117,234 research outputs found

    Analysis reuse exploiting taxonomical information and belief assignment in industrial problem solving

    Get PDF
    To take into account the experience feedback on solving complex problems in business is deemed as a way to improve the quality of products and processes. Only a few academic works, however, are concerned with the representation and the instrumentation of experience feedback systems. We propose, in this paper, a model of experiences and mechanisms to use these experiences. More specifically, we wish to encourage the reuse of already performed expert analysis to propose a priori analysis in the solving of a new problem. The proposal is based on a representation in the context of the experience of using a conceptual marker and an explicit representation of the analysis incorporating expert opinions and the fusion of these opinions. The experience feedback models and inference mechanisms are integrated in a commercial support tool for problem solving methodologies. The results obtained to this point have already led to the definition of the role of ‘‘Rex Manager’’ with principles of sustainable management for continuous improvement of industrial processes in companies

    Investigation of Air Transportation Technology at Princeton University, 1989-1990

    Get PDF
    The Air Transportation Technology Program at Princeton University proceeded along six avenues during the past year: microburst hazards to aircraft; machine-intelligent, fault tolerant flight control; computer aided heuristics for piloted flight; stochastic robustness for flight control systems; neural networks for flight control; and computer aided control system design. These topics are briefly discussed, and an annotated bibliography of publications that appeared between January 1989 and June 1990 is given

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom

    A systematic approach for monitoring and evaluating the construction project progress

    Get PDF
    A persistent problem in construction is to document changes which occur in the field and to prepare the as-built schedule. In current practice, deviations from planned performance can only be reported after significant time has elapsed and manual monitoring of the construction activities are costly and error prone. Availability of advanced portable computing, multimedia and wireless communication allows, even encourages fundamental changes in many jobsite processes. However a recent investigation indicated that there is a lack of systematic and automated evaluation and monitoring in construction projects. The aim of this study is to identifytechniques that can be used in the construction industry for monitoring and evaluating the physical progress, and also to establish how current computer technology can be utilised for monitoring the actual physical progress at the construction site. This study discusses the results of questionnaire survey conducted within Malaysian Construction Industry and suggests a prototype system, namely Digitalising Construction Monitoring (DCM). DCM prototype system integrates the information from construction drawings, digital images of construction site progress and planned schedule of work. Using emerging technologies and information system the DCM re-engineer the traditional practice for monitoring the project progress. This system can automatically interpret CAD drawings of buildings and extract data on its structural components and store in database. It can also extract the engineering information from digital images and when these two databases are simulated the percentage of progress can be calculated and viewed in Microsoft Project automatically. The application of DCM system for monitoring the project progress enables project management teams to better track and controls the productivity and quality of construction projects. The use of the DCM can help resident engineer, construction manager and site engineer in monitoring and evaluating project performance. This model will improve decision-making process and provides better mechanism for advanced project management

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Flight elements: Fault detection and fault management

    Get PDF
    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system
    corecore