711,024 research outputs found

    Close binary systems among very low mass stars and brown dwarfs

    Full text link
    Using Monte Carlo simulations and published radial velocity surveys we have constrained the frequency and separation (a) distribution of very low mass star (VLM) and brown dwarf (BD) binary systems. We find that simple Gaussian extensions of the observed wide binary distribution, with a peak at 4 au and 0.6< sigma_{log(a/au)}<1.0, correctly reproduce the observed number of close binary systems, implying a close (a<2.6 au) binary frequency of 17-30 per cent and overall frequency of 32-45 per cent. N-body models of the dynamical decay of unstable protostellar multiple systems are excluded with high confidence because they do not produce enough close binary VLMs/BDs. The large number of close binaries and high overall binary frequency are also completely inconsistent with published smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMs/BDs.Comment: Proceedings of the workshop on Ultra-Low Mass Star Formation, eds. E. Martin, A. Magazzu. To appear in Astron. Nach

    On the frequency of close binary systems among very low-mass stars and brown dwarfs

    Full text link
    We have used Monte Carlo simulation techniques and published radial velocity surveys to constrain the frequency of very low-mass star (VLMS) and brown dwarf (BD) binary systems and their separation (a) distribution. Gaussian models for the separation distribution with a peak at a = 4 au and 0.6 =< sigma(log(a/au)) =< 1.0 correctly predict the number of observed binaries, yielding a close (a<2.6 au) binary frequency of 17-30 per cent and an overall VLMS/BD binary frequency of 32-45 per cent. We find that the available N-body models of VLMS/BD formation from dynamically decaying protostellar multiple systems are excluded at >99 per cent confidence because they predict too few close binary VLMS/BDs. The large number of close binaries and high overall binary frequency are also very inconsistent with recent smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMS/BDs.Comment: Accepted for publication in MNRAS letters. 5 pages, 2 figure

    Demonstrating quantum contextuality of indistinguishable particles by a single family of noncontextuality inequalities

    Full text link
    Quantum theory has the intriguing feature that is inconsistent with noncontextual hidden variable models, for which the outcome of a measurement does not depend on which other compatible measurements are being performed concurrently. While various proofs of such contextual behavior of quantum systems have been established, relatively little is known concerning the possibility to demonstrate this intriguing feature for indistinguishable particles. Here, we show in a simple and systematic manner that with projective measurements alone, it is possible to demonstrate quantum contextuality for such systems of arbitrary Hilbert space dimensions, including those corresponding to a qubit. Our demonstration is applicable to a single fermion as well as multiple fermions, and thus also a composite boson formed from an even number of fermions. In addition, our approach gives a clear demonstration of the intimate connection between complementarity and contextuality, two seemingly unrelated aspects of quantum theory.Comment: 9 pages, no figure; Major changes; More changes. Accepted in Scientific Report

    Numerical comparison of pipe-column-separation models

    Get PDF
    Results comparing six column-separation numerical models for simulating localized vapor cavities and distributed vaporous cavitation in pipelines are presented. The discrete vapor-cavity model (DVCM) is shown to be quite sensitive to selected input parameters. For short pipeline systems, the maximum pressure rise following column separation can vary markedly for small changes in wave speed, friction factor, diameter, initial velocity, length of pipe, or pipe slope. Of the six numerical models, three perform consistently over a broad number of reaches. One of them, the discrete gas-cavity model, is recommended for general use as it is least sensitive to input parameters or to the selected discretization of the pipeline. Three models provide inconsistent estimates of the maximum pressure rise as the number of reaches is increased; however, these models do give consistent results provided the ratio of maximum cavity size to reach volume is kept below 10%.Angus R. Simpson and Anton Bergan

    Scattering outcomes of close-in planets: constraints on planet migration

    Full text link
    Many exoplanets in close-in orbits are observed to have relatively high eccentricities and large stellar obliquities. We explore the possibility that these result from planet-planet scattering by studying the dynamical outcomes from a large number of orbit integrations in systems with two and three gas-giant planets in close-in orbits (0.05 AU < a < 0.15 AU). We find that at these orbital separations, unstable systems starting with low eccentricities and mutual inclinations (e≲0.1e\lesssim0.1, i≲0.1i\lesssim0.1) generally lead to planet-planet collisions in which the collision product is a planet on a low-eccentricity, low-inclination orbit. This result is inconsistent with the observations. We conclude that eccentricity and inclination excitation from planet-planet scattering must precede migration of planets into short-period orbits. This result constrains theories of planet migration: the semi-major axis must shrink by 1-2 orders of magnitude without damping the eccentricity and inclination.Comment: 11 pages, 3 figures, accepted for publication in Ap
    • …
    corecore