4 research outputs found

    Remote sensing satellite formation for bistatic synthetic aperture radar observation

    Get PDF
    ABSTRACT In recent years the Italian Space Agency has been proceeding to the definition and launch of small missions. In this ambit, the BISSAT mission was proposed and selected along with five other missions for a competitive Phase A study. BISSAT mission concept consists in flying a passive SAR on board a small satellite, which observes the area illuminated by an active SAR, operating on an already existing large platform. Several scientific applications of bistatic measurements can be envisaged: improvement of image classification and pattem recognition, derivation of medium-resolution digital elevation models, velocity measurements, measurements of sea-wave spectra. BISSAT payload is developed on the basis of the X-band SAR of the COSMO/SkyMed mission, while BISSAT bus is based on an upgrade of MITA. Orbit design has been performed, leading to the same orbit parameters apart from the ascending node right ascension (5.24°s hift) and the time of the passage on the ascending node (1.17s shift). A minimum distance at the passage of the orbit crossing point of about 42km (5.7s) is computed. To maintain adequate swath overlap along the orbit, attitude maneuver or antenna electronic steering must be envisaged and traded-off taking into account radar performance and cost of hardware upgrade

    Design of pilot channel tracking loop Systems for high sensitivity Galileo receivers

    Get PDF
    Global Navigation Satellite Systems (GNSS) have been in the center stage of the recent technological upheaval that has been initiated by the rise of smartphones in the last decade. This is clearly reflected in the development of many applications based on GNSS technology as well as the emergence of multi-constellation GNSS with the launch of the first Galileo satellites at the end of the year 2011. GNSS does not only guarantee global positioning, navigation and timing services but also extends to applications in banking, agriculture, mapping, surveying, archaeology, seismology, commerce, ionosphere scintillation monitoring, remote sensing (soil moisture, ocean salinity, type of surface), wind speed monitoring, ocean surface monitoring, altimetry and many others. In the last decade, Location Based Services (LBS) have increased significant market demand where GNSS has been coupled with technologies based on terrestrial communication links in order to meet strict positioning accuracy requirements. In these conditions, relying on GNSS technology alone, raises a few challenges for signal synchronization even before positioning attempts and are mainly due to a considerable signal attenuation as it propagates through construction material and into indoor environments. Ionosphere scintillation induces a similar challenge where in addition to amplitude fading, the carrier phase and frequency suffer from indeterministic fluctuations. This research activity is devoted to explore and design the elements constituting pilot channel scalar tracking loop systems, specifically tailored to Galileo signals. It is expected that running such systems with extended integration intervals offers robust synchronization of the incoming signal which is heavily affected by external indeterministic fluctuations. In some conditions, it is desired to follow these fluctuations as in ionosphere scintillation monitoring while in other instances it is mainly desired to filter them out as noise to guarantee positioning capabilities. This is the objective of this research study which applies for both indoor environments and ionosphere scintillation affected signals. Towards this endeavor, a comprehensive theoretical study of the carrier and code tracking loops elements is undertaken, and particular attention is directed to the following aspects: • carrier frequency and phase discriminators and the relative optimum integration time • Galileo specific code discriminators and code tracking architecture especially tailored to Composite Binary Offset Carrier (CBOC) modulated signals. • optimum loop filters designed in the digital domain for different types of phase input signals • local signal generation using a numerically controlled oscillator and loop filter estimates • front-end filter bandlimiting effects on the tracking performance. This design is further tested with simulated Galileo signals with and without ionosphere scintillation as well as raw Galileo signals in an equatorial region during March 2013. Tracking performance comparison is carried out between the customized Galileo receiver developed in this research activity and an ionosphere scintillation dedicated professional GNSS receiver, the Septentrio PolaRxS PRO R receiver

    Contributions to GNSS-R earth remote sensing from nano-satellites

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit de CiènciesGlobal Navigation Satellite Systems Reflectometry (GNSS-R) is a multi-static radar using navigation signals as signals of opportunity. It provides wide-swath and improved spatio-temporal sampling over current space-borne missions. The lack of experimental datasets from space covering signals from multiple constellations (GPS, GLONASS, Galileo, Beidou) at dual-band (L1 and L2) and dual-polarization (Right Hand Left Hand Circular Polarization: RHCP and LHCP), over the ocean, land and cryosphere remains a bottleneck to further develop these techniques. 3Cat-2 is a 6 units (3 x 2 elementary blocks of 10 x 10 x 10 cm3) CubeSat mission ayming to explore fundamentals issues towards an improvement in the understanding of the bistatic scattering properties of different targets. Since geolocalization of specific reflections points is determined by the geometry only, a moderate pointing accuracy is still required to correct for the antena pattern in scatterometry measurements. 3Cat-2 launch is foreseen for the first quarter 2016 into a Sun-Synchronous orbit of 510 km height using a Long March II D rocket. This Ph.D. Thesis represents the main contributions to the development of the 3Cat-2 GNSS-R Earth observation mission (6U CubeSat) including a novel type of GNSS-R technique: the reconstructed one. The desing, development of the platform, and a number of ground-based, airborne and stratospheric balloon experiments to validate the technique and to optimize the instrument. In particular, the main contributions of this Ph.D. thesis are: 1) A novel dual-band Global Navigation Satellite Systems Reflectometer that uses the P(Y) and C/A signals scattered over the sea surface to perform highly precise altimetric measurements (PYCARO). 2) The first proof-of-concept of PYCARO was performed during two different ground-based field experiments over a dam and over the sea under different surface roughness conditions. 3) The scattering of GNSS signals over a water surface has been studied when the receiver is at low height, as for GNSS-R coastal altimetry applications. The precise determination of the local sea level and wave state from the coast can provide useful altimetry and wave information as "dry" tide and wave gauges. In order to test this concept an experiment has been conducted at the Canal d'Investigació i Experimentació Marítima (CIEM) wave channel for two synthetic "sea" states. 4) Two ESA-sponsored airborne experiments were perfomed to test the precision and the relative accuracy of the conventional GNSS-R. 5) The empirical results of a GNSS-R experiment on-board the ESA-sponsored BAXUS 17 stratospheric balloon campaign performed North of Sweden over boreal forests showed that the power of the reflected signals is nearly independent of the platform height for a high coherent integration time. 6) An improved version of the PYCARO payload was tested in Octover 2014 for the second time during the ESA-sposored BEXUS-19,. This work achieved the first ever dual-frequency, multi-constellation GNSS-R observations over boreal forests and lakes using GPS, GLONASS and Galileo signals. 7) The first-ever dual-frequency multi-constellation GNSS-R dual-polarization measurements over boreal forests and lakes were obtained from the stratosphere during the BEXUS 19 using the PYCARO reflectometer operated in closed-loop mode.Global Navigation Satellite Systems Reflectometry (GNSS-R) es una técnica de radar multi-estático que usa señales de radio-navegación como señales de oportunidad. Esta técnica proporciona "wide-swath" y un mejor sampleado espacio-temporal en comparación con las misiones espaciales actuales. La falta de datos desde el espacio proporcionando señales de múltiples constelaciones (GPS, GLONASS, Galileo, Beidou) en doble banda (L1 y L2) y en doble polarización (RHCP y LHCP) sobre océano, tierra y criosfera continua siendo un problema por solucionar. 3Cat-2 es un cubesat de 6 unidades con el objetivo de explorar elementos fundamentales para mejorar el conocimiento sobre el scattering bi-estático sobre diferentes medios dispersores. Dado que la geolocalización de puntos de reflexión específicos está determinada solo por geometría, es necesario un requisito moderado de apuntamiento para corregir el diagrama de antena en aplicaciones de dispersometría. El lanzamiento del 3Cat-2 será en Q2 2016 en una órbitra heliosíncrona usando un cohete Long March II D. Esta tesis representa las contribuciones principales al desarrollo del satélite 3Cat2 para realizar observación de la tierra con GNSS-R incluyendo una nueva técnica: "the reconstructed-code GNSS-R". El diseño, desarrollo de la plataforma y un número de experimentos en tierra, desde avión y desde globo estratosférico para validar la técnica y optimizar el instrumento han sido realizados. En particular, las contribuciones de esta Ph.D. son: 1) un novedoso Global Navigation Satellite Systems Reflectometer que usa las señales P(Y) y C/A después de ser dispersadas sobre la superficie del mar para realizar medidas altimétricas muy precisas. (PYCARO). 2) La primera prueba de concepto de PYCARO se hizo en dos experimentos sobre un pantano y sobre el mar bajo diferentes condiciones de rugosidad. 3) La disperión de las señales GNSS sobre una superfice de agua ha sido estudiada para bajas altitudes para aplicaciones GNSS-R altimétricas de costa. La determinación precisa del nivel local del mar y el estado de las olas desde la costa puede proporcionar información útil de altimetría e información de olas. Para hacer un test de este concepto un experimento en el Canal d'Investigació i Experimentació Marítima (CIEM) fue realizado para dos estados sintéticos de rugosidad. 4) Dos experimentos en avión con esponsor de la ESA se realizaron para estudiar la preción y la exactitud relativa de cGNSS-R. 5) Los resultados empíricos del experimento GNSS-R en BEXUS 17 con esponsor de la ESA realizado en el norte de Suecia sobre bosques boreales mostró que la potencia reflejada de las señales es independiente de la altitud de la plataforma para un tiempo de integración coherente muy alto. 6) Una versión mejorada del PYCARO fue testeada en octubre del 2014 por segunda vez durante el BEXUS 19 que también fue patrocidado por la ESA. Este trabajo proporcionó las primeras medidas GNSS-R sobre bosques boreales en doble frecuencia usando varias constelaciones GNSS. 7) Las primeras medidas polarimétricas (RHCP y LHCP) de GNSS-R sobre bosques boreales también fueron conseguidas durante el experimento BEXUS 19.Award-winningPostprint (published version

    Measurement and modelling of bistatic sea clutter

    Get PDF
    There is a growing interest in bistatic radars; however, such systems cannot reach their full potential unless the designer has a proper understanding of the environment in which they operate. Rather little information has been published on bistatic clutter and out-of-plane bistatic sea clutter in particular. This is due to a number of factors including the inherent complexity of conducting bistatic radar trials and the resulting lack of high quality bistatic data. In this thesis the collection and analysis of a unique set of bistatic sea clutter data is described. To achieve this objective a novel multistatic radar system was developed. The nodes do not need to be physically connected. This system has a peak transmitted power of more than 500 W. Synchronisation in time and frequency was achieved using GPS disciplined oscillators built and designed at the University of Cape Town. Using the above system simultaneous bistatic and monostatic sea clutter and target signatures were recorded in the UK and South Africa at various geometries and weather conditions. Parts of this unique data set related to out-of-plane bistatic sea clutter was analysed in this thesis. The data covered both co- and cross-polarised sea clutter data at low grazing angles with bistatic angles between 30° and 120°. Data sets covering a range of conditions with sea states from 2 – 5. Using the recorded data it was shown that the ratio of the bistatic normalised radar cross section to the monostatic normalised radar cross section dropped as the scattering angle was increased until the scattering angle was around 90°. Furthermore, the cross-polarised bistatic normalised radar cross section was found to be larger than the cross-polarised monostatic normalised radar cross section when the scattering angle was around 90°. A new empirical model for predicting bistatic normalised radar cross section has been developed. The model is applicable to both in-plane and out-of-plane geometries. The model was able to provide a good fit to both UCL and external data. The temporal correlation properties of both monostatic and bistatic data were studied. It was found that the speckle component of both bistatic and monostatic clutter decorrelated in tens of milliseconds, with the decorrelation time longer for bistatic clutter. The texture of both bistatic and monostatic clutter had similar autocorrelation functions and had similar decorrelation times. By comparing the texture and intensity autocorrelation functions it was concluded that the compound model still holds. It was also found that bistatic clutter was less ‘spiky’ than monostatic clutter particularly at horizontal polarisation. This was due to the reduction in the intensity of the spikes due to specular reflections. By combing the effects of the reduction in reflectivity and spikiness it was shown that a bistatic radar would require a smaller signal to interference ratio than a monostatic radar for the same probability of detection and probability of false alarm. This was more evident at angles close to 90° and for horizontal polarisation. In summary this thesis reports the collection and analysis of novel simultaneous monostatic and bistatic sea clutter and target data. This was achieved by the development of a unique multistatic radar system. This work has resulted in significant advances in both netted radar technology and understanding of bistatic sea clutter
    corecore