ์ฝœ๋“ค์€ ์ด ์•„์ด๋””์–ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ ์ž ํ•˜์˜€๋‹ค. ์šฐ์„ , IEEE 802.11 single-cell ๋„คํŠธ์›Œํฌ์—์„œ์˜ MAC ํšจ์œจ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด Transmission Order Deducing MAC (TOD-MAC) ํ”„๋กœํ† ์ฝœ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ ๋ฌผ๋ฆฌ ๊ณ„์ธต (physical layer) ์—์„œ์˜ ์ „์†ก ์†๋„๊ฐ€ Gbps ๋ฒ”์œ„๊นŒ์ง€ ๋น„์•ฝ์ ์œผ๋กœ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฌผ๋ฆฌ ๊ณ„์ธต ์ „์†ก ์†๋„์˜ ์ฆ๊ฐ€๊ฐ€ MAC ๊ณ„์ธต (MAC layer) ์—์„œ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰ (throughput) ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ํšจ๊ณผ์ ์œผ๋กœ ๊ธฐ์—ฌํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ์™œ๋ƒํ•˜๋ฉด, ๋ฌผ๋ฆฌ ๊ณ„์ธต์—์„œ์˜ ์ „์†ก ์†๋„๊ฐ€ ์˜ฌ๋ผ ๊ฐˆ์ˆ˜๋ก PHY header์™€ ์ปจํ…์…˜ ์‹œ๊ฐ„ (contention time) ๋“ฑ์˜ MAC ๊ณ„์ธต์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์˜ค๋ฒ„ํ—ค๋“œ๋“ค์ด ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ํฐ ๊ฑธ๋ฆผ๋Œ์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐ ํ•˜๊ธฐ ์œ„ํ•ด์„œ TOD-MAC์—์„œ ๊ฐ ๋…ธ๋“œ๋“ค์€ ์ž์‹ ์˜ ์ „์†ก ์ˆœ์„œ์— ๋”ฐ๋ผ ์•ž์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ์ •ํ™•ํžˆ ์กฐ์ ˆํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ „์†กํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋„คํŠธ์›Œํฌ ์ƒ์˜ ๊ฐ ๋…ธ๋“œ๋“ค์€ ์ž์‹  ์ฃผ๋ณ€ ๋…ธ๋“œ๋“ค์˜ ์ „์†ก ์ˆœ์„œ๋ฅผ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ํ†ตํ•ด ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ณ , ์ž์‹ ์—๊ฒŒ ์•Œ๋ ค์ง„ ์ „์†ก ์ˆœ์„œ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ์ˆœํ™˜ ์ˆœ์„œ ๋ฐฉ์‹ (round robin manner) ์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ „์†กํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ MAC ํ”„๋กœํ† ์ฝœ์€ ์ „์†ก ์ถฉ๋Œ (transmission collision) ๊ณผ ์ปจํ…์…˜ ์‹œ๊ฐ„์„ ํšจ์œจ์ ์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ณ , CSMA/CA (carrier sensing multiple access with collision avoidance) ๊ธฐ๋ฐ˜์˜ single-cell ๋„คํŠธ์›Œํฌ์—์„œ์˜ MAC ํšจ์œจ์„ ๊ทน๋Œ€ํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ, ์‹คํ—˜์„ ํ†ตํ•ด TOD-MAC์ด ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ๊ณผ, ์ข‹์€ short/long-term ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ๊ณตํ‰์„ฑ (air-time fairness) ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” IEEE 802.11 ad-hoc ๋„คํŠธ์›Œํฌ์—์„œ์˜ ์ตœ๋Œ€-์ตœ์†Œ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ๊ณตํ‰์„ฑ (max-min air-time fairness) ์„ ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” Max-min Air-time Fairness MAC (MAF-MAC) ํ”„๋กœํ† ์ฝœ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ IEEE 802.11 ad-hoc ๋„คํŠธ์›Œํฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ ์„œ๋น„์Šค์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ๋น ๋ฅด๊ฒŒ ์ฆํ•˜ํ•˜๋ฉด์„œ, ad-hoc ๋„คํŠธ์›Œํฌ์—์„œ ๋…ธ๋“œ๋“ค ๊ฐ„์— ๊ณตํ‰ํ•œ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•œ ๋ฌธ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด MAF-MAC์—์„œ๋Š” ๊ฐ ๋…ธ๋“œ๋“ค์ด ์ž์‹ ์˜ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์„ ํ†ตํ•ด ์ฃผ๋ณ€ ๋…ธ๋“œ๋“ค์—๊ฒŒ ์•Œ๋ ค์ฃผ๊ณ , ๊ฐ ๋…ธ๋“œ๋“ค์€ ์ด ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž์‹ ์˜ contention window (CW) ๊ฐ’์„ ์ ์ ˆํ•˜๊ฒŒ ์กฐ์ ˆํ•˜์—ฌ ad-hoc ๋„คํŠธ์›Œํฌ์—์„œ์˜ ์ตœ๋Œ€-์ตœ์†Œ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ๊ณตํ‰์„ฑ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ MAC ํ”„๋กœํ† ์ฝœ์€ ๋„คํŠธ์›Œํฌ์— ์žˆ๋Š” ๋…ธ๋“œ๋“ค์—๊ฒŒ ๋ณด๋‹ค ๊ณตํ‰ํ•œ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•จ๊ณผ ๋™์‹œ์— ์ฑ„๋„ ์ ์œ ์œจ๊ณผ ์‚ฌ์šฉ์œจ์„ ํšจ์œจ์ ์œผ๋กœ ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ๋‹ค๋ฅธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ํžˆ๋“  ๋…ธ๋“œ ๊ฐ์ง€ (hidden node detection) ๋ฐฉ๋ฒ•๊ณผ ํžˆ๋“  ๋…ธ๋“œ ํ•ด๊ฒฐ (hidden node resolving) ๋ฐฉ๋ฒ•์„ MAF-MAC์— ์ ์šฉํ•จ์œผ๋กœ์จ ad-hoc ๋„คํŠธ์›Œํฌ์—์„œ ๋ฐœ์ƒ ํ•  ์ˆ˜ ์žˆ๋Š” ํžˆ๋“  ๋…ธ๋“œ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‹œ๋ฎฌ๋ž˜์ด์…˜์„ ํ†ตํ•ด ํžˆ๋“  ๋…ธ๋“œ์˜ ์กด์žฌ ์—ฌ๋ถ€์™€ ๊ด€๊ณ„ ์—†์ด ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ MAF-MAC์— ๊ธฐ๋ฐ˜ํ•œ ๋ฐฉ๋ฒ•์ด ์ข‹์€ ์ฑ„๋„ ์ ์œ  ๊ณตํ‰์„ฑ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์คŒ๊ณผ ๋™์‹œ์— ํšจ์œจ์ ์œผ๋กœ ์ฑ„๋„์„ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.The demand for wireless local area network (WLAN) has drastically increased due to the prevalence of the mobile devices such as smart phones and tablet PCs. However, the distributed coordination function (DCF), which is the basic MAC protocol used in IEEE 802.11 WLANs, needs to be improved on MAC efficiency in single-cell networks and fairness performance in ad-hoc networks. In this dissertation, we propose two MAC protocols that can enhance MAC efficiency in single-cell network, and max-min air-time fairness in ad-hoc network by adjusting frame transmission duration, respectively. In the traditional MAC protocol, the length of a packet or a frame is usually fixed and the transmission duration is determined by the data rate. However, we show how each node can precisely adjust the transmission duration when the frame aggregation and block ACK features are used in very high-speed IEEE 802.11n/ac/ad WLANs. If the transmission duration can be precisely controlled, it plays the role usually carried out by a control message. Therefore, a node can indirectly announce necessary information to the other nodes, which can sense the transmission of the node, without incurring any overhead. This idea is simple, but very effective to enhance the network performance by exchanging the necessary information without overheads. First, we propose the Transmission Order Deducing MAC (TOD-MAC) protocol to improve MAC layer efficiency in IEEE 802.11 single-cell network. Recently, the physical (PHY) layer transmission rate increases to Gbps range in the IEEE 802.11 WLANs. However, the increase in the PHY layer transmission rates does not necessarily translate into corresponding increase in the MAC layer throughput of IEEE 802.11 WLANs because of MAC overheads such as PHY headers and contention time. TOD-MAC precisely controls the frame length and transmission duration to indirectly provide necessary information to a node to determine the transmission order among all the nodes in a network. Each node transmits frames of different duration, and thus the other nodes can determine the time when they can transmit, which has the same effect as announcing the transmission order, without using a control message. Each node transmits a frame in a round robin manner, which minimizes the idle time between two consecutive transmissions without collisions, and significantly enhances the MAC efficiency in very high speed CSMA/CA wireless networks. The results of extensive simulations indicate that TOD-MAC achieves high throughput performance, short/long-term air-time fairness in multi-rate networks and excellent transient behavior in dynamic environments. Secondly, we propose Max-min Air-time Fairness MAC (MAF-MAC) to improve max-min air-time fairness in IEEE 802.11 ad-hoc networks. As the demand for services based on ad-hoc networks rapidly increases, enhancing fairness among nodes becomes important issue in ad-hoc networks. The concept of max-min fairness is that a node may use more channel resource as long as it does take away the channel resource from the other nodes who uses less channel resource. In MAF-MAC, the transmission duration is adjusted so that it can indirectly perform the function of a control message in announcing the state of a node, called the busy time ratio. On the basis of this information, each node adjusts its CWCW value to improve max-min air-time fairness. Moreover, we also adopt the hidden node detection and resolving mechanism to MAF-MAC to improve the max-min air-time fairness even when there are hidden nodes in ad-hoc networks. We show through simulation that MAF-MAC incorporating hidden node detection/resolution mechanisms can provide good air-time fairness with high channel occupation and utilization ratio whether or not there are hidden nodes in the network.Docto
    corecore