1,197 research outputs found

    Learning from text and images: generative and discriminative models for partially labeled data

    Get PDF
    Image annotation is a challenging task of assigning keywords to an image given the content of an image. It has a variety of applications in multi-media data-mining and computer vision. Traditional machine learning approaches to image annotation require large amounts of labeled data. This requirement is often unrealistic, as obtaining labeled data is, in general, expensive and time consuming. However, large amounts of weakly labeled data and tagged images is readily available, in particular in the web and social network communities. In this thesis we address the problem of image annotation using weak supervision. In particular, we formulate the problem of image annotation as multiple instance multiple label learning problem and propose generative and discriminative models to tackle this learning problem. Multiple instance multiple label learning is a generalization of supervised learning in which the training examples are bags of instances and each bag is labeled with a set of labels. We explore two learning frameworks: generative and discriminative, and propose models within each framework to address the problem of assigning text keywords to images. The first approach, the generative model attempts to describe the process according to which the data was generated, and then learn its parameters from the data. This model is a non-parametric generalization of the known mixture model used in the past. We extend this model to a Hierarchical Dirichlet Process which allows for countably infinite mixture components. Our experimental evaluation shows that the performance of this model does not depend on the number of mixture components, unlike the standard mixture model which suffers from over-fitting for a large number of mixture components. The second approach is a discriminative model, which unlike generative model answers the following question: given the input bag of instances what is the most likely assignment of labels to the bag. We address this problem by learning as many classifiers as there are possible labels and force the classifiers to share weights using trace-norm regularization. We show that the performance of this model is comparable to the state-of-the-art multiple instance multiple label classifiers and that unlike some state-of-the-art models, it is scalable and practical for datasets with a large number of training instances and possible labels. Finally we generalize the discriminative model to a semi-supervised setting to allow the model take advantage of labeled and unlabeled data. We do so by assuming that the data lies in a low-dimensional manifold and introducing a penalty that enforces the classifiers assign similar labels to indirectly similar instances (i.e. instances that are near-by in the manifold space). The manifold is learned by constructing a similarity neighborhood graph over bags, and then graph-Laplacian is used to compute the penalty term

    Tag2Text: Guiding Vision-Language Model via Image Tagging

    Full text link
    This paper presents Tag2Text, a vision language pre-training (VLP) framework, which introduces image tagging into vision-language models to guide the learning of visual-linguistic features. In contrast to prior works which utilize object tags either manually labeled or automatically detected with a limited detector, our approach utilizes tags parsed from its paired text to learn an image tagger and meanwhile provides guidance to vision-language models. Given that, Tag2Text can utilize large-scale annotation-free image tags in accordance with image-text pairs, and provides more diverse tag categories beyond objects. As a result, Tag2Text achieves a superior image tag recognition ability by exploiting fine-grained text information. Moreover, by leveraging tagging guidance, Tag2Text effectively enhances the performance of vision-language models on both generation-based and alignment-based tasks. Across a wide range of downstream benchmarks, Tag2Text achieves state-of-the-art or competitive results with similar model sizes and data scales, demonstrating the efficacy of the proposed tagging guidance

    Autoencoding the Retrieval Relevance of Medical Images

    Full text link
    Content-based image retrieval (CBIR) of medical images is a crucial task that can contribute to a more reliable diagnosis if applied to big data. Recent advances in feature extraction and classification have enormously improved CBIR results for digital images. However, considering the increasing accessibility of big data in medical imaging, we are still in need of reducing both memory requirements and computational expenses of image retrieval systems. This work proposes to exclude the features of image blocks that exhibit a low encoding error when learned by a n/p/nn/p/n autoencoder (p ⁣< ⁣np\!<\!n). We examine the histogram of autoendcoding errors of image blocks for each image class to facilitate the decision which image regions, or roughly what percentage of an image perhaps, shall be declared relevant for the retrieval task. This leads to reduction of feature dimensionality and speeds up the retrieval process. To validate the proposed scheme, we employ local binary patterns (LBP) and support vector machines (SVM) which are both well-established approaches in CBIR research community. As well, we use IRMA dataset with 14,410 x-ray images as test data. The results show that the dimensionality of annotated feature vectors can be reduced by up to 50% resulting in speedups greater than 27% at expense of less than 1% decrease in the accuracy of retrieval when validating the precision and recall of the top 20 hits.Comment: To appear in proceedings of The 5th International Conference on Image Processing Theory, Tools and Applications (IPTA'15), Nov 10-13, 2015, Orleans, Franc

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    IMAGE RETRIEVAL BASED ON COMPLEX DESCRIPTIVE QUERIES

    Get PDF
    The amount of visual data such as images and videos available over web has increased exponentially over the last few years. In order to efficiently organize and exploit these massive collections, a system, apart from being able to answer simple classification based questions such as whether a specific object is present (or absent) in an image, should also be capable of searching images and videos based on more complex descriptive questions. There is also a considerable amount of structure present in the visual world which, if effectively utilized, can help achieve this goal. To this end, we first present an approach for image ranking and retrieval based on queries consisting of multiple semantic attributes. We further show that there are significant correlations present between these attributes and accounting for them can lead to superior performance. Next, we extend this by proposing an image retrieval framework for descriptive queries composed of object categories, semantic attributes and spatial relationships. The proposed framework also includes a unique multi-view hashing technique, which enables query specification in three different modalities - image, sketch and text. We also demonstrate the effectiveness of leveraging contextual information to reduce the supervision requirements for learning object and scene recognition models. We present an active learning framework to simultaneously learn appearance and contextual models for scene understanding. Within this framework we introduce new kinds of labeling questions that are designed to collect appearance as well as contextual information and which mimic the way in which humans actively learn about their environment. Furthermore we explicitly model the contextual interactions between the regions within an image and select the question which leads to the maximum reduction in the combined entropy of all the regions in the image (image entropy)

    Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey

    Full text link
    Knowledge Graphs (KGs) play a pivotal role in advancing various AI applications, with the semantic web community's exploration into multi-modal dimensions unlocking new avenues for innovation. In this survey, we carefully review over 300 articles, focusing on KG-aware research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm. We begin by defining KGs and MMKGs, then explore their construction progress. Our review includes two primary task categories: KG-aware multi-modal learning tasks, such as Image Classification and Visual Question Answering, and intrinsic MMKG tasks like Multi-modal Knowledge Graph Completion and Entity Alignment, highlighting specific research trajectories. For most of these tasks, we provide definitions, evaluation benchmarks, and additionally outline essential insights for conducting relevant research. Finally, we discuss current challenges and identify emerging trends, such as progress in Large Language Modeling and Multi-modal Pre-training strategies. This survey aims to serve as a comprehensive reference for researchers already involved in or considering delving into KG and multi-modal learning research, offering insights into the evolving landscape of MMKG research and supporting future work.Comment: Ongoing work; 41 pages (Main Text), 55 pages (Total), 11 Tables, 13 Figures, 619 citations; Paper list is available at https://github.com/zjukg/KG-MM-Surve

    Image categorization combining neighborhood methods and boosting

    Full text link

    Evaluation Methodologies for Visual Information Retrieval and Annotation

    Get PDF
    Die automatisierte Evaluation von Informations-Retrieval-Systemen erlaubt Performanz und Qualität der Informationsgewinnung zu bewerten. Bereits in den 60er Jahren wurden erste Methodologien für die system-basierte Evaluation aufgestellt und in den Cranfield Experimenten überprüft. Heutzutage gehören Evaluation, Test und Qualitätsbewertung zu einem aktiven Forschungsfeld mit erfolgreichen Evaluationskampagnen und etablierten Methoden. Evaluationsmethoden fanden zunächst in der Bewertung von Textanalyse-Systemen Anwendung. Mit dem rasanten Voranschreiten der Digitalisierung wurden diese Methoden sukzessive auf die Evaluation von Multimediaanalyse-Systeme übertragen. Dies geschah häufig, ohne die Evaluationsmethoden in Frage zu stellen oder sie an die veränderten Gegebenheiten der Multimediaanalyse anzupassen. Diese Arbeit beschäftigt sich mit der system-basierten Evaluation von Indizierungssystemen für Bildkollektionen. Sie adressiert drei Problemstellungen der Evaluation von Annotationen: Nutzeranforderungen für das Suchen und Verschlagworten von Bildern, Evaluationsmaße für die Qualitätsbewertung von Indizierungssystemen und Anforderungen an die Erstellung visueller Testkollektionen. Am Beispiel der Evaluation automatisierter Photo-Annotationsverfahren werden relevante Konzepte mit Bezug zu Nutzeranforderungen diskutiert, Möglichkeiten zur Erstellung einer zuverlässigen Ground Truth bei geringem Kosten- und Zeitaufwand vorgestellt und Evaluationsmaße zur Qualitätsbewertung eingeführt, analysiert und experimentell verglichen. Traditionelle Maße zur Ermittlung der Performanz werden in vier Dimensionen klassifiziert. Evaluationsmaße vergeben üblicherweise binäre Kosten für korrekte und falsche Annotationen. Diese Annahme steht im Widerspruch zu der Natur von Bildkonzepten. Das gemeinsame Auftreten von Bildkonzepten bestimmt ihren semantischen Zusammenhang und von daher sollten diese auch im Zusammenhang auf ihre Richtigkeit hin überprüft werden. In dieser Arbeit wird aufgezeigt, wie semantische Ähnlichkeiten visueller Konzepte automatisiert abgeschätzt und in den Evaluationsprozess eingebracht werden können. Die Ergebnisse der Arbeit inkludieren ein Nutzermodell für die konzeptbasierte Suche von Bildern, eine vollständig bewertete Testkollektion und neue Evaluationsmaße für die anforderungsgerechte Qualitätsbeurteilung von Bildanalysesystemen.Performance assessment plays a major role in the research on Information Retrieval (IR) systems. Starting with the Cranfield experiments in the early 60ies, methodologies for the system-based performance assessment emerged and established themselves, resulting in an active research field with a number of successful benchmarking activities. With the rise of the digital age, procedures of text retrieval evaluation were often transferred to multimedia retrieval evaluation without questioning their direct applicability. This thesis investigates the problem of system-based performance assessment of annotation approaches in generic image collections. It addresses three important parts of annotation evaluation, namely user requirements for the retrieval of annotated visual media, performance measures for multi-label evaluation, and visual test collections. Using the example of multi-label image annotation evaluation, I discuss which concepts to employ for indexing, how to obtain a reliable ground truth to moderate costs, and which evaluation measures are appropriate. This is accompanied by a thorough analysis of related work on system-based performance assessment in Visual Information Retrieval (VIR). Traditional performance measures are classified into four dimensions and investigated according to their appropriateness for visual annotation evaluation. One of the main ideas in this thesis adheres to the common assumption on the binary nature of the score prediction dimension in annotation evaluation. However, the predicted concepts and the set of true indexed concepts interrelate with each other. This work will show how to utilise these semantic relationships for a fine-grained evaluation scenario. Outcomes of this thesis result in a user model for concept-based image retrieval, a fully assessed image annotation test collection, and a number of novel performance measures for image annotation evaluation
    corecore