4 research outputs found

    Climate and land-use changes reshuffle politically-weighted priority areas of mountain biodiversity

    Get PDF
    Protected areas (PAs) play a critical role in conserving biodiversity and maintaining viable populations of threatened species. Yet, as global change could reduce the future effectiveness of existing PAs in covering high species richness, updating the boundaries of existing PAs or creating new ones might become necessary to uphold conservation goals. Modelling tools are increasingly used by policymakers to support the spatial prioritization of biodiversity conservation, enabling the inclusion of scenarios of environmental changes to achieve specific targets. Here, using the Western Swiss Alps as a case study, we show how integrating species richness derived from species distribution model predictions for four taxonomic groups under present and future climate and land-use conditions into two conservation prioritization schemes can help optimize extant and future PAs. The first scheme, the “Priority Scores Method” identified priority areas for the expansion of the existing PA network. The second scheme, using the zonation software, allowed identifying priority conservation areas while incorporating global change scenarios and political costs. We found that existing mountain PAs are currently not situated in the most environmentally nor politically suitable locations when maximizing alpha diversity for the studied taxonomic groups and that current PAs could become even less optimum under the future climate and land-use change scenarios. This analysis has focused on general areas of high species richness or species of conservation concern and did not account for special habitats or functional groups that could have been used to create the existing network. We conclude that such an integrated framework could support more effective conservation planning and could be similarly applied to other landscapes or other biodiversity conservation indice

    Uncertainty, errors and virtual ecology: using artificial data to improve species distribution models

    Get PDF
    With the growing pressures exerted by anthropogenic activities (e.g. land-use changes, habitat fragmentation, greenhouse gas emissions) and environmental changes (e.g. climate change, biological invasions), biodiversity is being threatened worldwide. It is therefore important to sufficiently understand which factors influence the distribution and composition of species assemblages, develop tools allowing us to accurately predict them under current and future environmental conditions. Species distribution models (SDMs) are especially useful to tackle these challenges since they allow the modelling of the distribution of species and their assemblages at different spatial and temporal scales. This is done by simply relating species observations with environmental conditions where they occur. However, different factors (e.g. sample size, modelling technique) and errors/bias (i.e. false presences/absences) were shown to affect the prediction accuracy of single species and assemblage SDMs (i.e. S-SDMs). SDMs can also provide biased projections when predicting to regions or time periods with environmental conditions outside the range of data used for model calibration (i.e. model transferability) or when that data doesn’t capture the full conditions occupied by the species (i.e. truncated datasets). While the majority of SDMs use real species data, it is important to assess their accuracy by having complete control of the data and factors influencing species distributions, hence the use of virtual or simulated species. In the first chapter of my thesis, I used virtual species data to test SDM/S-SDMs and determine the degree to which different types and levels of errors in species data (i.e. false presences or absences) affect the predictions of individual species models, and how this is reflected in metrics that are frequently used to evaluate the prediction accuracy of SDMs. I found that interpretation of models’ performance depended on the data and metrics used to evaluate them, with model performance being more affected by false positives. In the second chapter, I assessed how different factors (sample size, sampling method, sampling prevalence, modelling technique and thresholding method) affect the prediction accuracy of S-SDMs. I found that prediction accuracy is mostly affected by modelling technique followed by sample size and that a ‘plot-like’ sampling method is recommended when sampling species data (i.e. best approximation of the species’ true prevalence). In my third chapter I tested the potential causes that increasingly truncated datasets have on the predictive accuracy of species assemblages and if the variables used to calibrate the models also influence that accuracy, finding that the degree of truncation has more influence on species with wide realized niches. Finally, on my last main chapter, I tested and compared how accurate different modelling strategies are at predicting species assemblages under current and future climatic conditions, assessing their transferability. I found that when using presence/pseudo-absence data, all the strategies failed to predict accurate species assemblages, being better when presence-absence data is used (under current environmental conditions). -- La biodiversitĂ© est actuellement mondialement menacĂ©e par l’augmentation de la pression due aux activitĂ©s anthropiques (p. ex. changement dans l’utilisation du territoire, fragmentation des habitats, Ă©mission de gaz Ă  effet de serre) et aux changements environnementaux (p. ex. changements climatiques, invasions biologiques). Il est donc capital de comprendre les facteurs influençant la distribution et la composition des assemblages d’espĂšces ainsi que de dĂ©velopper des outils pour les prĂ©dire prĂ©cisĂ©ment autant dans des conditions environnementales actuelles que future. Les modĂšles prĂ©dictifs de distribution (MPDs) sont des outils particuliĂšrement utiles pour apprĂ©hender ce genre de challenges, car ils permettent de modĂ©liser la distribution des espĂšces ainsi que leurs assemblages Ă  diffĂ©rentes Ă©chelles spatiales et temporelles. Cela peut se faire en reliant des observations d’espĂšces avec les conditions environnementales dans lesquelles elles se trouvent. Cependant, il a Ă©tĂ© montrĂ© que diffĂ©rent facteurs (p. ex. taille d’échantillonnage, techniques de modĂ©lisation) et erreur/biais (c.-Ă -d. fausses prĂ©sences/absences) peuvent affecter la qualitĂ© des prĂ©dictions obtenues lors de la modĂ©lisation prĂ©dictive de la distribution de simples espĂšces (MPD) et d’assemblages (S-SDMs). Les MPDs peuvent aussi crĂ©er des projections biaisĂ©es lorsqu’ils prĂ©disent dans des rĂ©gions ou des pĂ©riodes de temps qui possĂšdent des conditions environnementales en dehors de la gamme de donnĂ©es utilisĂ©es lors de la calibration du modĂšle (c.-Ă -d. transfĂ©rabilitĂ© du modĂšle) ou quand les donnĂ©es ne reprĂ©sentent pas l’entier des conditions occupĂ©es par l’espĂšce (c.-Ă -d. jeu de donnĂ©es tronquĂ©). Bien que la majoritĂ© des MPDs utilisent des donnĂ©es d’espĂšces rĂ©elles, il est important de pouvoir Ă©valuer leurs prĂ©cisions en ayant le contrĂŽle complet des donnĂ©es ainsi que des facteurs pouvant influencer la distribution des espĂšces. Seul l’utilisation d’espĂšces virtuelles ou simulĂ©es permet d’obtenir ce contrĂŽle total. Dans le premier chapitre de ma thĂšse, j’ai utilisĂ© des donnĂ©es d’espĂšces virtuelles afin de dĂ©terminer, Ă  l’aide de MPDs/S-SDMs, dans quelle mesure diffĂ©rents types et niveaux d’erreurs dans les donnĂ©es d’espĂšces (c.-Ă -d. fausses prĂ©sences ou absences) pouvaient affecter les prĂ©dictions obtenues. J’ai aussi cherchĂ© Ă  comprendre comment cela se reflĂšte sur les mĂ©triques habituellement utilisĂ©es pour Ă©valuer la qualitĂ© des prĂ©dictions de ces MPDs. J’ai dĂ©couvert que l’interprĂ©tation des performances des modĂšles dĂ©pends des donnĂ©es et des mĂ©triques utilisĂ©es pour les Ă©valuer. Cette performance est particuliĂšrement affectĂ©e par les faux positifs. Dans le second chapitre, j’ai Ă©valuĂ© comment diffĂ©rents facteurs (taille d’échantillonnage, mĂ©thode d’échantillonnage, prĂ©valence d’échantillonnage, technique de modĂ©lisation et mĂ©thode de dĂ©finition des seuils) affectent la qualitĂ© des prĂ©dictions obtenues Ă  l’aide de S- SDMs. J’ai trouvĂ© que la qualitĂ© des prĂ©dictions est principalement affectĂ©e par les techniques de modĂ©lisation, suivie par la taille de l’échantillonnage. Une mĂ©thode d’échantillonnage dite « plot-like » est recommandĂ©e lors de la rĂ©colte de donnĂ©es (c.-Ă -d. qu’elle donne la meilleure approximation de la rĂ©elle prĂ©valence de l’espĂšce). Dans mon troisiĂšme chapitre, j’ai testĂ© quels pouvaient ĂȘtre les potentiels effets de l’utilisation de jeux de donnĂ©es de plus en plus tronquĂ©s sur la qualitĂ© des prĂ©dictions des assemblages d’espĂšces ainsi que l’influence des variables utilisĂ©es lors de la calibration. Il s’avĂšre que le degrĂ© de troncature a plus d’effet sur les espĂšces ayant une large niche rĂ©alisĂ©e. Finalement, dans mon dernier chapitre, j’ai testĂ© diffĂ©rentes stratĂ©gies de modĂ©lisation puis j’ai comparĂ© leur aptitude Ă  prĂ©dire des assemblages d’espĂšces dans des conditions prĂ©sentes et futures pour Ă©valuer leur transfĂ©rabilitĂ©. J’ai dĂ©couvert que lors de l’utilisation de donnĂ©es de prĂ©sences/pseudo-absences, toutes les stratĂ©gies Ă©chouaient Ă  prĂ©dire de maniĂšre prĂ©cise les assemblages. L’utilisation de donnĂ©es de prĂ©sence/absences a permis, quant Ă  elle, d’obtenir de meilleurs rĂ©sultats, principalement dans des conditions environnementales prĂ©sentes

    Incorporating a distance cost in systematic reserve design

    Full text link
    The selection of parcels of land to incorporate into reserve systems necessitates trade-offs among biodiversity targets, costs such as land area and spatial compactness. There are well-established systematic reserve design algorithms that incorporate these trade-offs to assist decision-makers in this process. One cost that has received little attention is the proximity of new land parcels to the existing reserve network: the ability of environmental managers to effectively maintain and protect additional land units is often constrained by their proximity to existing reserve networks. The selection of parcels of land close to existing reserves makes them logistically easier to deploy infrastructure to and can also improve the spatial contiguity of the existing reserve network. Previous research has been limited to using distance from the centroids of existing reserves, which significantly biases algorithms when reserves are irregularly shaped. Here we describe a new approach that overcomes this limitation by using the existing reserve boundary to determine proximity. We provide an example of this approach by implementing it as an additional constraint in an analysis of biodiversity targets within the Greater Blue Mountains World Heritage Area, Australia, via the Marxan reserve design software. The incorporation of the distance cost in the analysis was effective in selecting parcels near to the existing reserve system and can be combined with other variables in the algorithm to improve spatial compactness while meeting biodiversity and other targets. It provides alternative solutions for use by reserve planners when extending reserve systems. © 2011 Taylor & Francis
    corecore