42 research outputs found

    Towards optimal kernel for connected vertex cover in planar graphs

    Full text link
    We study the parameterized complexity of the connected version of the vertex cover problem, where the solution set has to induce a connected subgraph. Although this problem does not admit a polynomial kernel for general graphs (unless NP is a subset of coNP/poly), for planar graphs Guo and Niedermeier [ICALP'08] showed a kernel with at most 14k vertices, subsequently improved by Wang et al. [MFCS'11] to 4k. The constant 4 here is so small that a natural question arises: could it be already an optimal value for this problem? In this paper we answer this quesion in negative: we show a (11/3)k-vertex kernel for Connected Vertex Cover in planar graphs. We believe that this result will motivate further study in search for an optimal kernel

    Kernels for Feedback Arc Set In Tournaments

    Get PDF
    A tournament T=(V,A) is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on n vertices and an integer parameter k, the Feedback Arc Set problem asks whether the given digraph has a set of k arcs whose removal results in an acyclic digraph. The Feedback Arc Set problem restricted to tournaments is known as the k-Feedback Arc Set in Tournaments (k-FAST) problem. In this paper we obtain a linear vertex kernel for k-FAST. That is, we give a polynomial time algorithm which given an input instance T to k-FAST obtains an equivalent instance T' on O(k) vertices. In fact, given any fixed e>0, the kernelized instance has at most (2+e)k vertices. Our result improves the previous known bound of O(k^2) on the kernel size for k-FAST. Our kernelization algorithm solves the problem on a subclass of tournaments in polynomial time and uses a known polynomial time approximation scheme for k-FAST

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    Tight Kernel Bounds for Problems on Graphs with Small Degeneracy

    Full text link
    In this paper we consider kernelization for problems on d-degenerate graphs, i.e. graphs such that any subgraph contains a vertex of degree at most dd. This graph class generalizes many classes of graphs for which effective kernelization is known to exist, e.g. planar graphs, H-minor free graphs, and H-topological-minor free graphs. We show that for several natural problems on d-degenerate graphs the best known kernelization upper bounds are essentially tight.Comment: Full version of ESA 201

    On Polynomial Kernels for Integer Linear Programs: Covering, Packing and Feasibility

    Full text link
    We study the existence of polynomial kernels for the problem of deciding feasibility of integer linear programs (ILPs), and for finding good solutions for covering and packing ILPs. Our main results are as follows: First, we show that the ILP Feasibility problem admits no polynomial kernelization when parameterized by both the number of variables and the number of constraints, unless NP \subseteq coNP/poly. This extends to the restricted cases of bounded variable degree and bounded number of variables per constraint, and to covering and packing ILPs. Second, we give a polynomial kernelization for the Cover ILP problem, asking for a solution to Ax >= b with c^Tx <= k, parameterized by k, when A is row-sparse; this generalizes a known polynomial kernelization for the special case with 0/1-variables and coefficients (d-Hitting Set)

    Abusing the Tutte Matrix: An Algebraic Instance Compression for the K-set-cycle Problem

    Get PDF

    Finding forest-orderings of tournaments is NP-complete

    Full text link
    Given a class of (undirected) graphs C\mathcal{C}, we say that a FAS FF is a C\mathcal{C}-FAS if the graph induced by the edges of FF (forgetting their orientations) belongs to C\mathcal{C}. We show that deciding if a tournament has a C\mathcal{C}-FAS is NP-complete when C\mathcal{C} is the class of all forests. We are motivated by connections between C\mathcal{C}-FAS and structural parameters of tournaments, such as the dichromatic number, the clique number of tournaments, and the strong Erd\H{o}s-Hajnal property
    corecore