50 research outputs found

    Numerical modeling of thermal bar and stratification pattern in Lake Ontario using the EFDC model

    Get PDF
    Thermal bar is an important phenomenon in large, temperate lakes like Lake Ontario. Spring thermal bar formation reduces horizontal mixing, which in turn, inhibits the exchange of nutrients. Evolution of the spring thermal bar through Lake Ontario is simulated using the 3D hydrodynamic model Environmental Fluid Dynamics Code (EFDC). The model is forced with the hourly meteorological data from weather stations around the lake, flow data for Niagara and St. Lawrence rivers, and lake bathymetry. The simulation is performed from April to July, 2011; on a 2-km grid. The numerical model has been calibrated by specifying: appropriate initial temperature and solar radiation attenuation coefficients. The existing evaporation algorithm in EFDC is updated to modified mass transfer approach to ensure correct simulation of evaporation rate and latent heatflux. Reasonable values for mixing coefficients are specified based on sensitivity analyses. The model simulates overall surface temperature profiles well (RMSEs between 1-2°C). The vertical temperature profiles during the lake mixed phase are captured well (RMSEs < 0.5°C), indicating that the model sufficiently replicates the thermal bar evolution process. An update of vertical mixing coefficients is under investigation to improve the summer thermal stratification pattern. Keywords: Hydrodynamics, Thermal BAR, Lake Ontario, GIS

    Investigating summer thermal stratification in Lake Ontario

    Get PDF
    Summer thermal stratification in Lake Ontario is simulated using the 3D hydrodynamic model Environmental Fluid Dynamics Code (EFDC). Summer temperature differences establish strong vertical density gradients (thermocline) between the epilimnion and hypolimnion. Capturing the stratification and thermocline formation has been a challenge in modeling Great Lakes. Deviating from EFDC's original Mellor-Yamada (1982) vertical mixing scheme, we have implemented an unidimensional vertical model that uses different eddy diffusivity formulations above and below the thermocline (Vincon-Leite, 1991; Vincon-Leite et al., 2014). The model is forced with the hourly meteorological data from weather stations around the lake, flow data for Niagara and St. Lawrence rivers; and lake bathymetry is interpolated on a 2-km grid. The model has 20 vertical layers following sigma vertical coordinates. Sensitivity of the model to vertical layers' spacing is thoroughly investigated. The model has been calibrated for appropriate solar radiation coefficients and horizontal mixing coefficients. Overall the new implemented diffusivity algorithm shows some successes in capturing the thermal stratification with RMSE values between 2-3°C. Calibration of vertical mixing coefficients is under investigation to capture the improved thermal stratification

    Impacts of climate change on fisheries and aquaculture

    Get PDF
    The 2015 Paris Climate Agreement recognizes the need for effective and progressive responses to the urgent threat of climate change, through mitigation and adaptation measures, while taking into account the particular vulnerabilities of food production systems. The inclusion of adaptation measures in the fisheries and aquaculture sector is currently hampered by a widespread lack of targeted analyses of the sector's vulnerabilities to climate change and associated risks, as well as the opportunities and responses available. This report provides the most up-to-date information on the disaggregated impacts of climate change for marine and inland fisheries, and aquaculture, in the context of poverty alleviation and the differential dependency of countries on fish and fishery resources. The work is based on model projections, data analyses, as well as national, regional and basin-scale expert assessments. The results indicate that climate change will lead to significant changes in the availability and trade of fish products, with potentially important geopolitical and economic consequences, especially for those countries most dependent on the sector

    Toxic Cyanobacteria in Water

    Get PDF

    Eutrophisation et dynamique du phosphore et de l'azote en Seine : un nouveau contexte suite à l’amélioration du traitement des eaux usées

    Get PDF
    The Seine river system is an ecosystem deeply affected by human activities. The new water quality requirements have led to significant changes. We provided an overview of nitrogen transfers in the Seine basin. We conducted sampling campaigns in order to describe the dynamics of nitrogen and nitrification. Furthermore, we compared our results with the observations before the implementation of nitrogen treatment at the wastewater treatment plant Seine Aval (WWTP SAV). The results proved that the WWTP discharges less ammonium and more nitrifiers but with a slower development than before. These communities disappear downstream, without causing low oxygen concentrations in the lower Seine and its estuary, as they did before... A simplified modelling of nitrogen concentrations and nitrification before and after the implementation of nitrogen treatment helped to reproduce the past and the present trends.Moreover, the assessment of the fluxes and the analysis of the role of phosphorus were realized. The inputs to the river system have been reduced almost three times in the early year 2000. The experimental measurement of phosphorus sorption characteristics onto suspended solids has shown that particles could be affected by the discharges coming from the WWTP SAV after the introduction of an advanced treatment. We show also by modelling, that the algal growth is very sensitive to adsorption process. The changes in frequency and amplitude of algal blooms observed in the Seine can be explained by the reduction of point phosphorus loadings. The modelling of algal blooms throughout the entire basin remains difficult with the currently available mechanistic tools.La Seine est un écosystème profondément affecté par les activités humaines. Il a subi des changements améliorant le traitement des eaux usées parisiennes et les apports diffus de l'agriculture. Des campagnes de prélèvements en profils longitudinaux ont été menées à l'amont et à l'aval de la station d'épuration Seine-Aval (step SAV) pour décrire la dynamique de l'azote et des activités des micro-organismes nitrifiants et la comparer aux observations disponibles antérieures à l'implémentation d'un traitement de l'azote. Les résultats prouvent que la step SAV rejette moins d'ammonium et plus d'organismes nitrifiants mais avec un développement plus lent et moins important qui disparaissent en aval améliorant le déficit en oxygène en Seine. De plus, le bilan et le rôle du phosphore ont été démontrés avec des apports au milieu fluvial diminués d'un facteur 2.7 depuis le début des années 2000. La mesure expérimentale des paramètres de l'adsorption du phosphore sur la matière en suspension a permis d'affirmer que ceux-ci sont influencés par les rejets des stations d'épuration mettant en oeuvre un traitement du phosphore. Nous montrons, par modélisation, que la dynamique de développement des algues est sensible au processus d'adsorption du phosphore. Les changements apparus dans la fréquence et l'intensité des blooms algaux en Seine peuvent s'expliquer par la réduction de la charge ponctuelle en phosphore. Avec des concentrations en orthophosphates proches de la limitation dans les secteurs amont, une modélisation précise de l'apparition du phytoplancton à l'échelle du bassin versant reste cependant encore difficile avec les outils mécanistiques actuels que nous avons développés

    Our phosphorus future: towards global phosphorus sustainability

    Get PDF
    Global food security remains threatened as many farmers struggle to afford sufficient phosphorus fertiliser for their crops. Meanwhile, overuse of fertilisers and sewage pollution pump millions of tonnes of phosphorus into lakes and rivers each year, damaging biodiversity and affecting water quality. This report is a comprehensive global analysis of the challenges and possible solutions to the phosphorus crisis. The report calls on governments across the world to adopt a '50, 50, 50' goal: a 50 per cent reduction in global pollution of phosphorus and a 50 per cent increase in recycling of the nutrient by the year 2050. The report has been written by a team of 40 international experts from 17 countries led by the UK Centre for Ecology & Hydrology (UKCEH) and the University of Edinburgh

    The United Nations World Water Development Report 2022 : groundwater : making the invisible visible

    Get PDF
    Accounting for approximately 99% of all liquid freshwater on Earth, groundwater has the potential to provide societies with tremendous social, economic and environmental benefits and opportunities. Groundwater already provides half of the volume of water withdrawn for domestic use by the global population, including the drinking water for the vast majority of the rural population who do not get their water delivered to them via public or private supply systems, and around 25% of all water withdrawn for irrigation. However, this natural resource is often poorly understood, and consequently undervalued, mismanaged and even abused. Groundwater is central to the fight against poverty, to food and water security, to the creation of decent jobs, to socio-economic development, and to the resilience of societies and economies to climate change. Reliance on groundwater will only increase, mainly due to growing water demand by all sectors combined with increasing variation in rainfall patterns. The report describes the challenges and opportunities associated with the development, management and governance of groundwater across the world. It aims to establish a clear understanding of the role that groundwater plays in daily life, of its interactions with people, and of the opportunities for optimizing its use in order to ensure the long-term sustainability of this largely available yet fragile resource. Unlocking the full potential of groundwater will require strong and concerted efforts to manage and use it sustainably. And it all starts by making the invisible visible

    The First Global Integrated Marine Assessment: World Ocean Assessment I

    Get PDF
    We used satellite-derived sea-surface-temperature (SST) data along with in-situ data collected along a meridional transect between 18.85 and 20.25°N along 69.2°E to describe the evolution of an SST filament and front during 25 November to 1 December in the northeastern Arabian Sea (NEAS). Both features were &#8764; 100 km long, lasted about a week and were associated with weak temperature gradients (&#8764; 0.07°C km<sup>−1</sup>). The in-situ data were collected first using a suite of surface sensors during a north–south mapping of this transect and showed the existence of a chlorophyll maximum within the filament. This surface data acquisition was followed by a high-resolution south–north CTD (conductivity–temperature–depth) sampling along the transect. In the two days that elapsed between the two in-situ measurements, the filament had shrunk in size and moved northward. In general, the current direction was northwestward and advected these mesoscale features. The CTD data also showed an SST front towards the northern end of the transect. In both these features, the chlorophyll concentration was higher than in the surrounding waters. The temperature and salinity data from the CTD suggest upward mixing or pumping of water from the base of the mixed layer, where a chlorophyll maximum was present, into the mixed layer that was about 60 m thick. A striking diurnal cycle was evident in the chlorophyll concentration, with higher values tending to occur closer to the surface during the night. The in-situ data from both surface sensors and CTD, and so also satellite-derived chlorophyll data, showed higher chlorophyll concentration, particularly at sub-surface levels, between the filament and the front, but there was no corresponding signature in the temperature and salinity data. Analysis of the SST fronts in the satellite data shows that fronts weaker than those associated with the filament and the front had crossed the transect in this region a day or two preceding the sampling of the front
    corecore