3 research outputs found

    Incorporating Expert Knowledge into a Self-Organized Approach for Predicting Compressor Faults in a City Bus Fleet

    No full text
    In the automotive industry, cost effective methods for predictive maintenance are increasingly in demand. The traditional approach for developing diagnostic methods on commercial vehicles is heavily based on knowledge of human experts, and thus it does not scale well to modern vehicles with many components and subsystems. In previous work we have presented a generic self-organising approach called COSMO that can detect, in an unsupervised manner, many different faults. In a study based on a commercial fleet of 19 buses operating in Kungsbacka, we have been able to predict, for example, fifty percent of the compressors that break down on the road, in many cases weeks before the failure. In this paper we compare those results with a state of the art approach currently used in the industry, and we investigate how features suggested by experts for detecting compressor failures can be incorporated into the COSMO method. We perform several experiments, using both real and synthetic data, to identify issues that need to be considered to improve the accuracy. The final results show that the COSMO method outperforms the expert method.ISBN: 978-1-61499-588-3 (print) | 978-1-61499-589-0 (online)Editor: Sławomir NowaczykIn4Uptim

    Explainable Predictive Maintenance

    Full text link
    Explainable Artificial Intelligence (XAI) fills the role of a critical interface fostering interactions between sophisticated intelligent systems and diverse individuals, including data scientists, domain experts, end-users, and more. It aids in deciphering the intricate internal mechanisms of ``black box'' Machine Learning (ML), rendering the reasons behind their decisions more understandable. However, current research in XAI primarily focuses on two aspects; ways to facilitate user trust, or to debug and refine the ML model. The majority of it falls short of recognising the diverse types of explanations needed in broader contexts, as different users and varied application areas necessitate solutions tailored to their specific needs. One such domain is Predictive Maintenance (PdM), an exploding area of research under the Industry 4.0 \& 5.0 umbrella. This position paper highlights the gap between existing XAI methodologies and the specific requirements for explanations within industrial applications, particularly the Predictive Maintenance field. Despite explainability's crucial role, this subject remains a relatively under-explored area, making this paper a pioneering attempt to bring relevant challenges to the research community's attention. We provide an overview of predictive maintenance tasks and accentuate the need and varying purposes for corresponding explanations. We then list and describe XAI techniques commonly employed in the literature, discussing their suitability for PdM tasks. Finally, to make the ideas and claims more concrete, we demonstrate XAI applied in four specific industrial use cases: commercial vehicles, metro trains, steel plants, and wind farms, spotlighting areas requiring further research.Comment: 51 pages, 9 figure
    corecore